
ISSN 1884-0760

GRACE TECHNICAL REPORTS

Guaranteeing Free-edits to Bidirectional
Graph Transformations

Ezgi Çiçek Soichiro Hidaka

GRACE-TR 2016–04 September 2016

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Guaranteeing Free-edits to Bidirectional Graph

Transformations ∗

Ezgi Çiçek
MPI-SWS, Germany
ecicek@mpi-sws.org

Soichiro Hidaka†

Hosei University, Japan
hidaka@hosei.ac.jp

Abstract

With recent advances in bidirectional graph transformations, changes
to input and output graphs can be synchronized and both input and
output graphs can be maintained consistently. However, in the previous
work, the nature of supported input and output changes has been limited
to in-place updates, whereas insertions and deletions have been handled
by different mechanisms (such as universal resolving algorithm) that are
costly and impractical. Motivated by this gap, we present a free-edit
analysis to establish formal bidirectional properties to support free-edits
(eg: deletions, insertions, in-place updates etc.) to a graph. With our
approach, whenever free-edits are possible to a graph, the change can be
directly reflected to the source without doing any backward evaluation.
The key to our analysis is the utilization of correspondence traces that
specify how a view edge is obtained. We prove our analysis sound with
respect to the in-place update semantics and show that valid free-edits
constitute a well-behaved bidirectional transformation. We implement
the free-edit analysis and integrate it to the existing GRoundTram tool.

1 Introduction

Many applications operate on data that changes bidirectionally: view updates in
a database are reflected to the corresponding source of the query [1, 6], changes
to UML diagrams are incorporated to the source code or vice versa [18], meta
data is kept consistently in two different formats with possible changes to both
formats [9]. In all these applications, whenever the output is modified, the input
should be updated consistently; and whenever the input is modified, the output
should be updated consistently.

One way to ensure the consistency of information between input and output
is to design programming languages that are bidirectional in nature. A program
written in a bidirectional programming language specifies forward and backward
transformations simultaneously and makes sure that consistency is preserved
by construction. Bidirectional programs (transformations) are being widely
used in different domains including the synchronization of replicated data in

∗The project was supported by the International Internship Program of the National
Institute of Informatics.

†Formerly of National Institute of Informatics, Japan

1

1 INTRODUCTION 2

different formats [8], view maintenance in relational databases [2], interactive
user interface design [17], coupled software transformation [14] etc.

A complex data structure that is at the heart of many non-trivial bidi-
rectional applications such as UML diagrams, biological information etc. is
graphs. In their work, Hidaka et al. has proposed a framework to bidirection-
alize graph transformations in which structural recursion is handled with bulk
semantics [13]. Their work has developed a rigorous bidirectional semantics
to ensure the correctness of backward and forward propagations for in-place
updates.

Although the previous work has considered a wide range of graph edits, e.g.
in-place updates, node/subgraph insertions and deletions, bulk of the bidirec-
tional formalization has focused on providing well-behavedness and correctness
guarantees for in-place updates. Unlike the in-place updates, graph edits such
as insertions and deletions require non-uniform custom algorithms that might
end up being inefficient and difficult to use. For instance, insertions to the view
graph are handled in [13] by the universal resolving algorithm (URA) which
tries to enumerate all possible subgraphs in the source that could have produced
the updated view graph. In practice, this process is often costly since it requires
enumerating and searching through all possibly inserted source subgraphs, and
it gives little flexibility to the user to direct the enumeration process. Similarly,
deletions to the view graph are handled in [13] by a correspondence based al-
gorithm that require re-executing the forward evaluation from source to view to
show correctness.

Even though these algorithms for handling insertions and deletions are cor-
rect, they are often inefficient. In this work, we aim to design language-based
techniques for efficient bidirectional propagation of arbitrary changes such as
insertions, deletions or in-place updates. Our analysis on this direction relies
on the fact that in practice, many queries just move parts of the data (i.e sub-
graphs) around without inspecting the underlying input value. We observe that
for parts of view graph which is obtained from the input data which is merely
copied without being inspected, changes to the view graph can be directly re-
flected to the source graph without doing any backward propagation, i.e. for
the case of insertions, without invoking the costly URA algorithm, hence the
name ’free’ and for the case of deletions, without requiring a forward evaluation
to check the correctness. Similarly, for parts of the data that is not inspected,
source changes can be directly reflected to the view graph without doing any
forward propagation.

Therefore, we are interested in designing static techniques to identify
whether free-edits to a graph (such as insertions, deletions, edge modifications,
or arbitrary structural changes) are possible. As a first step in this direction,
we design a proof system for establishing formal bidirectional properties
to support free-edits to a graph for bidirectional programs written in the
UnCAL language. In addition, we also ensure that free-edits preserve the
well-behavedness properties.

We first provide an overview of our free-edit analysis, highlighting key design
principles and challenges. First, in most cases, free-edit analysis depends on
the edit location, i.e. where the user is interested in making a change to. Since
some parts of the input data might be inspected and some parts might be merely
copied, our analysis has to take into account a particular edit location. Secondly,
to reflect the changes back to the source (or the view) without doing any extra

2 FREE-EDIT ANALYSIS BY EXAMPLE 3

costly computation, we rely on the correspondence traces that specify how a
view edge was obtained, and where it originates from in the source graph [11].
Initially, correspondence traces were developed for identifying the origin of a
view edge and checking editability of a particular view edge without violating
the well-behavedness properties. We observe that they are also useful for free-
edit analysis.

A correspondence trace is defined as a list of code positions that ended in
either an edge (if the view edge is originating from source graph) or a particular
code position (if the view edge is originating from a constant label in the
code). However, for edges that are originating from multiple code positions,
e.g. resulting from union, lists do not suffice. In this work, we also lift traces
from lists to sets for accommodating a more precise correspondence analysis
and extend them further for structural recursion to also obtain which labels and
variables contribute to the result. By utilizing an enhanced form of trace, we
are able to identify whether free-edits are possible to a graph at a particular edit
location in addition to obtaining a more precise origin and editability analysis.
Thirdly, we also ensure that the WPutGet property holds for free-edits, i.e. the
changes induced by backward evaluation followed by a forward evaluation also
satisfy free-edit conditions.

Our proof system has a free-edit judgment of the form Γ ⊢ ep : b where
ep specifies the execution path for a specific edge ζ in the view graph and Γ
specifies all the labels and variables occurring in the trace of the edit edge ζ. If
the free-edit analysis succeeds, then the result of the analysis b is true (denoted
as ⊤), else it is false (denoted as ⊥).

In summary, we make the following contributions.

1. We develop a proof system for establishing bidirectional properties to sup-
port free-edits to a graph and provide a cheap(free) backward propagation
mechanism.

2. We show that the well-behavedness properties are preserved for any edit
that passes our analysis.

3. We develop an enhanced form of correspondence traces to facilitate static
proofs of free-edits.

4. We implement our analysis and integrate it into the existing GRoundTram
tool and showcase the usefulness of our approach on several applications.

2 Free-edit Analysis by Example

Example 1 Suppose we have a program as shown in Listing 1 that extracts
information for European countries from a source graph (shown in Fig. 1) that
contains fact book information about different countries and their demographics.
The resulting view graph is shown in Figure 2.

Suppose that a user wants to insert another ethnic group, e.g. Turkish, next
to the ethnicity edge ζ = (12, German, 11) that corresponds to the ethnicity of
Germany. Using the insertion reflection algorithm of [13] based on the universal
resolving algorithm, such an insertion would require searching for all possible
computations of the query that could have produced the updated view with the
insertion. In practice, this mechanism often becomes unpractical and difficult to

3 UNCAL: A CORE LANGUAGE FOR GRAPHS 4

select {result: {ethnic: $e, language: $lang , located: $cont}}
where {country: {name:$g , people: {ethnicGroup: $e}, language: $lang , continent:

$cont}} in $db,
{$l :$Any} in $cont , $l = Europe

Listing 1: Transformation in UnQL

{&}
26

25
country

15
country

9

country

24
name

22
people

19
language

17

continent

23
Japan

21
ethnicGroup

20
Japanese

18
Japanese

16
Asia

14
name

12people

3

continent

1

language

13
Germany

11
ethnicGroup

10
German

8
name

6
people

continent

language

7
Austria

5
ethnicGroup

4
Austrian

2
Europe

0
German

Figure 1: Example Source Graph

{&}
0

13result

14

result

3
language

7located

10
ethnic

4
language

8
located

12

ethnic

1
German

2
German

5
Europe

6
Europe

9
Austrian

11
German

Figure 2: View Graph Gener-
ated by Transformation of the
Graph in Fig. 1

use because the user doesn’t have much control over the search strategy and can
not specify the labels of the inserted graph. In addition, if the inserted subgraph
is big, searching for a possible evaluation path that created the resulting view
could be very inefficient due to an increase in the search space. Instead, using our
proposed proof system, the user can determine whether free-edits are possible for
a particular edit edge; in this case ζ. Since the graph variable $e corresponding
to the ethnicity information is not inspected, our analysis succeeds and we can
directly reflect the insertion change to the source graph. To find where the
new ethnicity information must be inserted in the source, we look up the origin
edge of the edit edge ζ from its trace: the edge (12, ethnicGroup, 11) is the
origin. Hence, we insert the subgraph shown in Figure 3 next to the node
(12, ethnicGroup, 11).

3 UnCAL: A core language for Graphs

In this section, we first describe UnCAL (Unstructured CALculus), a powerful
graph algebra [3] that is at the core of our development. We briefly explain the
syntax and the evaluation semantics for vanilla UnCAL. Later on in Section 4,
we extend UnCAL’s evaluation semantics with trace information to facilitate
backward propagation.

We start with the semi-structured data shown in Figure 2 as a tree with

{&}
0

1
Turkish

Figure 3: Graph to be Inserted

3 UNCAL: A CORE LANGUAGE FOR GRAPHS 5

labelled edges and leaves. It contains the information about the result, e.g.
language, location and ethnicity. This graph can be described in UnCAL’s
syntax as shown below.

{result: {language: "Germany", located: "Europe", ethnic: "Austrian"},
result: {language: "Germany", located: "Europe", ethnic: "German"}}

Then, we can define functions (queries) in UnCAL to process the graph. For
instance, a query that returns all countries can be defined in UnCAL by

rec(λ($l , $g). if l = country then {country : $g} else {})($db)

The notation {· · · : · · · , · · · } is used to represent graphs in UnCALs term
language. The notation {t1, · · · , tn} is used as an abbreviation of {t1} ∪ · · · ∪
{tn}.

UnCAL Graph Model An UnCAL graphs are directed and have (possibly
multiple) root(s) and leaves. A graph is a quadruple (V,E, I,O), where V is a
set of vertices (nodes), E is a set of edges, I is a one-to-one mapping from a set of
input markers to V and O is a many-to-many mapping from V to a set of output
markers. A special marker & is called the default marker. If {& 7→ v} ∈ I, v is
called an input node and if v 7→ &m ∈ O, v is called an output node. Intuitively,
input nodes serves entry points whereas the output nodes serve as exit points.
The markers are used for references for cycles and sharings. Moreover, they are
used as connection points to connect two graphs.

A dotted edge labelled ϵ is referred to as an ϵ-edge, which is a virtual edge
connecting two nodes directly. UnCAL’s notion of equality for graphs is modulo
bisimulation (i.e., not modulo graph isomorphism).

UnCAL Query Language UnCAL’s term language consists of constants
{},(), markers &y , definitions &x := e, labelled edges {l : g}, vertical compositions
g1@g2 (append), horizontal compositions g1⊕g2, other horizontal compositions
g1 ∪ g2 for merging roots and cycles cycle(g). The underlying graph theoretic
meaning of these constructors are shown in Figure 4.

{} & ()
∅

&y &

&y

g
ε

ε
cycle

g
1

&x
1

&x
m

...

&x
1

&x
m

... &y
1

&y
n

...

&x
1

&x
m

...

&y
1

&y
n

...

g
1

g
2

g
1

g
2

ε εε ε&x
1

&x
m
&x

1
&x

m

&x
1

&x
m

∪

... ...

...

&y
1

&y
m′
&y′

1
&y′

n′
... ... &y

1
&y

m′
&y′

1
&y′

n′
... ...

l

g
1

g
1

{_:_}

&

&
l

&y
1

&y
m

... &y
1

&y
m

...

&x
:=

&x.&y
1

&x.&y
m

...

g
1

g

&y
1

&y
m

...

...&z
1

&z
n

...&z
1

&z
n

⊕
g
1

g
2

&x
1

&x
m
&y

1
&y

n
... ...

g
1

g
2

&x
1

&x
m

&y
1

&y
n

... ...

1
& &

m
x x ′
′ ′
…

1
& &

n
y y ′
′ ′
…

1
& &

m
x x ′
′ ′
…

1
& &

n
y y ′
′ ′
…

ε ε

@

g
1

&z
1

&z
k

...

&x
1

&x
m

g
2

...&y
1

&y
n

g
1

...

&x
1

&x
m

g
2

...&y
1

&y
n

... ...

1
& &

m
x x ′
′ ′
…

1
& &

k
z z ′
′ ′
…

1
& &

m
x x ′
′ ′
…

Figure 4: Graph Constructors of UnCAL

There are nine constructors in UnCAL. Three of these constructs are nullary.
The constructor () constructs a graph without and edges or nodes. The con-
structor {} constructs a graph with a single node (marked with the default

4 BIDIRECTIONAL SEMANTICS 6

marker &) and no edges. The construct &y constructs a graph like {}, where the
node’s output marker is &y .

The remaining six constructors operate on other graphs. The constructor
{l : g} constructs a new root with the default input marker &with an edge l from
the new root to the root of the graph g, i.e. g.I(&). The union constructor g1∪g2
operates on two graphs with identical sets of input markers and constructs new
input nodes for each of the input markers of the graphs, where each new node
is connected to the roots of g1 and g2 by ϵ edges. The vertical composition
construct g1 @ g2 appends two graphs by connecting the output nodes of g1 to
the input nodes of g2 by ϵ edges. The rest of the markers of g1 and g2 that do
not match are ignored. The horizontal composition construct g1⊕g2 unions two
graphs disjointly so that the resulting graph inherits all the markers, edges and
nodes from the operands. The cycle construction cycle(g) connects the output
nodes of g to the input nodes of g by ϵ edges to form cycles.

4 Bidirectional Semantics

In this section, we first describe a trace augmented forward and backward
semantics for UnCAL (Section 4.1). We then prove our free-edit analysis sound
relative to the backward semantics for three different kinds of edits: insertions,
deletions, and edge label modifications (Section 6).

4.1 Traced Forward Semantics

We present a new trace-augmented forward semantics that is an extension of
the original forward semantics presented in [13] and a variation of [11, 12].
The main extension that is motivated by [12] is that as a result of the forward
execution, we also obtain a correspondence trace (similar to [12]) in addition to
the resulting view graph. Correspondence traces keep track of code positions
and source edges that directly contribute to the creation of each view edge (or
respectively each node). In this paper, we make use of the traces for free-edit
analysis unlike editability analysis conducted in [12].

The traced forward semantics F [[e]]ρ = (g, t) evaluates an expression e under
the environment ρ and produces a view graph g and a trace t. The trace maps
each view edge ∈ Edge to either a source edge (if it is originating from the
source) or code position (if it is originating from the code), preceded by a set or
a list of code positions representing the corresponding language constructs that
created that particular view edge.

Trace = Edge → TraceE
TraceE ::= Pos :: TraceE | [Edge] | [Pos] | {TraceE} | TraceE ∪ TraceE
The environment ρ represents bindings for graph and label variables; it maps

each graph variable to the corresponding input graph and each label variable to
the corresponding label in the query.

Figure 5 shows the forward evaluation of each expression. We will focus on
the trace component since the graph component is the same as in the original
forward semantics of [13]. For the constructor {}p that creates a single node,
the trace maps the newly created node to the code position p of the constructor.
Similarly, the same trace is generated for the output marker constructor &y .
For the nullary constructor ()p that creates an empty graph, no trace is

4 BIDIRECTIONAL SEMANTICS 7

F [[{}p]]ρ = (G{}p, {G.I(&) 7→ [p]}) (T-emp)

F [[&yp]]ρ = (G&y
p, {G.I(&) 7→ [p]}) (Omrk)

F [[()p]]ρ = (()p,∅) (G-emp)

F [[e1 ∪p e2]]ρ = (G(g1 ∪p g2), (t1 ∪ t2 ∪ {v 7→ [p] | (&x 7→ v) ∈ G.I}))
where ((g1, t1), (g2, t2)) = (F [[e1]]ρ,F [[e2]]ρ)

(Uni)

F [[e1 ⊕p e2]]ρ = (g1 ⊕p g2, t1 ∪ t2)
where ((g1, t1), (g2, t2)) = (F [[e1]]ρ,F [[e2]]ρ)

(Duni)

F [[e1 @p e2]]ρ = (g1 @
p g2, t1 ∪ t2)

where ((g1, t1), (g2, t2)) = (F [[e1]]ρ,F [[e2]]ρ)
(Apnd)

F [[{eL : e}p]]ρ = (G{l : g}p, {(G.I(&), l, g.I(&)) 7→ τ,G.I(&) 7→ [p]} ∪ t)

where ((l, τ), (g, t)) = (FL[[eL]]ρ,F [[e]]ρ)
(Edg)

F [[(&x := e)p]]ρ = (&x := g, t)
where (g, t) = F [[e]]ρ

(Imrk)

F [[cyclep(e)]]ρ = (Gcycle
p(g), t ∪ {v 7→ [p] | (&x 7→ v) ∈ G.I})

where (g, t) = F [[e]]ρ
(Cyc)

FL[[a
p]]ρ = (a, [p]) (Lcnst)

FL[[$l
p]]ρ = (l, [p])

where l = ρ($l)

(Lvar)

F [[lletp $l = eL in e]]ρ = (g, t ◦$l (p : τ))

where (l, τ) = FL[[eL]]ρ
where (g, t) = F [[e]]ρ∪{$l 7→l}

(Llet)

F [[letp $g = e1 in e2]]ρ = (g2, t2 ◦$g (prepp t1))

where (g1, t1) = F [[e1]]ρ
where (g2, t2) = F [[e2]]ρ∪{$g 7→g1}

(Let)

F [[$gp]]ρ = (g, prepp⌜g⌝)
where g = ρ($g)

(Var)

F [[if
p(eL = e′L) then etrue

else efalse
]]ρ = (g, prepp t)

where ((l,), (l′,)) = (FL[[eL]],FL[[e
′
L]])

b = (l = l′)
(g, t) = F [[eb]]ρ

(If)

Figure 5: Forward Semantics

4 BIDIRECTIONAL SEMANTICS 8

F [[recpZ(λ($l , $g).eb)(ea)]]ρ = (g′,
∪

ζ∈g.E

tζ ∪ t′V)

where (g, t) = F [[ea]]ρ
M = {ζ 7→ (gm, t′′m) | ζ ∈ g.E, ζ ̸= ε, (u, l, v) = ζ,

(gm, tm) = F [[eb]]ρ∪{$l 7→l,$g 7→gv},

t′m = (tm ◦$l (p : t(ζ)) ◦$g (prepp tv)),

∀ζm ∈ gm. if origin(ζm, tm) ∈ ga.Top
then t′′m = prep$l t

′
m

else t′′m = t′m}
g′ = (VRecN ∪ . . . , , ,) = composeprec(M, g,Z)
t′V = {v 7→ [p] | v ∈ VRecN}
tζ = recep,ζ(prepp π2(M(ζ)))

(Rec)

generated since there is no edge or node created. For the binary constructors
∪, ⊕ and @, the traces of both subexpressions are merged together with the
trace created by themselves. The merging of traces t1∪t2 is computed as follows:

{ζ 7→ (if (ζ 7→ τ2) ∈ t2 then τ1 ∪ τ2 else τ1) | (ζ 7→ τ1) ∈ t1} ∪
{ζ 7→ τ2 | (ζ 7→ τ2) ∈ t2 ∧ (ζ 7→ τ1) /∈ t1}

If the view edge ζ is originating from only one of the operands, then we
return the corresponding trace edge set. It might also be the case that the view
edge is originating from both of the operands (i.e. ζ ∈ dom(t1) ∧ ζ ∈ dom(t2)).
For instance the query rec((λ$l , $g).$gp1 ∪ $gp2) will create a subgraph which
is shared and any edge in this subgraph will be originating from both p1 and
p2 code locations with an identical origin edge. In such cases, we simply union
their corresponding trace edge sets τ1 and τ2.

Next, we define what we mean by the origin of a view edge. The edge origin
originE is defined by

originE(p :: τ) = originE(τ)
originE([x]) = x where x ∈ (Edge | Pos)
originE({τ1, τ2, · · · , τN}) = originE(τ1) where ∀i. originE(τ1) = originE(τi).

Note that τ1 ∪ τ2 is defined only if the view edge has the same origin edge,
that is originE(τ1) = originE(τ2).

For the remaining binary graph constructors ⊕ and @, the traces of both
subexpressions are combined together with the trace created by themselves.

For variables, we return the identity trace that maps each edge (resp. each
node) in the graph to itself.

Label evaluation is denoted as FL[[el]]ρ, taking as input a label expressions
eL and an environment ρ, and returning a label and a corresponding trace. If
the label expression is a constant, then the trace is simply the code position of
the label (rule Lconst). If the label expression is a label variable, then the trace
is the code position of the label variable followed by the corresponding trace of
the variable from the environment.

For the let bindings of the form lletp $l = eL in e, we first evaluate the
label expressions eL (rule LLET). Then we evaluate the body e in the extended

5 FREE-EDIT ANALYSIS 9

environment mapping l to the result of the label evaluation. The trace for the
whole let expression does not only contain the trace of the body, but also the
trace of the bind expression as well as the code location of the let expression.
This composition is represented by a substitution operation, denoted as t1 ◦$l t2,
that substitutes the trace of t1 for all the edges originating from the label variable
l in the trace of the body expression. The aim of this substitution is to create
a final trace for the whole let expression that encapsulates all the information
contained in eL and e. Let bindings for the graph variables follow a similar
pattern.

Our forward semantics is a variation of the trace-augmented forward seman-
tics developed in [11], with two important differences: 1) traces are not merely
lists, but are also sets and 2) the environment for the forward evaluation doesn’t
store the trace information for each binding. Therefore, the initial environment
ρ0 just maps the distinct graph variable $db to the initial graph gs. The advan-
tage of having a more complex type for traces is that it allows us to have more
precise information for union operations. For instance, consider the following
program let $g = {a : $dbp1} in {b : $gp2} ∪ {c : $dbp3} and the view edge ζ
that originates from the input graph bound to $db. According to the seman-
tics proposed in [11], the traces are lists, and for union operation, union of the
traces is not well-defined if the view edge originates from both components; it
only stores the code locations of one of the operands, not both. To gain back
the precision for such cases, we allow traces to be also sets. Then, for view edge
ζ, the trace will store both p2 and p3 as well as p1.

Coincidence Our forward semantics coincides with the forward semantics
developed in [11] as long as the environments are identity-preserving, i.e. the
initial environment given to the forward semantics of [11] simply maps the
graph variable $db to the input graph without recording any additional trace
information.

5 Free-edit analysis

Initially, we assume that after forward-execution of the expression e under an
input environment ρ, we obtain a resulting graph G and a corresponding trace
t. Given this trace, we assume that user selects an edge ζ in the resulting graph
G. Free-edit analysis consists of three steps.

In the first step, given an edit edge ζ in the resulting graph G, we extract
the execution path of the expression e that resulted in the selected edit edge.
This extraction mechanism, denoted as extract(t, e, ζ), is defined by a recursive
procedure, shown in Figure 7. The aim of the extraction phase is to eliminate
parts of the expression that are irrelevant for the free-edit analysis. The syntax
of execution paths is a subset of the syntax of expressions: the only difference
is that execution paths do not contain conditional expressions. For instance,
consider the expression ifp(eL = e′L) then etrue else efalse. If the resulting
edge is originating from the then branch, the extracted execution path would
only contain the execution path corresponding to etrue whereas efalse is simply
omitted.

In the second step, we obtain all the free label variables and constants that
occur in the trace of the selected edge, i.e. t(ζ), and we collect them in Γ,

5 FREE-EDIT ANALYSIS 10

Γ ⊢ e : b execution path e

$g ∈ Γ

Γ ⊢ $g : ⊤
GVAR

Γ ⊢ $l : ⊥
LVAR

Γ ⊢ {}p, &yp, ()p : ⊥
CONST

FLV(l1, l2) ∩ Γ = ∅ Γ ⊢ e : b

Γ ⊢ e with (l1 = l2) : b
IF

el ̸∈ Γ Γ ⊢ e : b

Γ ⊢ {el : e}p : b
EDG

Γ ⊢ e : b

Γ ⊢ (&x := e)p : b
IMRK

Γ ⊢ eg : ⊤ Γ ⊢ e : b $g ∈ Γ

Γ ⊢ letp $g = eg in e : b
LET1

Γ ⊢ eg : ⊥ Γ ⊢ e : b $g /∈ Γ

Γ ⊢ letp $g = eg in e : b
LET2

Γ ⊢ e : b $l /∈ Γ

Γ ⊢ lletp $l = eL in e : b
LLET

Γ ⊢ ea : ⊤ Γ ⊢ eb : ⊤ $l /∈ Γ $g ∈ Γ

Γ ⊢
p

rec
Z

(λ($l , $g).eb)(ea) : ⊤
REC1

Γ ⊢ ea : ⊥ Γ ⊢ eb : b {$g , $l} /∈ Γ

Γ ⊢
p

rec
Z

(λ($l , $g).eb)(ea) : b
REC2

Γ ⊢ e1 : b1 Γ ⊢ e2 : b2

Γ ⊢ e1 ∪p e2 : b1 ∨ b2
UNI

Γ ⊢ e : b

Γ ⊢ cyclep(e) : b
CYC

Figure 6: Analysis rules

referred as the origin set. Intuitively, Γ contains the origin label variables and
constants in the expression e that contributed to the creation of the selected
edge ζ.

Finally, in the third step, we perform the actual free-edit analysis given the
execution path e and the origin set Γ. Our analysis abstracts over the edge,
it only requires the origin set (Γ) and the execution path (e). The analysis
judgment Γ ⊢ e : b specifies whether free-edits for the execution path e and the
origin set Γ are possible. If so, the analysis succeeds, i.e. the result is ⊤. If not,
the analysis fails, i.e. the result is ⊥.

Figure 6 represents the analysis rules for determining whether free-edits are
possible. The main principle behind the rules is that analysis fails whenever
a label variable or a constant is in the origin set, i.e. it might be possibly
inspected. We explain each of the rules in detail. The rule GVAR succeeds
whenever graph variable $g is in the origin set Γ, i.e. the edge is originating
from part of the graph that is directly copied. The rule LVAR immediately fails
for any label variable. Our analysis conservatively rejects free-edits to label vari-
ables due to two main reasons: 1) their modification might require backward
propagation due to a possibly different execution path and 2) insertions/dele-
tions of subgraphs at the selected edge correspond to inserting/deleting parts
of the original expression. The latter is a modification that is not allowed in
bidirectional transformations.

CONST rule forbids modifications to any constant expression because such
modifications correspond to changing the original expression. The rule IF
forbids modifications to guard label variables and succeeds only if the result

5 FREE-EDIT ANALYSIS 11

extract(t, {}p, ζ) = {} (E-T-emp)

extract(t, &yp, ζ) = &y (E-Omrk)

extract(t, ()p, ζ) = () (E-G-emp)

extract(t1 ∪ t2 ∪ t′, e1 ∪p e2, ζ) = extract(t1, e1, ζ) ∪ extract(t2, e2, ζ)
where ζ ∈ dom(t1) ∧ ζ ∈ dom(t2)

(E-Uni-1)

extract(t1 ∪ t2 ∪ t′, e1 ∪p e2, ζ) = extract(t1, e1, ζ)
where ζ ∈ dom(t1) ∧ ζ /∈ dom(t2)

(E-Uni-2)

extract(t1 ∪ t2 ∪ t′, e1 ∪p e2, ζ) = extract(t2, e2, ζ)
where ζ /∈ dom(t1) ∧ ζ /∈ dom(t2)

(E-Uni-3)

extract(t1 ∪ t2, e1 ⊕p e2, ζ) = extract(t1, e1, ζ)⊕ extract(t2, e2, ζ)
(E-Duni)

extract(t1 ∪ t2, e1 @
p e2, ζ) = extract(t1, e1, ζ) @ extract(t2, e2, ζ)

(E-Apnd)

extract(t ∪ t′, {eL : e}p, ζ) = {eL : extract(t′, e, ζ)}
(E-Edg)

extract(t, (&x := e)p, ζ) = (&x := extract(t, e, ζ))
(E-Imrk)

extract(t ∪ t′, cyclep(e), ζ) = cycle(extract(t, e, ζ))
(E-Cyc)

extract(t, ap, ζ) = a (E-Lcnst)

extract(t, $lp, ζ) = $l (E-Lvar)

extract(t ◦$l (p : τ), lletp $l = eL in e, ζ) = lletp $l = eL in extract(t, e, ζ)
(E-LLet)

extract(t2 ◦$g (prepp t1), let
p $g = e1 in e2, ζ) = letp $g = extract(t1, e1, origin(t2, ζ)) in

extract(t2, e2, ζ)
where $g occurs in t2

(E-Let1)

extract(t2 ◦$g (prepp t1), let
p $g = e1 in e2, ζ) = extract(t2, e2, ζ)

where $g not occurs in t2
(E-Let2)

extract(t, $gp, ζ) = $g (E-Gvar)

extract(prep
p,b

t,
ifp(eL = e′L) then etrue

else efalse
, ζ) = extract(t, eb, ζ) (E-If)

extract(
∪

ζ∈g.E

tζ ∪ t′V,
p

rec
Z

(λ($l , $g).eb)(ea), ζ) = rec(λ($l , $g).eb)(ea)
where $g occurs in tζ

(E-Rec)

Figure 7: Execution path extraction

6 METATHEORY 12

of the body succeeds. The rule EDG succeeds only if the analyzed edge is not
originating from the selected edge. The rule IMRK succeeds only if the analysis
of the renamed graph succeeds. Rules LET1 and LET2 represent two cases for
the analysis of the let construct for graph variables. If the bound variable $g
is in the origin set, then analysis succeeds if analysis of both of the body and
the argument expressions succeed (rule LET1). If the bound variable $g is not
in the origin set, then it suffices for only the analysis of the body expression to
succeed (rule LET2). The rule LLET represent the analysis of the let construct
for label variables. It succeeds only if the bound label is not in the origin set
and the body expression’s analysis succeeds.

Similar to let construct for graph variables, there are two cases for the rec
construct. If the graph variable $g , but not the label variable $l , is in the origin
set, then analysis succeeds if analyses of both of the body and the argument
expressions succeed (rule LET1). If none of the the graph variable $g and the
label variable $l are in the origin set, then it suffices for only the analysis of the
body expression to succeed. The rule UNI succeeds if any one of the analyses
of the operands of the union succeed. Finally, the rule CYC succeeds if the
analysis of the body of the cycle construct succeed.

6 Metatheory

In this section, we first show the equivalence of our forward semantics to the one
developed in [11] modulo the problem mentioned with respect to unions. Then,
we show the soundness of our analysis, i.e. whenever our analysis succeeds, it is
indeed possible to directly reflect the changes at the selected edge to the origin
without actually performing any backward propagation. In addition, we show
that any change that passes our analysis also satisfies the WPutGet property.

We denote the forward semantics developed in [11] as F [[·]]·. An identity
environment is the one that takes the distinct graph variable $db to the corre-
sponding input graph.

Lemma 1 (Equivalence of Forward Semantics)
Let ρ be the identity environment and ρ′ be the arbitrary environment, then
F [[e]]ρ∪ρ′ = (g, t) ⇐⇒ F [[e]]ρ∪π1ρ′ = (g, t ◦$x1 · · · ◦$xn π2(ρ

′($xn))) where
dom(ρ′) = {$x1 , · · · , $xn}.

The coincidence of the two forward semantics follows as a corollary of this
equivalence lemma whenever the initial envrironment is the identity environ-
ment.

Corollary 2 (Coincidence)
If ρ0 is the identity environment, then F [[e]]ρ0

= F [[e]]π1(ρ0)
.

Proof. This follows immediately by Lemma 1.

Theorem 3 (Soundness Equivalence Simplified)
Let F [[e]]ρ0

= (G, t) and ζ ∈ G.Edges be the location user wants to edit.
Assume e′ = extract(e, t, ζ) and FLV(t(ζ)) ⊆ Γ.
If Γ ⊢ e′ : ⊤, then for any update upd(G, ζ) = G′, we have
B[[e]]ρ0

G′ = prop(ρ0, upd, ζ, t)

7 RELATED WORK 13

Theorem 4 (Main Soundness Theorem)
Let F [[e]]ρ0

= (G, t) and ζ ∈ G.Edges be the location user wants to edit.

Let ζi be the set of edges that are created by the same applied edge as ζ.
Assume e′ = extract(t, ζ, e) and e′i = extract(e, t, ζi) and FLV(t(ζ)) ⊆ Γ and

FLV(t(ζi)) ⊆ Γi.
If Γ ⊢ e′ : ⊤ and Γi ⊢ e′i : ⊤, then for any update upd(G, ζ) = G′, we have
B[[e]]ρ0

G′ = prop(ρ0, upd, ζ, t) and the WPutGet will be satisfied.

Origin Let F [[e]]ρ = (g, t). For an edge ζ ∈ g, its origin is defined as a pair
(p, ζ ′) where t(ζ ′) = [· · · p ζ ′].

Update Propagation Assume that F [[e]]ρ = (g, t). Then, for an edge
ζ ∈ g, update propagation is defined as prop(ρ, upd, ζ, t) = {ρ[$x ←
upd(G, ζ ′)] | ($x , ζ ′) = origin(ζ, t) ∧G = ρ($x) ∧ ζ ′ ∈ G.Edges}

7 Related Work

The notion of provenance – information about the origin, derivation, ownership,
or history of an object [4] – is extensively studied in the database community
and many other application fields [5]. Why (lineage), how and where provenance
are computed using linguistic approach in a homomorphic manner where the
mathematical structure of the trace is preserved during the computation of the
queries. Present work also rely on trace information to accommodate not only
label renaming but also deletion and insertion, by identifying the region in the
view that accepts free edits.

Though database community exploits provenance information in the con-
text of backward transformation like the work by Fegaras [7], perhaps the most
closely related work to ours is semantic bidirectionalization [19] that generates
correspondences between input and output elements over polymorphic trans-
formations by feeding to the forward transformation the “artificial” data that
includes location identifiers for each element instead of the actual elements. Re-
sulting location information appears in the view corresponds to our traces when
they are originated from source. Since we deal with graphs, we combine two
traces using directed acyclic graph, so the trace is more enriched in our setting.
Voigtlaender’s approach benefits from semantic approach in which the forward
transformation can be described in any general purpose language, whereas we
use syntactic information of a domain (graph transformation) specific language
UnCAL.

Our transformations are monomorphic as opposed to the Voigtlaender’s
setting, because we have transformations including conditionals that compares
label variables with label constants. Matsuda and Wang [15, 16] tackled this
problems by run-time recording of control flow to be able to check and reject
the control flow change during the backward transformation.

Recent work on UnCAL includes that of Hamana [10]. The work provides
complete equational reasoning which was not achieved by the original authors of
UnCAL [3] when the body of structural recursion depends on the graph variable.
This innovation may further bridge our domain-specific approach with more

REFERENCES 14

general approach in the programming language field, but we do not have clear
road map for this yet.

Acknowledgments

The project was supported by the International Internship Program of the
National Institute of Informatics. The authors would like to thank the IPL
members for their valuable comments during the internship period.

References

[1] François Bancilhon and Nicolas Spyratos. Update semantics of relational
views. ACM Trans. Database Syst., 6(4):557–575, 1981.

[2] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Relational
lenses: a language for updatable views. In PODS 2006, pages 338–347,
2006.

[3] Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: a query language
and algebra for semistructured data based on structural recursion. The
VLDB Journal, 9(1):76–110, 2000.

[4] James Cheney, Umut A. Acar, and Amal Ahmed. Provenance traces.
CoRR, abs/0812.0564, 2008.

[5] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in Databases,
1(4):379–474, 2009.

[6] Umeshwar Dayal and Philip A. Bernstein. On the correct translation
of update operations on relational views. ACM Trans. Database Syst.,
7(3):381–416, 1982.

[7] Leonidas Fegaras. Propagating updates through xml views using lineage
tracing. In ICDE 2010, pages 309–320, 2010.

[8] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bi-directional tree transforma-
tions: a linguistic approach to the view update problem. In POPL 2005,
pages 233–246, 2005.

[9] John Grundy, John Hosking, and Warwick B. Mugridge. Inconsistency
management for multiple-view software development environments. IEEE
Trans. Softw. Eng., 24(11):960–981, 1998.

[10] Makoto Hamana. Iteration algebras for unql graphs and completeness
for bisimulation. In Proceedings Tenth International Workshop on Fixed
Points in Computer Science, FICS 2015, Berlin, Germany, September 11-
12, 2015., pages 75–89, 2015.

[11] Soichiro Hidaka, Martin Billes, and Quang Minh Tran. A trace-based
approach to increased comprehensibility and predictability of bidirectional
graph transformations. Technical Report GRACE-TR-2015-03, GRACE
Center, National Institute of Informatics, September 2014.

REFERENCES 15

[12] Soichiro Hidaka, Martin Billes, and Quang Minh Tran. Trace-based ap-
proach to editability and correspondence analysis for bidirectional graph
transformations. In Fourth International Workshop on Bidirectional Trans-
formations (Bx 2015), 2015.

[13] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka
Matsuda, and Keisuke Nakano. Bidirectionalizing graph transformations.
In ICFP’10, pages 205–216. ACM, 2010.

[14] Ralf Lämmel. Coupled Software Transformations (Extended Abstract).
In First International Workshop on Software Evolution Transformations
(SET 2004), pages 31–35, November 2004.

[15] Kazutaka Matsuda and Meng Wang. Bidirectionalization for free with run-
time recording: Or, a light-weight approach to the view-update problem.
In Proceedings of the 15th Symposium on Principles and Practice of Declar-
ative Programming, PPDP ’13, pages 297–308, New York, NY, USA, 2013.
ACM.

[16] Kazutaka Matsuda and Meng Wang. “bidirectionalization for free” for
monomorphic transformations. Science of Computer Programming, 111:79–
109, 2015. DOI:10.1016/j.scico.2014.07.008.

[17] Lambert Meertens. Designing constraint maintainers for user interaction.
http://www.kestrel.edu/home/people/meertens/, June 1998.

[18] Perdita Stevens. Bidirectional model transformations in QVT: semantic
issues and open questions. Software and System Modeling, 9(1):7–20, 2010.

[19] Janis Voigtländer. Bidirectionalization for free! (pearl). In POPL ’09,
pages 165–176. ACM, 2009.

http://www.kestrel.edu/home/people/meertens/

	Introduction
	Free-edit Analysis by Example
	UnCAL: A core language for Graphs
	Bidirectional Semantics
	Traced Forward Semantics

	Free-edit analysis
	Metatheory
	Related Work

