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Abstract

There are two approaches to bidirectional programming. One is the
get-based method where one writes get and put is automatically
derived, and the other is the put-based method where one writes
put and get is automatically derived. In this paper, we argue that
the put-based method deserves more attention, because a good lan-
guage for programming put can not only give full control over the
behavior of bidirectional transformations, but also enable us to ef-
ficiently develop various domain-specific bidirectional languages
and use them seamlessly in one framework, which would be non-
trivial with the get-based method. We demonstrate how the match-
ing/delta/generic lenses can be implemented in BiGUL, a putback-
based bidirectional language.

1. Introduction

Bidirectional transformations are hot! They originated from the
view updating mechanism in the database community [1, 6, 10],
and have been recently attracting a lot of attention from researchers
in the communities of programming languages and software en-
gineering [5, 13], since the pioneering work of Foster et al. on a
combinatorial language for bidirectional tree transformations [9].

A bidirectional transformation (BX for short) is simply a pair of
functions

get :: Source — View
put :: Source — View — Source

where the ger function extracts a view from a source and the put
function updates the original source with information from the new
view. As a simple example, suppose that we wish to synchronize
between rectangles and their heights. We can define

getHeight (height, width) = height
putHeight (height, width) height’ = (height’, width)

where a rectangle is represented by a pair of its height and width.

Certainly not any pair of get and put can form bidirectional
transformations for synchronization. get and put should satisfy the
well-behavedness laws:

put s (get s) = s GETPUT

get (put s v) =wv PUTGET
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The GETPUT law requires that no changing on the view shall be
reflected as no changing on the source, while the PUTGET law
requires all changes in the view to be completely reflected to the
source so that the changed view can be computed again by applying
the forward transformation to the changed source. For instance, if
we change the above put to

putHeight' (height, width) height' = (height’ + 1, width)

get and put’ will break the laws.

A straightforward approach to developing well-behaved BXs in
order to solve various synchronization problems is to write both get
and put. The approach has the practical problem that the program-
mer needs to show that the two transformations satisfy the well-
behavedness laws, and a modification to one of the transformations
requires a redefinition of the other transformation as well as a new
well-behavedness proof. To ease and enable maintainable bidirec-
tional programming, it is preferable to write just a single program
that can denote both transformations, which has motivated two dif-
ferent approaches:

e Get-based Method: allowing users to write get and derive a
suitable put [2, 3,9, 11, 12, 17, 18];

® Put-based Method: allowing users to write put and derive the
unique get if there is one [8, 14, 16, 19, 20].

The get-based method has been intensively studied for over ten
years and got much appreciated. It is attractive, because get is
easy to write, and if the system knows how to derive a put, there
would be no additional burden for users to go from unidirectional to
bidirectional. In contrast, the put-based method is new and far from
being appreciated. One main criticism is that put is more difficult
to write than get.

However, the get-based method hardly describes the full behav-
ior of a bidirectional transformation, so automatically derived put
may not match the programmers’ intention, which would prevent it
from being used in practice. More specifically, for a non-injective
get there usually exist many possible put functions that can be
combined with it to form a valid BX. For instance, for the same
getHeight, the following is a valid put too:

putHeight" (height, weight) height’
= (height’, weight x (height’ /| height))

In fact, it is impossible in general to automatically derive the most
suitable valid put that can be paired with the get to form a bidirec-
tional transformation [4].

Since get does not contain sufficient information for a system to
automatically derive intentional update policies of put, in order to
deal with various update policies of put in different contexts, sig-
nificant extensions to the language for writing get are necessary. As
a matter of fact, from the original get-based bidirectional language
lenses [9], we have seen many such extensions, e.g., the matching



lenses to deal with alignment policies [2], the delta lenses to deal
with modification-sensitive update policies [7, 12], and the generic
lenses to deal with any updates on inductive data structures [18].
All these extensions, as seen in the related papers, are nontrivial,
where one has to rework all the original lens framework by adding
new information to get to indirectly control of the behavior of put,
and to prove that the extension is sound in the sense that the new
get and put are well-behaved.

In this paper, we put up the slogan “One put for All”, in the
sense that a good language for programming put can not only give
full control over the behavior of bidirectional transformations, but
also enable us to systematically develop various domain-specific
bidirectional languages and use them seamlessly in one frame-
work, which would be nontrivial with the get-based method as seen
above. After a brief review of BiGUL [16], a putback-based bidi-
rectional language, we demonstrate how it can be used to concisely
implement the matching/delta/generic lenses that are guaranteed to
be well-behaved.

2. Preparation: Putback-Based BX

Intuitively, think of a BIGUL program of type BiGUL s v as de-
scribing how to manipulate a state consisting of a source compo-
nent of type s and a view component of type v; the goal is to copy
all information in the view to proper places in the source. In the
simplest case, the view has type () and contains no information, and
we can use Skip :: BiGUL s () to leave the source unchanged; an-
other simple case is when the view has the same type as the source,
and we can use Replace :: BiGUL s s to replace the entire source
with the view. BIGUL programs compose — for example, when
both the source and the view are pairs, we can use

Prod :: BiGUL s v — BiGUL s’ v' —
BiGUL (s, ") (v,v")

to compose two BiGUL programs on the left and right components
respectively; we will typeset the infix application of Prod as ‘x’.
Of course, in most cases the source and view are in more complex
forms, and we should somehow transform and decompose them
into simpler forms before we can use Skip, Replace, or Prod; this
is usually done using two “rearrangement” operations on the source
and view respectively: We can use the source rearranging operation

$ (rearrS [| f |]) :: BiGUL s’ v — BiGUL s v

where f is a “simple” \-expression of type s — s’ for extracting
from the source of type s a (usually smaller) source of type s’
before performing further updates on the extracted source, or dually
the view rearranging operation

$ (rearrV [| g |]) :: BiGUL s v' — BiGUL s v

where the “simple” \-expression g should have type v — v’, and is
used to transform the view from type v to type v’ before performing
further updates.

Most expressiveness of BIGUL comes from its C'ase operation
for performing case analysis:

Case :: [(s = v — Bool, Branch s v)] — BiGUL s v

Case takes a list of pairs whose first component is a boolean
predicate on both the source and the view, and whose second
component is a “branch”, whose type is defined by

data Branch s v = Normal (BiGUL s v)
| Adaptive (s — v — s)

A branch can be a “normal” branch, in which case it is a BiIGUL
program of type BiGUL s v, or an “adaptive” branch, in which
case it is a Haskell function of type s — v — s. The semantics of
Case is largely as people would expect: executing the first branch

whose associated predicate evaluates to true on the current state,
and performing further updates when this branch is normal. More
interestingly, when the chosen branch is adaptive, the source will
be replaced by the result of evaluating the associated function on
the current state, and the whole Case will be executed again.

We introduce some extra notations for writing branches more
easily. The two basic ones are for constructing normal and adaptive
branches in general:

$ (normal [| p|]) = b= (p, Normal b)
$ (adaptive [| p |]) = f = (p, Adaptive f)

Here the boolean predicate p takes both a source and a view. Often
this predicate is a conjunction of two unary predicates on the source
and view respectively, so we introduce another set of notations:

$ (normalSV [|pS|][|pV |]) = b

= ((As v = pS s A pV v), Normal b)
$ (adaptiveSV [| pS | [| pV []) = f

= ((As v = pS s A pV v), Adaptive f)

The unary predicates (pS and pV') can usually be conveniently
expressed as patterns; normalSV and adaptiveSV can also ac-
cept patterns, which should be enclosed in pattern quotation brack-
ets like [p| pat |]. There are also other variants of normal and
adaptive that are suffixed with only S or V, meaning that they
accept only one unary predicate on either the source or the view,
respectively.

3. Positional Alignment

The simplest alignment strategy is the positional one. The follow-
ing types for source (Source) and view (View) are used for the
running example.

type Source = (Int, (Char, Int))
type View = (Int, Char)

The first Int component of the pair should match the first Int com-
ponent of the view, and the Char component of the source should
match the Char component of the view. This relation between
source and view can be expressed with the following BiGUL pro-
gram:

myBX :: BiGUL Source View
myBX = Replace x $(rearrV [| Ae = (¢, () |])
(Replace x Skip)

Positional alignment for lists with elements of the above source
and view types is pretty straightforward. No moves are taken into
account, and elements are added or deleted at the end of the source.
Just as with any other programming practice, the BiGUL program
must take into account the several possibilities of source and view
values in the update process:

e both source and view are empty, and we just Skip;

e all elements of the view were processed, so we adapt the source
by removing the extra elements A_ _ — [];

® both source and view have elements, then we update with
the head of both source and view, and then recurse u X
myMapL c u;
e the source does not have enough elements and create new ones
A= ((k,v1) s o) = [(k, (v1,0))].
These actions are packed into a Case statement which selects the
correct action for each situation:
myMapL :: BiGUL [Source] [ View]
myMapL = Case
[$(normalSV [p | [] 11 [p [ []1])



= $(rearrV [| A[] = () |]) Skip
S(adaptiveV' [p | []1])
= A__—]
S(normalsV [p| (_:) 1 1p ] (=2 ) ]
= $(rearrV [| AM(v: vs) = (v, vs) |]) $
$ (rearrS [| AM(s:ss) — (s,s88)|]) $
myBX X myMapL
S(adaptiveV [p | (—: ) |}
= k) = [l 01 0)

When both source and view are empty, or both have elements, a
BiGUL program can be applied: When both are empty, the empty
list is produced; when both have elements, the head of the source is
updated with the head of the view, and then recursion is performed.

In the other two cases, adaptation of the source is required. The
first one is when the view is empty, and the source is modified to
be the empty list. After this adaption, the Case statement looks for
a normal branch to apply, entering in the one where both source
and view are empty. The second case is when the view still has
elements, but the source is empty. In this case, a new source element
is created from the source element at the head of the list. Then,
the Clase statement looks for a normal branch, entering in the one
where both source and view have elements, updating the heads and
recursing.

Running the get function with this BiGUL program, we obtain
the following result:

> get myMapL [(0,(’a’,0)),(1,(’b’,1)),(2,(’c’,2))]
[(0,7a’),(1,’b?),(2,°c?)]

We can perform the changes that we want to this view, e.g., modify

the characters to upper case, and put that view back into the original

source':

> put myMapL [(0,(’a’,0)),(1,(’b’,1)),(2,(’c’,2))] <+
[Co,’a°),(1,°B?),(2,°C?)]

[Co,(’A°,0)),(1,(’B’,1)),(2,(°C?,2))]

Moreover, we can see the limitations of positional update when

removing an element (1, ’b’):

> put myMapL [(0,(’a’,0)),(1,(’b’,1)),(2,(’c’,2))] <+

[C0,7a’),(2,7¢c”)]
[(0,(’a”,0)),(2,(’c’,1))]

or adding a new one (3,°d’) before the end:
> put myMapL [(0,(’a’,0)),(1,(’b’?,1)),(2,(’c’,2))] <+
[C0,7a’),(1,°b?),(8,°d?),(2,°c’)]
[(0,(’a”,0)),(1,Cb’,1)),(3,(°d”,2)),(2,(’c’,0))]
The myMapL program can be generalized to work on lists with
arbitrary values. For that, it must be parametrized with a create

function, to produce a source element from a view one, and with a
BiGUL program to be run on the elements:

mapL :: (v — s) = BiGUL s v — BiGUL [s] [v]

4. Key-Based Alignment

More complex alignment strategies can be implemented using
BiGUL. One example is a key-based one, where elements of the
source and the view are paired based on a key component from
each of the elements.

The idea to implement this strategy is to separate the program
in two parts:

e alignment of the elements;

e the actual update.

! The symbol < denotes line continuation.

To align the elements, we must first be able to extract a key
from source and view elements. For our running example, we use
the first component of the source, and the same for the view. Thus,
we can use the fst function to extract the key from either elements.
In order to help with the implementation, we define a function to
check if the source and the view are aligned:

isAligned s v = length s = length v
A and (zip With kmatch s v)
where kmatch se ve = fst se = fst ve

We consider that source and view are aligned if both have the same
number of elements, and that the keys match element-wise.

In the case that the two lists are not aligned, we define a func-
tion that adapts a source such that then they are aligned. This is
performed by traversing the view and fetching the first correspond-
ing element in the original source. If such element is not present,
we create it. At the end, source elements not present in view are
discarded. The adaptation of the source can be implemented as:

keyMatchAdapt s v = map getSourceElement v
where getSourceElement ve =
case filter ((= fst ve) o fst) s of
[] — create ve
(se:_) — se
create (k,v1) = (k, (v1,0))

When the source and the view are aligned, a simple positional
update, as defined in the previous section, can be used. Thus,
putting it all together, we obtain a the following BiGUL program:

myKeyMatch :: BiGUL [Source] | View)]
myKeyMatch = Case
[$(normal [| isAligned |]) = myMapL
, $(adaptive [| A= — = True |]) = keyMatchAdapt]

The result of running the get function with myKeyMatch is
the same as with myMapL since they only differ in the alignment
strategy:

> get myKeyMatch <>
[(0,(’a’,0)),(1,C’b’,1)),(2,(’c?,2))]
[(0,7a’),(1,’b?),(2,°c?)]

Running the put function also has the same result when the ele-
ments are the same and the order did not change:

> put myKeyMatch <
[€0,(’a’,0)),(1,0Cb’,1)), (2,0c’,2))] «
[(0,’A),(1,°B*),(2,°C?)]
[¢o,(’A>,0)),(1,(’B’”,1)),(2,(°C’,2))]

However, when removing elements (1,’b’) or adding new ones
(3,°d*), key-based alignment is more precise than positional:

> put myKeyMatch <
[€0,(’a’,0)),(1,0Cb’,1)),(2,(c’,2))] «
[(0,%a’),(2,7¢?),(3,°d?)]

[(0,(’a’,0)),(2,(’c?,2)),(3,(’d’,0))]

Nonetheless, key-based alignment also has its limitations, e.g.,
when modifying the key of an element ((1,°b’) to (3,b*)):

> put myKeyMatch <
[(0,(’a’,0)),(1,Cb’,1)),(2,(’c’,2))] «
[(0,%a?),(3,’b?),(2,%¢c?)]

[(0,(’a’,0)),(3,(’b’,0)),(2,(’c’,2))]

As with the positional update, this program can be generalized
for key-based alignment on lists with arbitrary contents. For that,
the keyMatch function must be parametrized with a function to
get a key component from the source, another function to get the
key component from the view, and the create and BiGUL update
program as with mapL:



keyMatch :: Eq k = (s = k) — (b — k)
— (v — s) - BiGUL s v — BiGUL [s] [v]

5. Delta-Based List Alignment

Alignment can be made more precise using information about how
the view is modified. If we extract the relation of elements in
the original view to the elements in the modified view, then the
alignment performed when updating the source can be completely
correct.

The relation of elements in the original view with the ones in
the modified view can be defined by a mapping from the location
of the element in the original artifact to the location of the element
in the modified artifact. The location can be defined as an integer
index within the container

type Loc = Int

and the mapping, i.e., the delta, can be defined as a set of pairs of
these locations

type Delta = Set (Loc, Loc)

Furthermore, we need a method to determine from a delta if
some artifact has undergone any positional change (movement
within the container, addition, or removal), which can be accom-
plished by checking if all elements are in the delta and that each
location in the delta is related to the same location:

0 = getld artifact

The getld function creates an identity delta based on the locations
of the artifact:

getldL :: [a] — Delta
getldL = map (Al — (1,1)) o locs

5.1 Delta Alignment for Lists

In order to implement such kind of alignment in BiGUL, the delta
can be inserted into the source, since we can manipulate it using
adaptation in Case branches.

The implementation of delta-based alignment is similar to the
key-based one:

1. modification of the source aligning to the view using a delta;
2. a positional update.

However, the delta in the source introduces a bit more complexity
to deal with the additional information. Implementing this in the
running example:

myAlignL’ :: BiGUL ([ Source], Delta) | View]
myAlignL’ = Case
[$(normal [| A(s,d) v — d = getldL v
A d = getldL s |])
= $(rearrS [| A(s, =) = s |]) myMapL
, $(adaptiveS [| const True |])
= A(s, d) v — let s’ = myAdaptDeltaL s v d
in (s', getldL v)]

An alternative Case statement is used to check which of these
two steps are to be performed. This is done based on the changes
performed on the view: if no changes were performed, the delta
maps each element’s position to the same position, i.e., the identity
delta. However, the delta being the same as get/dL v does not
mean that no changes were performed to the view, e.g., some
values were deleted, thus not present in the view nor in the delta
relation. To deal with this situation, we ensure that the delta is also
equal to the identity delta of the source, i.e., both source and view

contain the same positions and the update can be safely performed.
Otherwise, a transformation is performed on the source to rearrange
the elements based on the delta, create missing view elements, and
delete no longer existent view elements:

myAdaptDeltaL :: [Source] — [ View]| — Delta
— [Source]
myAdaptDeltal s v d =
map idOrCreate (elems $ locs v)
where idOrCreate i = let js = rngOf i d
inif js £ 0
then s !! findMin js
else let (k,v1) =v!li
in (k7 (’U17 0))

However, having the delta paired with the source might be
inconvenient. To deal with such situation, a wrapper is made that
takes care of dealing with the delta:

myAlignL :: Delta — BiGUL [Source] [ View]

myAlignL d = emb g p
where g s = get myAlignL’ (s, getldL s)
p s v = fst$ put myAlignL’ (s,d) v

This wrapper implements directly the get and put functions (re-
spectively ¢ and p), and embeds them into a BiIGUL program, since
this pair of get/put functions is well-behaved:

GETPUT - this law states that if no changes to the view are per-
formed, then putting it back into the source does not alter the
source. Since no changes are performed, the delta is the identity
delta of the view, i.e., 6 = getldL v where v = ¢ s. Fur-
thermore, v is consistent with (s, getIdL s), so we know that
getldL s = getldL v. Applying fst to both sides of the follow-
ing equation gives us GETPUT:

put myAlignL’ (s, getldL v) (get myAlignL’ (s, getIdL s))
= {getldL v = getldL s}

put myAlignL’ (s, getldL s) (get myAlignL’ (s, getldL s))
= {GETPUT for myAlignL'}

(s, getldL s)

PUTGET - this law states that the view after updating a source is
the same as the one used for the update. As the result of the put
function, let (s’,8") = put myAlignL’ (s,d) v, thus (s',4") is
consistent with v and &’ = getIdL s’. Applying the get function g:

get myAlignL’ (s, getldl s")

= {§' = getldL s'}

get myAlignL' (s',8")

= {let binding }

get myAlignL’ (put myAlignL’ (s, §))
= {PUTGET for myAlignL’}

v

As an aside, the embedding of get and put functions can be
defined as a BiGUL program:

emb::Eqv= (s —>v) > (s—v—s)— BiGULsv
emb g p = Case
[$(normal [| Az y > gz =y |
$ (rearrV [| Az — ((), z) |])
Dep Skip Az () — g x)
, $(adaptive [| \.— — True |]) p]

)8
$

Here what the normal branch does is, roughly speaking, leaving
the source z as it is while ignoring the view, since we know that
the view is necessarily g z. In order for an embedding to be well-
behaved, running the put function should produce a source that
when running get should return the view given to the former, as



stated by the GETPUT law and enforced by the case structure.
Furthermore, the view should be completely defined by the source.

To run the delta alignment, we thus need to provide a delta to
the BiGUL program. With the running example, we can use the
following deltas:

01, 02,03 :: Delta

61 = fromList [(0,0),(1,1),(2,2
d2 = fromList [(0,0),(1,2),(2,1)
ds = fromList [(0,0), (1,1)]

For the get direction, the delta is ignored, and the result is the same
as for the previous kinds of alignment:
> get (myAlignL ;) <

[(0,C’a’,0)),(1,(°b>,1)),(2,(c’,2))]
[(0,7a’),(1,’b?),(2,°c?)]

However, in the put direction, results may vary depending on the

given delta, e.g., no changes are performed (using d1):

> put (myAlignL 61) <«
[C0,(’a’,0)),(1,(’b’,1)),(2,(’c?,2))] «
[¢o,’A°),(1,’B?),(2,°C?")]

[¢o,(’A>,0)),(1,(’B’>,1)),(2,(°C?,2))]

versus a swap between the last two elements (using d2):

> put (myAlignL d2) <
[(0,(’a’,0)),(1,Cb’,1)),(2,(’c?,2))] «+
[(0,’A°),(1,’B*),(2,°C")]

[¢o,(’A°,0)),(1,(’B?,2)),(2,(’C’,1))]

Note that the elements were not swapped in the view, but the delta
02 indicates that the elements were swapped. This is equivalent to
swapping those elements and modifying the values to the ones at
the same position in the original view. A similar situation occurs
when the view is not modified, but one element is not in the delta:
> put (myAlignL d3) <«
[0,(?a’,0)),(1,(’b’,1)),(2,(’c?,2))] +
[(0,’A°),(1,’B?),(2,’C?)]
[¢co,C’a>,0)),(1,(’B”,1)),(2,(°C*,0))]

In this case, it is equivalent to remove the last element and inserting
it again.

The delta alignment implementation can be generalized for ar-
bitrary list contents, resulting in the following equivalent functions
with additional parameters for the create function and BiGUL up-
date program to apply to the elements:

adaptDeltaL :: (v — s) = [s] = [v] = Delta — [s]
alignL’ :: BiGUL s v — (v — s)
— BiGUL ([s], Delta) [v]
alignL :: Eq v = BiGUL s v — (v — s) — Delta
— BiGUL [s] [v]

6. Delta-Based Tree Alignment

Another container where delta alignment can be implemented is a
tree. Many kinds of trees exist, but we use binary tree with labels
in the nodes:

data Tree a = Nil | Node a (Tree a) (Tree a)
deriving (Show, Functor)

Tree elements can also be indexed by locations. The position of
tree elements can be established linearly in an in-order fashion:

locsT :: Tree a — Tree Loc
locsT = fst o auz 0
where auz ig Nil = (Nil, i)
auz io (Node _lo m0) =
let (1,i1) = auz io lo

(ryi)=auz (i1 +1) ro
in (Node i1 1 1, 1)
flattenT :: Tree a — [a)]
flattenT Nil =[]
flattenT (Node a l r) = flattenT | H [a] H flattenT r

Thus the Delta type used for lists can also be used for trees, and the
identity delta can be obtained with the function get/dT':: Tree a —
Delta.

The approach to implement the delta-based alignment for trees
is similar to the approach used in the other implementations:

1. modification of the source aligning to the view using a delta;
2. apositional update.
The adaptation function for tree can be

myAdaptDeltaT :: Tree Source — Tree View — Delta
— Tree Source
myAdaptDeltaT s v d = fmap idOrCreate (locsT v)
where idOrCreate i =
let js = rngOf i d
in if jsZ£0
then flattenT s ! findMin js
else let (k,v1) = flattenT v !l
in (k, (v1,0))

where we take advantage of the fmap function, deriving from the
fact that Tree is a functor.

The implementation of the positional tree update is similar
to the one for lists, since both have only two data constructors.
However, trees have double recursion which must be taken into
account.

myMapT :: BiGUL (Tree Source) (Tree View)
myMapT = Case
[$(normalSV [p | Nil |] [p | Nil |])
= $(rearrV [| ANil — () |]) Skip
, $(adaptiveV [p | Nil |])
= A__ — Nil
, $(normalSV [p| Node _ _ _|] [p | Node _ _ _])
= $ (rearrV [| A(Node v vl vr)
= (o, (ul, 0r) 1)) §
$ (rearrS [| M(Node s sl sr)
— (s, (sl,s7)) 1) $
myBX x (myMapT x myMapT)
, $(adaptiveV [p | (Node — _ ) |])
= A_ (Node (k,v1) — _) — Node (k, (v1,0))
Nil Nil
J
Having the adaptation and the positional update, we can now
define a delta-based alignment for trees in a similar way as with
lists:

myAlignT' :: BiGUL (Tree Source, Delta) (Tree View)
myAlignT' = Case
[$(normal [| A(s,d) v — d = getldT v
A d = getldT s |])
= $(rearrS [| A(s,=) = s |]) myMapT
, $(adaptiveS [| const True |])
= A(s,d) v — let s’ = myAdaptDeltaT s v d
in (s', getldT v)]

and corresponding wrapper:

myAlignT :: Delta — BiGUL (Tree Source) (Tree View)
myAlignT d = emb g p



where g s = get myAlignT’ (s, getldT s)
p s v = fst$ put myAlignT’ (s,d) v

The application of get and put to trees is similar to the appli-
cation of them to lists. The get functions takes the source tree and
produces a view tree where its elements are the view of their corre-
spondence in the source:

> get (myAlignT §;) (Node (1,(’b’,1)) <«
(Node (0,(’a’,0)) Nil Nil) <>
(Node (2,(’c?,2)) Nil Nil))
Node (1,’b’) (Node (0,’a’) Nil Nil) <«
(Node (2,’c?’) Nil Nil)

The delta specification in the put transformation is the same as with
lists:

> put (myAlignT 01) <«
(Node (1,(’b’,1)) <+
(Node (0,(’a’,0)) Nil Nil) <
(Node (2,(’c?,2)) Nil Nil)) <
(Node (1,’B’) «
(Node (0,’A’) Nil Nil) <«
(Node (2,°C?) Nil Nil))
Node (1,(’B?,1)) (Node (0,(’A’,0)) Nil Nil) <«
(Node (2,(’C?,2)) Nil Nil)

The delta alignment implementation can be generalized for ar-
bitrary tree contents, with the following equivalent functions. Simi-
larly to the list version, the functions are parametrized with a create
function and a BiGUL program to apply to the specific elements.

mapT :: (v — s) = BiGUL s v
— BiGUL (Tree s) (Tree v)
adaptDeltaT :: (v — s) — Tree s — Tree v — Delta
— Tree s
alignT’ :: BiGULa b — (b — a)
—  BiGUL (Tree a, Delta) (Tree b)
alignT :: Eq v = BiGUL s v — (v — s) — Delta
— BiGUL (Tree s) (Tree v)

7. Generic Delta-Based Alignment

Delta-based alignment can also be implemented for other contain-
ers. The implementations for the list and tree cases are generaliz-
able to other containers.

7.1 Containers as Shape and Data

Pacheco et al. [18] rely on types with explicit notion of shape
and data in their delta-alignment over inductive types, a property
provided by polymorphic data types in functional programming.
Moreover, they apply a notation from shapely types [15] in order to
have tools to work with these data types. Employing these concepts,
one can abstract from the shapes of both source and view, and just
take the data into account for the alignment process.

Thus, a polymorphic type 1" a can be characterized by three
functions: shape :: T a — T () to extract the shape; data- ::
T a — [a] to extract the data; and, recover :: (T (),[a]) = T a
to rebuild the type value from its shape and data. For flexibility,
these functions are defined in a type class

class Shapely (t :: * — %) where
shape ::t a — t ()
data_::t a — [a]
recover :: (t (),[a]) = t a

On top of these functions, it is possible to define new ones, e.g.,
locs:: T a — Set Loc to get a all the locations of the data elements
within the container.

7.2 Positional Mapping

The positional update is one of the aspects that is specific to each
data type. To solve this issue in a simple manner, we introduce a
new type class

class Shapely t = Positional t where
positionalMap :: (v — s) = BiGUL s v
— BiGUL (t s) (t v)

where the positionalMap function maps a BiIGUL program element-
wise. For the list container positionalMap = mapL and for the
tree container positionalMap = mapT.

7.3 Generic Delta Alignment

A key component in delta alignment is the position of elements.
Having access to element positions, we can obtain the identity
delta:

getld :: Shapely s = s a — Delta
getld = map (Al — (1,1)) o locs

Starting with the adaptation, we can make use of the functions
resulting from the fact that we can see a container as a shape and
data. Therefore, we recover a container with the shape of the view,
but with the data of the original source or with created data when
new elements were added:

adaptDelta :: Shapely s
= (b—>a)—>sa—sb— Delta—sa
adaptDelta ¢ s v d = recover (newShape, newData)
where newShape = shape v
newData = map idOrCreate (elems $ locs v)
1dOrCreate i = let js = rngOf i d
inif js Z 0
then data_ s!! findMin js
else ¢ (data- v !!'3)

With this function, any shapely type can be adapted, including lists
and trees.

align’ :: (Shapely t, Positional t)
= BiGUL s v = (v — s)
— BiGUL (t s, Delta) (t v)
align’ b ¢ = Case
[$(normal [| A(s,d) v — d = getld v
A d = getld s |])
= $(rearrS [| A(s,—) — s |]) (positionalMap ¢ b)
, $(adaptiveS [| const True |])
= A(s,d) v — let s’ = adaptDelta c s v d
in (s', getld v)]

align :: (Shapely t, Positional t, Eq (t v))
= BiGUL s v — (v — s) — Delta
— BiGUL (t s) (t v)
align b ¢ d = emb g p
where g s = get (align’ b c) (s, getld s)
p sv=fst$put (align’ b c) (s,d) v

7.4 Other Matching Algorithms Built Upon Deltas

With the implementation of delta-based alignment, we can imple-
ment other alignment strategies upon the deltas without much work.
It is possible to make minor changes to the align function to im-
plement other kinds of alignments, e.g., key-based:

keyAlign :: (Shapely s, Positional s, Eq (s b), Eq b, Eq k)
= BiGULab— (b—a)— (a—k)— (b—k)
— BiGUL (s a) (s b)



keyAlign b ¢ sk vk = emb g p
where g s = get (align’ b c) (s, getld s)
psv=fst$put (align’ b c)
(s, keyDelta sk vk s v) v

The keyAlign function, instead of receiving the delta, receives
two functions to get the key component of the view and the source,
respectively. Then, using the original source and the modified view,
another function is used to infer a delta:

keyDelta :: (Shapely s, Eq k)
= (a—k)—>(b—k)—>sa—sb— Della
keyDelta sk vk ss vs = [(sp,vp) | (s, sp) < sps
, (v, 9p) + wps
, sk s = vk v]
where sps = zip (data_ ss) (elems $ locs ss)
ups = zip (data_ vs) (elems $ locs vs)

It is then possible to apply key-based alignment on any structure
that has an implementation of delta-based alignment. The same
function can be used for, e.g., lists:

> put (keyAlign myBX myCreate fst fst) <«
[(0,(’a?,0)),(1,(’b’,1)),(2,(’c’,2))] +
[(0,’A),(1,°B?),(2,°C?)]

[¢Co,C’a>,0)),(1,(°B”,1)),(2,(°C?,2))]

and for trees:

> put (keyAlign myBX myCreate fst fst) <
(Node (1,(’b’,1)) <«
(Node (0,(’a’,0)) Nil Nil) <>
(Node (2,(’c?,2)) Nil Nil)) <«
(Node (1,’B’) <
(Node (0,’A’) Nil Nil) <>
(Node (2,°C’) Nil Nil))
Node (1,(’B’,1)) (Node (0,(’A’,0)) Nil Nil) <
(Node (2,(’C?,2)) Nil Nil)

where myCreate (k,v1) = (k, (v1,0)).

8. Conclusion

We hope to send the following two messages through this paper.
One is that putback-based programming is not that difficult in
BiGUL, a simple but powerful put-based bidirectional language.
The other is that a single well-designed putback-based bidirectional
programming language can serve as basis for developing many
useful domain-specific bidirectional languages/libraries.
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