ISSN 1884-0760

GRACE TECHNICAL REPORTS

Graph Generation via Reverse Iterative Query
Processing

Makoto ONIZUKA, Hiroyuki KATO, Soichiro HIDAKA,
Keisuke NAKANO, Zhenjiang HU

GRACE-TR 2016-02 March 2016

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/



The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.



Graph Generation via Reverse Iterative Query Processing

Makoto Onizuka', Hiroyuki Kato?, Soichiro Hidaka?, Keisuke Nakano?®, Zhenjiang Hu?

!Graduate School of Information Science and Technology, Osaka University
2National Institute of Informatics/SOKENDALI
3Faculty of Informatics and Engineering, University of Electro-Communications

Abstract

Automatic generation of application-specific big graphs is be-
coming one of the most important features of a benchmark.
In this paper, we report our on-going work and partial results
on big graph generation based on reverse query processing.
We show how to deal with iterative queries by transforming
iterative query computation to computation of the fixed point
of a flat query function, from which a set of constraints can be
systematically derived for reverse query processing. And we
propose three approaches to parallelizing reverse query pro-
cessing, namely by query rewriting, virtual node introduction
and Kronecker’s product.

1 Introduction

Graphs capture complex data dependencies and play a sig-
nificant role in a wide range of applications (McCune,
Weninger, and Madey 2015), such as page-ranking, k-means
clustering, semi-supervised learning based on random graph
walks, web search based on link analysis, and social com-
munity detection based on label propagation. To effectively
test and benchmark these applications, automatic genera-
tion of application-specific big graphs is becoming one of
the most important features of a benchmark (Capota et al.
2015). As synthetic data model specifications (such as max-
imum of the node degrees and topological structures) evolve
over time, the data generator programs implementing these
models should be adapted continuously — a task that often
becomes more tedious as the set of model constraints grows.

One promising method to address this problem is to use
the known technique called reverse query processing (RQP)
(Binnig, Kossmann, and Lo 2007), which gets a query and a
result as input and returns a possible database instance that
could have produced that result for that query. With RQP,
we may use a query to declaratively specify the intended be-
havior of an application (e.g., computation of page ranking),
and then generate a set of test data from the query and an ex-
pected result and test the application. Moreover, if we spec-
ify statistical properties of data (e.g., community-like graphs
(Leskovec et al. 2008)) using queries, we can generate data
with such properties. This makes data generation be more
flexible and adaptive to different requirements.

However, there are two challenges in importing RQP for
big graph generation. First, it is often that an application be-
havior on graphs is specified by iterative queries rather than

simple SQL queries that can be addressed so far (Binnig,
Kossmann, and Lo 2007). This calls for a method to reverse
iterative queries. Second, to generate big graphs, it is im-
possible to adopt existing sequential approach to data gen-
eration with a set of global constraints. Rather we need to
investigate how to reverse the query in a divide-and-conquer
manner so that RQP can be done efficiently in parallel.

In this paper, we report our on-going work and partial re-
sults on big graph generation based on RQP. We start by
showing how to deal with the first problem by transform-
ing iterative query computation to computation of the fixed
point of a flat query function, from which a set of constraints
can be systematically derived for reverse query processing.
This empowers the existing RQP, but yet cannot generate big
graphs due to its sequential computation manner.

Then, we proceed to solve the scalability problem by op-
timizing and parallelizing the RQP of the fixed point com-
putation. First, we show that by fusing query sequences and
promoting the convergence constraints to the flat query for
the fixed point computation, we may rewrite it to an effi-
cient and parallelzable form in which the group-by/aggre-
gation computation can be computed in parallel. Second, (if
the first approach cannot apply,) we may construct and solve
a set of suitable constraints to introduce virtual connecting
nodes such that generation of a big graph can be divided into
that of smaller graphs. Third, (if the second approach cannot
apply,) we may map the fixed point computation of a flat
query into a computation for finding an n-dimensional vec-
tor v satisfying Av = v for a given n x n matrix A. With
Kronecker’s product, we can obtain a divide-and-conquer al-
gorithm to compute an approximate of such v.

The rest of this paper is organized as follows. We show
how to extend RQP to iterative queries in Section 2. Then
we propose our three approaches to divide-and-conquer par-
allelization, by query rewriting in Section 3, by virtual node
introduction in Section 4, and by Kronecker’s product in
Section 5. We conclude the paper in Section 6.

2 Applying RQP to Iterative Queries

In this section, we describe how to apply RQP to small graph
generation. In RQP, actual data generation is done using
Model checker by giving constraints, which are satisfied in
the generated data. We start by given an overview on RQP,
then how to extract such constraints from iterative queries



is described. A key is to transform iterative queries into fix-
point queries.

2.1 Reverse query processing

RQP, which performs in relational databases, gets a query
Q and a result R as input and returns a database instance D

such that;
R=Q(D).

To this end, RQP extracts constraints, which satisfies the
above equation, from the query Q. Then, a database instance
D is generated by using Model checker by giving the con-
strains. To extract the constraints, reverse relational algebra
(RRA) ! is defined so that for each algebraic operator op in
relational algebra, right-inverse of op is defined, that is the
following equation holds:

op(op™ ' (R)) = R.
In summary, RQP proceeds the following steps;

e (step 1): Constructing a reverse query tree T for a given
SQL query Q.

e (step 2): Extracting constraints from T for a given
database schema S.

e (step 3): Data instantiation satisfying the constraints.

2.2 Iterative queries and fixpoint computations

Consider applying RQP to interative queries. To apply RQP
to iterative a query IQ, we have to extract appropreate con-
straints from IQ because, in RQP, the actual data instanti-
ation is done using Model cheker (SMT solver) by giving
constraints collected from the input queries.

However, RQP is not applicable to iterative queries, be-
cause RQP is designed only for non-iterative queries. There
is a challenge to apply RQP to iterative queries. We could
apply RQP to each iteration of iterative queries, however
it is not obvious when to stop the iteration of the reversed
query, or it is difficult to generate input data that satisfies ini-
tial constrant after the reversed iterations; all the page scores
should be equal in PageRank computation for example.

Our idea to tackle this problem is to associate iterative
queries with fixpoint computations. Now, we consider the
input, the output and a reverse operation of IQ to extract
constraints. Typical iterative queries for graph anaysis can
be represented as the following form:

1: g = (inuput graph structure)
2: v_new = (initializing data)
3:do

4: v_old = v_new

5 v_new = update (g, v_old)

6: until converge (v_new, v_old)
7: return v_new

In this form, the input is a graph structure g in line 1 and
an initial value of analysis v_new in line 2, and the output is
a analysis value v_new in line 7.

We observe that there are two characteristic aspects in
such iterative queries. The first one is that an input graph

In precise, RRA is not an algebra and its operators are not
operators because they allow different outputs for the same input.

structure is unchanged in each iteration, and the second is
that terminal condition of the iteration is that analysis value
is unchanged (or, the difference of analysis values between
previous iteration and current iteration is less than some
threshhold. ). From these observation, we can see an iter-
ative query as a following fixpoint equation in line 2

1: g = (inuput graph structure)
2: v = update (g, V)
3: return v

Actually, the consraints we should extract from the fixe-
point equation are in the direct definition of the graph anal-
ysis computations. Note that how to extract such constraints
from iterative queries in OptlQ (Onizuka et al. 2013) by us-
ing query rewriting will be described in the next section. In
the rest of this section, we will see a PageRank example to
show how to generate a small graph using a SMT solver by
giving constraints.

PageRank example

Usually, PageRank computation can be done in iterative
way. However, when we consider the constraints of the
graph we want to generate, the direct solution can be used.
The direct solution of the PageRank computation is fomu-
lated by the following equation.

A simplified PageRank equation: %:

P

meL(n)

where P(n) is the PageRank P of a page n, L(n) is the set of
pages that link to n, and C'(m) is the out-degree of node m
(the number of links on page m). We can see the PageRank
equation as the above form of fixpoint equation by assocat-
ing update and g with 3° /.y and C(m), respectively.

Now, we can consider the constraints from this equation.
The constraints to give an SMT solver are (a) the total num-
ber of nodes as Int, (b) the PageRank P of a page (node)
n is represented as a function rank Node — Real,
(c) the weighted edge is represented as a function edge :
Node x Node — Real, (d) the above equation is repre-
sented as a function sumO fOut Rank : Node x Node —
Real with the assertion that for all nodes, the sum of the
weighted edges equals to the rank value, and (e) some other
constraints such as no self cycles are described.

We have tested to generate graphs by using an SMT
solver, Yices®. Figure 1 shows the input file which describes
the above constraints with the total number of nodes 5. Un-
fortunatelly, this method does not scale for big graphs gener-
ation due to the global constraint of PageRank computation,
namely we have to check that for all nodes the PageRank
constraint is hold. This preliminary experiment drives us to
develop a novel big data generation method. The following
sections report the partial results of our effort.

%For simplicity, we use the random jump factor ¢ as 0 in the pre-
cise definiton: P(n) = a(ﬁ) (=) X crin) % without
loss of genericily.

*http://yices.csl.sri.com/



;7 (a) number-of-nodes : total number of nodes
(define number-of-nodes::int 5)

;7 node : type of node

(define-type node (subrange 0 (- number-of-nodes 1)))

;i (b) rank function

(define rank::(-> node real))
(assert rank 0) 3/10))
(assert rank 1
(
(
(

assert
assert
assert

) ))
) 2/10))
) ))
) ))

;i (c) weithted edge function

(define edge:: (-> node node
(subtype (x::real) (and (<= 0 x) (<= x 1)))))
;; (d) PageRank constraint
(define sum-of-out-rank:: (-> node node real)
(lambda (v::node n::node)
(if (< n 0) 0 (+ (edge v n) (sum-of-out-rank v (- n 1))))))
(assert (forall (v::node)
(= (rank v) (sum-of-out-rank v (- number-of-nodes 1)))))

;i (e) no self cycle
(assert (forall (v::node) (= (edge v v) 0)))

i (e)
(assert (forall (v::node)
(exists (w::real)
(forall (u::node)
(or (= (edge v u) 0)
(= (edge v u) w))))))

Figure 1: Yices, an SMT solver, inputs for PageRank

3 Extracting Constraints from Iterative

Queries in OptIQ
There are two problems for RQP to be applied to iterative
queries. As we have discussed in Section 2, the first one is
that it is not obvious when to stop the iteration of the re-
versed query, or it is difficult to generate input data that sat-
isfies initial constant after the reversed iterations. The sec-
ond problem is that RQP for iterative queries is not effi-
cient when the queries are expressed in a sequence of sim-
ple queries, which is easier for programmers to implement
compared to implement a single complicated query. Con-
sider each iteration is expressed in the form of T = q(T, D)
where T is update table, which is updated in each iteration
until convergence, and D is an input table, which is not up-
dated during iterations. Let assume iterative query q is ex-
pressed in a sequence of queries, say q = @y... * qo. In the
reverse query processing, T is input to the reversed query of
Gn, and then its result is input to g, —1. This processing is
continued until gg. The result of reverse query of ¢y must be
identical to T, because T is converged at the starting time in
the reverse query processing, To satisfy this constraint for
a sequence of queries causes a serious issue in efficiency,
because we have to backtrack the reverse query processing
from qg to g,, when the result of reversed query of qg is not
identical to T.

We propose an approach for reverse query processing for
iterative queries. Our approach uses two techniques to tackle
the above difficulties. The first technique is to rewrite it-
erative queries to non-iterative ones, fixpoint queries. This
query rewrite does not change the semantics of queries, be-
cause the output of the forward query is converged, so itera-
tive queries can be rewritten to the queries without iterations.
The second technique is to rewrite a sequence of queries in

each iteration so that multiple queries referring to input ta-
ble are to be merged into a single query. We can avoid back-
tracking and achieves efficient reverse query processing. Af-
ter applying the above two techniques, we can apply RQP to
the fixpoint queries and extract constraints from the reversed
queries and input them into SMT solvers to generate input
data from reversed queries.

3.1 Query rewrite to fixpoint queries

The first technique is to rewrite iterative queries to fixpoint

queries. After the convergence of forward query, iterative

queries are no need to iterate any more and the convergence

constraint becomes a constant constraint for output data.
An iterative query is expressed in a general form of:

iterate
set T = g(T,D)
until ¢ (new,01d) on T

where T is update table, which is updated in each iteration
until convergence, D is an input table, and g is an itera-
tive query. According to the query specification in OptIQ
(Onizuka et al. 2013), the convergence constraint ¢ is ex-
pressed with the difference between new record (before ex-
ecuting the iteration) and old record (value after executing
the iteration) on update table T. new and old are special
aliases that refer to new table (T on the left-hand side of T =
q(T,D)) and old update table (T on the right-hand side of T
= q(T,D)), respectively. This iterative query is rewritten to a
fixpoint query after convergence:
1st query:

set T = g(T,D)
2nd query:

select «

from T

where ¢ (new, old)

and new.key = old.key;

where new.key and old.key is key attribute of new and
old update table, respectively. The Ist query is extracted
from the iterative query; it is the inside part of the iteration.
The 2nd query is obtained by adding key attribute condi-
tion, new.key = old.key, to the convergence constraint,
because the new and old record share the same value on the
key attribute of the update table.

3.2 Merging multiple queries

The second technique is to rewrite a sequence of queries in
each iteration into a single query so as to avoid backtracking
during reverse query processing.

We first explain how backtrack occurs when a query is ex-
pressed in a query sequence. An iterative query for k-means
clustering is written in OptIQ (Onizuka et al. 2013) as fol-
lows:

Schema:
1: Centroid(id, pos)
2: Point (id, cid, pos)

Query:

1: iterate

2: let Point =

3: select id, closest (p,Centroid) as c, pos
4: from Point as p;



5 set Centroid =

6: select c.id, avg(pos)

7 from Point

8 group by c;

9: until |new.pos-old.pos| < € on Centroid

where closest (p, Centroid) returns the closest record in
Centroid to p and it is defined as:

closest (p,Centroid) =
select ¢
from Centroid as c
order by distance (c,p)
limit 1

Notice that there are two queries (1st query in line 2-4 and
2nd query in line 5-8) that commonly refers to Point table
that is the input table of the forward query processing. We
generate Point records by following the reverse order of the
queries, 2nd query and then Ist query. If the Point records
generated by the 2nd query does not satisfy the constraint
specified by the 1st query, we have to backtrack the reverse
query processing so that the generated Point records would
satisfy the constraint of the 1st query.

We merge multiple queries into a single query so as
to avoid the backtracking. Here we employ techniques for
traditional query simplification (selection/projection push
down, identity query removal) and/or scan sharing (Nykiel et
al. 2010; He et al. 2010). The scan sharing is an optimization
technique for forward query processing, but we employ this
technique also to backward query processing. The idea of
scan sharing is that scanning same tables in different queries
are shared so that those queries are evaluated by scanning the
same tables at the same time. By applying this technique to
the backward query processing, the constraints on the input
table expressed in multiple queries are merged into a single
query.

The merging queries works as follows for k-means
clustering. First, we simplify the query by pushing
closest (p,Centroid) down to the 2nd query from the
1st query:

1: iterate

2 let Point =

3 select id, cid, pos

4: from Point

5 set Centroid =

6 select c.id, avg(pos)

7 from Point as p

8 group by closest (p,Centroid) as c;
9: until |new.pos-old.pos| < € on Centroid

Then, the st query is an identity query, so we can omit it.

1: iterate

2 set Centroid =

3: select c.id, avg(pos)

4 from Point as p

5 group by closest (p,Centroid) as c;

6: until |new.pos-old.pos| < € on Centroid

3.3 Examples

We explain how the above two techniques work for the ex-
amples of k-means clustering and PageRank computation.

k-means clustering example We apply the first technique
to the query obtained after merging queries for k-means
clustering example and then obtain fixpoint queries as fol-
lows:

1st query:

1: set Centroid =

2: select c.id, avg(pos)

3: from Point as p

4: group by closest (p,Centroid) as c;
2nd query:

5: select =

6: from Centroid

7: where |new.pos-old.pos| < €
8: and new.key = old.key;

Since the select clause in line 2 forms new update table
(new) after the query and the result of closest function, c,
refers to old update table (01d), new.pos-old.pos and
new.key = old.key are rewritten to avg (pos)—-c.pos
and c.id = c.id, respectively. Then we can remove c.id
= c.id because it is a tautology. Finaly, we can merge the
above queries into a single query:

1: set Centroid =
2: select c.id, avg(pos)

3: from Point as p
4: group by closest (p,Centroid) as c
5: having |avg (pos)-c.pos| < €;

Notice that the constraint expressed by this query (in line 4
and 5) is independently solved for every Centroid record in
reverse query processing. So, we can solve this constraint
by divide and conquer algorithms. For each Centroid record,
we can generate Point records so that they satisfy the con-
straints. This result is quite different from other cases, such
as PageRank computation, because we cannot remove the
constraint between records (new.key = old.key) in gen-
eral. We describe the detail of the PageRank computation
example in the next section.

In addition, so as to more efficiently generate
Point records that satisfy the constraint expressed by
closest (p, Centroid) (in line 4), we construct Voronoi
diagram (Aurenhammer 1991) by setting Centroid records
as Voronoi seeds. We can generate Point records inside of
each Voronoi, then those records automatically satisfy the
closest constraint.

PageRank computation example An iterative query for
PageRank computation is written in OptIQ (Onizuka et al.
2013) as follows:

Schema:
1: Graph(src,dest, score)
2: Count (src, count)
3: Score(dest, score)

Query:
iterate
set Score =
select n.dest, sum(n.score/Count.count)
from Graph as n, Count
where n.src = Count.src
group by n.dest;
set Graph =
select m.src, m.dest, Score.score
from Graph as m, Score



where m.src = Score.dest;
until |new.score-old.score| < € on Score

The two queries inside of the iterate clause are merged by
using table decomposition and subquery lifting (Onizuka et
al. 2013).
initialize
IT _Count = select IT.src, IT.dest,Count.count
from IT, Count
where IT.src = Count.src;
iterate
set Score =
select ic.dest, sum(VT.score/ic.count)
from Score as sc, IT_Count as ic
where sc.dest = ic.src
group by ic.dest;
until |new.score-old.score| < € on Score

The iterate part of this query is rewritten to fixpoint queries
as follows:

1st query:
set Score =
select ic.dest, sum(VT.score/ic.count)
from Score as sc, IT_Count as ic

where sc.dest = ic.src
group by ic.dest;
2nd query:
select «

from Score
where |new.score-old.score| < €
and new.key = old.key;

Since the select clause of the 1st query forms new update
table (new) and Score sc refers to old update table (01d),
new.score-old.score and new.key = old.key are
rewritten to sum (VT.score/ic.count)-sc.score and
ic.dest = sc.dest, respectively. Finally, we can merge
the queries and obtain a query.

set Score =
select ic.dest, sum(VT.score/ic.count)
from Score as sc, IT_Count as ic
where sc.dest = ic.src
group by ic.dest

having |sum (VT.score/ic.count)-sc.score| < €

and ic.dest = sc.dest;

We cannot easily solve the constraint of this query by di-
vide and conquer algorithms because this query has a global
constraint between records. There is a self-cyclic constraint
foric, ic.dest = sc.dest = ic.src, so the constraint
affects globally to the input data. We will describe efficient
techniques for solving the constraints of PageRank compu-
tation in Sections 4 and 5.

4 Graph Generation using Virtual Nodes

This section proposes another divide-and-conquer approach.
We have seen in Section 2 that directly generating the graph
at a time using (global) constraint across generated graph
does not scale. Alternatively, we construct and solve a set
of smaller constraints for smaller graphs with virtual con-
necting nodes between them so that the graph generated by
connecting these graphs via the virtual nodes still satisfies
the PageRank constraints. This approach scales in the sense
that this decomposition can be applied recursively to these

smaller graphs. Though this approach is specific to PageR-
ank, we do not introduce any approximation, like that in
Section 5. However the present approach may fail to gen-
erate graphs for given score, if the suitable partition cannot
be selected.

Inspired by this approach, we further discuss the possible
divide-and-conquer approach to forward PageRank compu-
tation provided that particular graph partition that the former
approach would generate is possible for a given graph. De-
sikan et al. (Desikan et al. 2006) also proposed a divide-and-
conquer approach. They partition into two groups of par-
titions so that former group have no incoming edge from
another partition and have outgoing edges only to another
group of partition. Our partition allow existence of cycles
across partitions, though we have constraints in the number
of crossing edges.

4.1 Divide-and-conquer approach to PageRank

Computation of PageRank is difficult to decompose for
strongly-connected graphs, because the score of a node can
affect any other node in the connected components. Decom-
position of the problem within these components is not triv-
ial and may lead to generation of unnatural graphs unless
we carefully consider the boundary of the component. In
this section, we impose a boundary condition that enables
the independent generation of PageRank graphs so that the
combination of these graphs are again PageRank graphs.
For the forward PageRank computation pr : Graph —
Score for given graph g € Graphs (we denote the set of
nodes V andedges ' C V' xV by g.V and g.E, respectively)
that is supposed to assign each node in graph g the score
of node v € ¢.V as the function score;, = ¢g.V — Real
such that 3° . scoreg(v) = 1, we define the backward

PageRank pr=! : Score — Graph for given score* s €
Score with 3, cqom(s) S(v) = 1 and s € Range(pr) is to
compute one of pr’s (right) inverse g € Graph such that
prg = s. We call a graph g a PageRank graph for scores s
when prg = s.

Example 1 (PageRank Graph) Figure 2
shows a graph that is generated from scores
{3/13,3/13,3/13,2/13,1/13,1/13}. We omitted the
denominators of the scores (of the nodes) and weights (of
the edges) in the figure.

Then our divide-and-conquer computation of the backward
PageRank by the decomposition s = s; @ s9 of node scores
is to compute graphs g = g1 ® g» such that

g o= prlos

g2 = prl s
and

pr (g1 ® g2) = 51 © 52

We divide the backward PageRank computation pr—! for s
into computations of pr~! for s; and sy (Divide) and obtain

“Some application may not be interested in the absolute val-
ues of scores for individual nodes, so the input can be just a his-
togram of scores. This relaxation includes specification of top-k
scores only. It is our future work to consider these relaxed inputs.



w
N
(\]

Figure 2: PageRank Graph Example

the entire result (Conquer) by combining the results using
.

4.2 Introduction of virtual nodes

Our graph decomposition is based on the following observa-
tions by introducing virtual nodes. Consider the decomposi-
tion of a graph g into two graphs g; and g2 by decomposing
the set of nodes of g into two sets. Then g; and g- are created
by these nodes, edges that do not cross the boundary of the
node sets, and for each subgraph, a virtual node that repre-
sents the other subgraph, and edges incoming/outgoing the
virtual node that consist of the edges that crosses the bound-
ary. Formally, given decomposition of nodes g.V = V; UV,
for graph g such that pr g = s,

g1.V = V1 U {’lU1}

91.E = {(u,v) | (u,v) € g.E,u € Vi,v € V1 }

U {(u,wy) | (u,v) € g.E,u € Vi,v € Va}
U {(w1,v) | (u,v) € g.E,u € Vo,v € V1}

and g» given similarly, we have

prgi1 = sly, U{ws — sy}

prgs = sly, U{ws — sy}

where s, = Z(u,v)ég.E,uEVl,vEVz Wg(u)

(u,v)€g.E uEVz veEVY ('LL)

where degree, : g.V — Int < {v — Ywuwegrl |V E
9.V} represents the number of outgoing edges for node v €

9.V, wy(v) < score, (v)/ degree, (v) the weight of the node
v for its adjacent nodes and f|s denotes the restriction of
the domain of the function f to the set S. The nodes w1
and wq correspond to the virtual nodes. The (common) score
of them is equal to the total flow that is incoming/outgoing
from/to one partition to the other. Note that the total score is
not equal to 1 anymore for each partition.

This observation implies that the forward computations
after decomposition into g; and g» result in the same scores
for each subset of the nodes before the decomposition,
which enables the divide-and-conquer approach summa-
rized as Algorithm 1 by decomposing the nodes into two
sets, or equivalently decomposing scores (via split), inde-
pendently generate the graphs allocating the score of the vir-
tual nodes as the flow of the scores between the sets, and
combine the graphs. Indeed, we have, given score partition
s = scorey, @ scorey, defined as

def
score,, @ scorey, = scorey, |q, .1, U scoreg, |g, v,

with the virtual nodes w; and ws having the common score
SV7

pr(pr™" s1) @ (pr" s2)) =
E def
| (u,v) € g1.E,u # wi,v # wi }
| (u,v) € g2.E, u # w2, v # wa}
) | (w,wr) € g1.E, (w2, v) € g2.E,
Z(u’,w])EgLE Wg, (u/) = Wy, (wQ)}
(u,v) | (u,w2) € go.E, (w1,v) € g1.E,
(u,wa2)Ega.E Wy, (U/) =Wg, (wl)}
Note that the flow (score) should be given appropriately for
the existence of the PageRank graph. It is also worth not-
ing that by recursively decomposing scores, a partition may
include at most two virtual nodes, one of which is already in-
troduced during the previous decomposition. Therefore, the
virtual nodes are represented as sets V, and passed to pr—!
as an additional argument so that the recursive call can im-
pose virtual node conditions to these nodes.
We delegate the base case (PRINV in Algorithm 1) to
SMT solvers as described in Section 4.3.

(91 ® ga).
{(u,v)
{(u,v)
{(u,v
{

U
U
U

Example 2 (D & C Graph Generation) Figure 3 shows
the PageRank graphs g1 and gs that are generated from
scores s1 = {v1 — 3/13,v3 — 3/13,v3 — 1/13,w;
2/13} and s = {vg +— 3/13,u5 +— 2/13,v6 —
1/13,wy — 2/13}. 2/13 is chosen as the score s, of the vir-
tual nodes w1 and wo. We have s1 = pr gy and s3 = pr go.
Figure 4 shows the graph g1 ® gs.

As a boundary condition around the virtual nodes, the dis-
tribution of the weights of the edges incoming to a virtual
node, and the distribution of the weights of the edges outgo-
ing from the virtual node of the other partition should coin-
cide. Alternatively, since there is no restriction in the distri-
bution of the incoming edges of a node, if the number of the
outgoing edge of a virtual node is only one, then there is no
restriction on the incoming edges of the other virtual node.
This simplified restriction is applied in the above definition
of ® and used in the constraint to SMT solvers described in
Section 4.3.

Example 3 (Boundary Condition) The graphs in Figure 3
satisfies the stronger boundary condition in that the number

Algorithm 1 D & C graph generation using virtual nodes

1: procedure pr—'(s, V)
2: > generates a graph g s.t. pr g = s
if nondivisible s V,, then
return PRINV (s, V,)
> generate a graph using SMT solver

((515 Vv1)7 (327 ‘/\/2)) <~ Spllts Vv

3
4
5:
6: else
7.
8 > s.t. 81 @ s9 = s for the virtual node v, € V,

9: g1 <= pr 1(81> V1)

10: g2 pr*(s2, Vo)

11: {vv} dom(sl) N dom(ss)
12: return g; ®,, g2




Node

2
Virtual {/}////;ﬁ 1
2@—..| 1
Virtu 2\\ 1
/3\1/‘

Figure 3: Divide-and-Conquer Generation of PageRank
Graph (flow=2/13)

1 2
3 ﬁi\
1
"

/

Figure 4: Conquer Phase

of outgoing edges in the virtual nodes w, and wy are 1, al-
lowing independent generation of PageRank graphs from s,
and ss. Note that s1 and so should also be in the range of

pr.

4.3 Generation of PageRank graphs in SMT-LIB2

After decomposing input scores to make the number of
scores small enough (as determined by the predicate indi-
visible in Algorithm 1), we use SMT solvers to generate
PageRank graphs (PRINV in Algorithm 1). We show the
pseudo-code to represent the input to the solver in Figure 5.
The code is similar to that of Figure 1 except that Figure 5
is adapted to the SMT-LIB2 (Barrett, Stump, and Tinelli
2010) standard syntax, introduced the virtual nodes and their
boundary conditions (see the comments in the code). The
scores of the non-virtual nodes are given by the first set
of assert commands while the scores of virtual nodes are
used by the next set of such commands. The rest of the code
fragment, including the boundary conditions are the same
for every invocation of PRINV. The result is extracted as
the value assignments of the function edge. Thanks to the
standardization by SMT-LIB2, we were able to run the code
across multiple platforms including Yices2 (Dutertre 2014),
73 (De Moura and Bjgrner 2008) and CVC4 (Barrett et al.
2011). We use quantifier-free, uninterpreted function with
linear integer and real arithmetics (QF_UFLIRA) as the con-
figuration for the logic and theories. edge v v’ represents the
fraction of the score of node v that is contributed to node v’.
Its non-zero value implies the existence of an edge between
these nodes. The predicate zeroOrFiz represents that the
contribution mentioned above is uniform. pagerankCond v
represents the PageRank condition for node v that ensures

the sum of the contributions from its incoming edges consti-
tutes the score of v, and the sum of the contribution for v’s
outgoing edges equals to the score. The predicate weight
encodes an existential quantification that ensures uniformity
of weights of the edges outgoing from a node. To avoid triv-
ial solutions in which every node has only a self-cycle, we
add the corresponding condition using function edge. The
boundary condition for the virtual node v, is represented by
rank v, = weight v, indirectly encodes that the number of
outgoing edges is one, so that all the score contributes to the
weight.

rank : Node — Real
edge : Node x Node — Real
weight : Node — Real

assert rank vy = s(vg)
assert rank vy = s(v1)

assert rank vy1 = Sy1 (¥ virtual node *)
assert rank vy = Syo

rank vy, = weight vy (* boundary condition *)
rank vyo = weight vyo

sumInRank : Node — Real

sumInRank v =",y edge v’ v

edgeOutRange : Node — Bool

edgeOutRange v =\, ¢y, 0 < edge v v’ <1
sumOutRank : Node — Real

sumQutRank v =73, edge v v’

zeroOrFiz : Node x Node — Bool

zeroOrFiz vn = edgevn =0V edge v n = weight v
allZeroOrFixz Node — Bool

allZeroOrFiz v = N\, ¢y, zeroOrFiz v v’

pagerankCond : Node — Bool
pagerankCond v =
rank v = sumiInRank v

A rank v = sumQutRank v

A allZeroOrFiz v (* uniform weight *)

A edgeOutRange v (* weight range *)

A edge vv =0 (* non-self-cycle *)
assert A\ oy pagerankCond v

Figure 5: SMT Solver inputs

Example 4 shows a generation of g; in Example 2.

Example 4 (Generation of a Graph in a Partition) V' =
{0,1,2,3} V, = {2} s(0) = 3/13,s(1) =
3/13,s(3) = 1/13,s(2) = 2/13 generates edges
{(0,1),(0,2),(0,3),(1,0),(2,1),(3,2)}.

Memoization of subgraphs

The notion of virtual nodes enables us to reuse the generated
graphs. We can memoize a graph generated by scores includ-
ing that of virtual nodes by registering the ratios of scores,



and reuse the graphs by looking up the graphs needed, by
the scaled scores.

Example 5 (Graph Generation by Reusing Memo Entries)

Given scores in Example 1, we can first choose scores
13/13,3/13,2/13§ with flow=1/13, scaling by 13, and
reuse the graph at the left bottom of figure 6 for one
partition, and graph with scores 13,1,1§ for the other
partition, and connect (Figure 7).

@ 0
(a) 1—> -1—> —1> ;
R 1\»2 2 1, 341,
ro * 13
o) G ), (@
; 1N1 11 1‘\&%}»2@2—3 N '1§~2__1>
o s SR
(h) (i ()
; }/1'1\1, | 14’?/'2\%41> IR WA
L i Wy e

Figure 6: Memo Table for flow=1

{3,3,2} hits in the memo table (flow=1)

Z/EW_K
u}

{8.1.1} hits 2N A
104 1 T
QMQL.“

LI
2 Connect entries (with no error)

o®x 1 7

Figure 7: Graph Generation by Reusing Memo Tables

4.4 Discussions

Restrictions on the topology of generated graphs We
have introduced a restriction on the boundaries of partitions
to enable divide-and-conquer approach, namely, every edge
crossing the partitions should be connected to a common
node. Natural question here is whether this restriction is re-
alistic. We have investigated a real-world graph to see if such
partitioning is possible.

Figures 8 and 9 are two different manual partitions of
Zachary’s Karate Club (Zachary 1977) that satisfy the re-
striction. Though boundary of partitions are not drawn,
please consider that nodes placed on the left half of the fig-
ure belongs to the left partition and the rest of the nodes be-
long to the other partition. By no means these are sufficient
to show that the restriction is realistic enough. However, at
least we have shown that there exist a graph that can be gen-
erated by our D&C approach.

Forward D & C computation by Rescaling scores of sub-
graphs As we discussed so far, D & C computation of

o o
°
5
@
® o0
o
6 6
5 ©
o © [}
o
LQN Y
°
" ©
°
°
®
°
& 5

Figure 8: Partitioning example (1) of Zachary’s Karate
Club (Zachary 1977)

5} o®
C) < o)
@
o 0 0 .9
@
oOO
Cboo
@
© ooO
@ ° )
@ ®
o )
©

Figure 9: Partitioning example (2) of Zachary’s Karate
Club (Zachary 1977)

forward PageRank is generally impossible due to global in-
fluence of scores. However, as long as there is a partition
that satisfies the boundary constraint, we can independently
compute the PageRank of subgraphs including virtual nodes,
and then uniformly rescale the scores of each partition so
that the score of virtual node coincides and the sum of the
ordinary (non-virtual) nodes of both partitions is equal to 1.
Suppose the scores of virtual nodes are s, and sy9 for par-
tition 1 and 2, respectively, then the scale factors a; and a
for each partition are

a = Sv2
5v2(1 - Svl) + Svl(1 - SVQ)
Sv1
Qo =

sy1(1 — sy2) + Sya(l — sv1)

Systematic Generation of Memo Entries Memo entries
like exemplified by Figure 6 may be generated in a sys-
tematic manner. Indeed, starting from graph (a) which is a
minimum entry having only one node and no internal edge,
we can obtain graph (b) by superimposing a cyclic graph g
with ¢.V = {1,2} and ¢.E = {(1,2),(2,1)} and scores



{1 — 1,2 — 1}, graph (c) by further superimposing the
same graph g, graph (h) by splitting the node with score 2
in graph (b), graph (i) by shifting part of flow (=1) direct-
ing to the right to the upper node in graph (h), graph (j) by
superimposing graph g to graph (i), graph (b) by sequen-
tially connecting graph (a) to itself, and so on. It is our future
work to construct memo tables without using SMT solvers
efficiently using these basic operations.

5 Graph Generation by Kronecker’s Product

In this section, we show that could reverse iterative queries
in a divide-and-conquer manner through finding a matrix
satisfying an equation. As we know, many of the iterative
computation problems such as PageRank, random walk and
graph reachability are formalized as problems for finding an
n-dimensional vector v satisfying Av = v for a givenn xn
matrix A that is an adjacency matrix of the input graph. Con-
trary, in our context where an appropriate input is expected
to be generated from an output, we should find a solution
that is a matrix A satisfying Av = v for a given vector v.
Note that the solution is not unique in general and an identity
matrix is always a trivial solution. In the PageRank example,
the trivial solution corresponds to a graph consisting of only
self cycles, which is not desired for our purpose of data gen-
eration.

Our goal is to find a nontrivial n x n matrix A satisfying
Av = v for a given v. It is so hard in particular when n,
the number of nodes of the graph, is very large. We give the
solution as a Kronecker’s product A = A; ® - - - ® Ay, where
A; (1 = 1,...,k) has almost the same dimension so as to
generate a portable and distributable data.

We design a divide-and-conquer algorithm to find a set of
small matrices whose Kronecker’s product is equivalent to
a solution A of Av = v. Suppose that there is a method
for obtaining m-dimensional vectors v; and v, from a 2m-
dimensional vector v such that vi ® vo = v holds. We can
find A;(i = 1,2) satisfying A;v; = v; with a recursive
procedure. Then A = A; ® As is found to satisfy Av = v
since we have

Av = (Al X AQ)(Vl (24 V2)
= (A1v1) ® (A2v2)
=V1 Vo

= V.

We may stop the recursive step at a threshold to switch the
other algorithm for finding a small matrix.

The algorithm above cannot be complete to attain our
goal, however. The problem is that there may be no vec-
tors vi and vy such that v. = v; ® va. For example,
v = (122 4)7 has a solution v; = v, = (1 2)7, while
v =(1234)T and v = (124 2)T have no solution. A pos-
sible approach for evading the problem is to try to minimize
||v—v1®va||p where ||x|| 7 denotes the Frobenius Norm of
a vector x. In the case of v = (1 2 3 4)T, we could choose
vi ~ (0.946 2.138)T and v, =~ (1.347 1.911)7 to have
V1 ® va & (1.274 1.808 2.880 4.086)T". Another approach
for the problem is to allow to permute v before finding v
and vo, that is, 7(v) = vi ® vy with a proper permutation

Algorithm 2 Kronecker approximation for vectors
1: procedure KRONECKERAPPROX(V)

2: > finds vy and v s.t. m(v) & vi ® vy with some 7
3 vy < a |v|/2-vector whose all values are 2/|v|

4 repeat

5: vy + argminy, ||7(v) — v @ va||F

6: > vy and 7 fixed
7: Vo 4 argminy, ||m(v) — vi ® vo||Fp

8: > vy and 7 fixed
9: 7 < argmin, ||7(v) — v1 ® val|p
10: > vy and vo fixed
11: until ||7(v) — vi ® va||F converges
12: return (vy,vs)

7. In the case of v = (1 2 4 2)7, one may notice that there
is a solution for its permutation (1 2 2 4)7". The order can be
arbitrary arranged in our purpose when the matrix represents
an adjacent matrix

From these observations, we take an approximative ap-
proach in which we find vectors v; and vy that minimize
|lm(v) — vi ® va|/p with varying permutation 7. Algo-
rithm 2 shows the procedure which gives a pair of vec-
tors vi and vg that minimizes ||7(v) — v ® va|p for
a given v varying the permutation 7. With 7 fixed, we
could solve the minimization problem by Singular-Value-
Decomposition (SVD) approximation. Let M, be a ma-
trix such that the vector v is obtained by stacking the
columns of M. To minimize ||v — vi ® va||F for v, an
SVD U; EUQT of the matrix M, with diagonal matrix X
whose (1,1)-component 017 is a maximum entry gives a
solution (vy,va) = (01111, u2) where u; is a vector ob-
tained by stacking the columns of U; (Loan and Pitsia-
nis 1993). The decomposition is known to be achieved by
an iterative algorithm of linear procedures (Pitsianis 1997;
Johns, Mahadevan, and Wang 2007) as follows:

repeat
vy < argminy, |V —vi ® va|lp > vy fixed
vy < argminy, ||[v— v @ va||r > vy fixed

until |v — v ® V|| converges

Algorithm 2 extends the iterative procedure by varying the
permutation 7. To find a better permutation, the same order
of the kronecker product of fixed vectors is used.

Using Algorithm 2, it is easy to find a set of matrices de-
rive an approximation A ~ A; ® --- ® Ay by divide-and-
conquer. Algorithm 3 shows the procedure which derives a
matrix A as a Kronecker’s product such that Av = v for a
given vector v. |v| denotes the dimension of the vector v and
o is a threshold at which the graph generation algorithm is
switched into the other precise but possibly inefficient algo-
rithm GraphGen to restrain the error introduced by approxi-
mation. We may choose a constraint-solver-based algorithm
shown in 2 as GraphGen. A virtual-node based algorithm
shown in 4 is also a candidate though it is specific to PageR-
ank.



6 Conclusion and future work

This paper reports our work in progress on reversing iter-
ative queries for systematic generation of graphs. The key
idea is to reduce graph generation as a reverses of a fixed
point computation, and to make it scalable through paral-
lelization based on the divide-and-conquer approach.

Quite a lot of work is to be done in the future. First, in this
paper we consider as an input the complete specification of
the problem, like complete list of scores for every nodes in
case of PageRank. However some application may require
only the stochastic profile of them, like top-%k or histogram
of scores. We would like to make use of this relaxation to
generate graphs more efficiently. Second, the Divide-and-
conquer approach may repeatedly produce the same sub-
graph at different levels and branches of recursions. We have
discussed in Section 4.4 to use memoization to avoid re-
computation, but the memo table entries themselves were
constructed using SMT solvers. We could instead use com-
bination of basic operations to construct these memo tables
systematically. Finally, we should seriously implement our
new graph generation method and evaluate it with practical
graph generations.

References

Aurenhammer, F. 1991. Voronoi diagrams&mdash;a survey
of a fundamental geometric data structure. ACM Comput.
Surv. 23(3):345-405.

Barrett, C.; Conway, C. L.; Deters, M.; Hadarean, L.; Jo-
vanovié, D.; King, T.; Reynolds, A.; and Tinelli, C. 2011.
Cvc4. In Proceedings of the 23rd International Conference
on Computer Aided Verification, CAV’11, 171-177. Berlin,
Heidelberg: Springer-Verlag.

Barrett, C.; Stump, A.; and Tinelli, C. 2010. The SMT-
LIB Standard: Version 2.0. Technical report, Department
of Computer Science, The University of Iowa. Available at
www.SMT-LIB.org.

Binnig, C.; Kossmann, D.; and Lo, E. 2007. Reverse query
processing. In Chirkova, R.; Dogac, A.; Ozsu, M. T.; and
Sellis, T. K., eds., Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Mar-
mara Hotel, Istanbul, Turkey, April 15-20, 2007, 506-515.
IEEE.

Algorithm 3 Generating a matrix A as a Kronecker’s prod-
uct
1: procedure FIXEDPOINTINVERSION(V)
2: > generates a matrix A s.t. Av=v
if |[v| < o then
GraphGen(s)
> call the other algorithm for smaller vectors

3
4
5
6 else

7: (v1,vs2) < KRONECKERAPPROX(V)

8: > so that vi ® v &~ 7(v) with some 7
9 Aj < FIXEDPOINTINVERSION(v1)

0 As < FIXEDPOINTINVERSION(v3)

1

10:
1 return A; ® A,

Capota, M.; Hegeman, T.; Iosup, A.; Prat-Pérez, A.; Erling,
O.; and Boncz, P. A. 2015. Graphalytics: A big data bench-
mark for graph-processing platforms. In Larriba-Pey, J.,
and Willke, T. L., eds., Proceedings of the Third Interna-
tional Workshop on Graph Data Management Experiences
and Systems, GRADES 2015, Melbourne, VIC, Australia,
May 31 - June 4, 2015, 7:1-7:6. ACM.

De Moura, L., and Bjgrner, N. 2008. Z3: An effi-
cient smt solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, 337-340. Berlin, Heidelberg:
Springer-Verlag.

Desikan, P. K.; Pathak, N.; Srivastava, J.; and Kumar, V.
2006. Divide and conquer approach for efficient pagerank
computation. In Proceedings of the 6th International Con-
ference on Web Engineering, ICWE °06, 233-240. New
York, NY, USA: ACM.

Dutertre, B. 2014. Yices 2.2. In Biere, A., and Bloem,
R., eds., Computer-Aided Verification (CAV’2014), volume
8559 of Lecture Notes in Computer Science, 737-744.
Springer.

He, B.; Yang, M.; Guo, Z.; Chen, R.; Su, B.; Lin, W.; and
Zhou, L. 2010. Comet: batched stream processing for data
intensive distributed computing. In Proceedings of the Ist
ACM Symposium on Cloud Computing, SoCC 2010, Indi-
anapolis, Indiana, USA, June 10-11, 2010, 63-74.

Johns, J.; Mahadevan, S.; and Wang, C. 2007. Compact
spectral bases for value function approximation using kro-
necker factorization. In Proceedings of the 22Nd National
Conference on Artificial Intelligence - Volume 1, AAAT 07,
559-564. AAAI Press.

Leskovec, J.; Lang, K. J.; Dasgupta, A.; and Mahoney,
M. W. 2008. Statistical properties of community structure in
large social and information networks. In Proceedings of the
17th International Conference on World Wide Web, WWW
"08, 695-704. New York, NY, USA: ACM.

Loan, C. F., and Pitsianis, N. 1993. Linear Algebra for Large
Scale and Real-Time Applications. Dordrecht: Springer
Netherlands. chapter Approximation with Kronecker Prod-
ucts, 293-314.

McCune, R. R.; Weninger, T.; and Madey, G. 2015. Think-
ing like a vertex: A survey of vertex-centric frameworks
for large-scale distributed graph processing. ACM Comput.
Surv. 48(2):25:1-25:39.

Nykiel, T.; Potamias, M.; Mishra, C.; Kollios, G.; and
Koudas, N. 2010. MRShare: Sharing across multiple queries
in mapreduce. PVLDB 3(1):494-505.

Onizuka, M.; Kato, H.; Hidaka, S.; Nakano, K.; and Hu,
Z. 2013. Optimization for iterative queries on mapreduce.
PVLDB 7(4):241-252.

Pitsianis, N. P. 1997. The Kronecker Product in Approx-
imation and Fast Transform Generation. Ph.D. Disserta-
tion, Cornell University, Ithaca, NY, USA. UMI Order No.
GAX97-16143.

Zachary, W. W. 1977. An information flow model for con-



flict and fission in small groups. Journal of Anthropological
Research 33(4):452-473.



