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Abstract

Rule-based adaption provides a powerful mechanism to program adaptable
software, where rules specify adaptation logic of what particular action should
be performed to react to monitored events. It has advantages of readability
and elegance of each individual rule, the efficiency of plan process, and
the ease of rule modification. However, adaptation rules in the existing
approaches are not structured well, which makes it difficult to deal with
efficient conflict resolution, to be seamlessly combined with user’s goal and
requirements, and to evolve dynamically. In this paper, we propose a novel
idea of νRule for structuring adaptation rules. The structured adaptation
rules are expressive enough for programming intended adaptation logic, and
their well-behavedness that is automatically checked at the design time can
guarantee that they will not lead to any conflict at runtime. In addition, we
show that νRule provides a flexible mechanism for users to customize and
evolve the adaptation systems. We have designed and implemented a new
view-based adaptation framework for supporting construction of adaptive
systems, based on νRule and the feature modeling technique, and successfully
apply it to realize a nontrivial smart home system.

1 Introduction

Rule-based adaptation [1, 2, 3] provides a powerful mechanism to develop self-
adaptive systems, enabling systems to modify their behavior, reconfigure their
structure, and evolve over time reacting to changes in the operating context [4]. In a
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rule-based adaptation system, a set of adaptation rules are used to specify adaptation
logic of what particular action should be performed to react to monitored events.

Typically, an adaptation rule takes the form of “condition ⇒ action” where
condition specifies the trigger of the rule, which is often fired as a result of a set of
monitoring operations, and action specifies an operation sequence to perform in
response to the trigger. For instance, in a smart room system (as will be explained
more in Section 2), we may have the following rule

Light .Power = off ∧ Time = daytime
⇒ Blind .State := open; Window .State := open

which declares that if the light is power off in daytime, then open the blind and
the window. Obviously, rule-based adaptation has advantages of readability and
elegance of each individual rule, the efficiency of plan process, and the ease of rule
modification.

In spite of these advantages, adaptation rules pay attention only to local trans-
formation, which makes it difficult to satisfy user global goal that expresses the
purpose of the developed system. Moreover, like the operating context, user goal
setting may change dynamically, and good self-adaptive systems should be flexible
to adapt accordingly without intervention from technicians. However, the adaptation
rules are static so that the adaptation logic defined by the rules cannot change at
runtime, which prevents it from being adaptable to dynamic goal change.

On the other hand, the goal based and utility function based approaches [5, 6]
provide a solution to make adaptation plans that can match with changed goal. They
normally reduce the dynamic adaptation as a linear programming problem and leave
the system to reason on the actions required to achieve high-level goals or optimize
utility functions. While, despite a greater possibility to find an optimized solution at
runtime, they always encounter large resource consumption and suffer from high
execution cost.

In this paper, we propose a novel approach to enriching rule-based adaptation
with goals by structuring adaptation rules with invariant. The key idea is to (1)
refine the rule by splitting the condition part into two as view∧condition ⇒ action ,
where view denotes an invariant that will be preserved after the action, and (2)
impose the following semantics to the rule: “Under view , if condition is satisfied,
do action while keeping the view .”

The important point is the use of invariant for capturing the view state that a rule
should maintain in adaptation. Since a user goal is usually realized by a (proper)
state [5], it is this view state that enables us to associate rules with goals. To make
the view stand out in the rule, we shall write the rule as

view ` condition ⇒ action

and call it view-based rule (νRule for short) in this paper.
The main technical contributions of this paper can be summarized as follows.
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• We present a novel concept of νRule , where an invariant view is introduced
for structuring adaptation rules and relating them with goals (Section 3.2). As
a refinement of the traditional adaptation rules, νRule s are expressive enough
for programming intended adaptation logic. On the other hand, thanks to more
refined structure and added invariant semantics, νRule s serve effectively as
basic units for construction of various powerful and well-behaved adaptation
rule systems at both design and run times.

• We propose a new view-based adaptation framework for supporting construc-
tion of adaptive systems based on νRule and the goal-oriented modeling
technique (Section ??). It seamlessly integrates the rule-based planning with
the goal-based planing, gaining the advantages of both traditional rule-based
and goal-based adaptation approaches. Accordingly, the run-time adaptation
can efficiently response to the changes in both the environment and the user
goal setting.

• We have implemented the framework1 with two newly developed algorithms
(Section ??). One is for goal-based planning where we introduce property
to bridge the gap between goals and features and divide the optimization
procedure into two steps: goal-based reasoning in section 3.4.1 and strategy
derivation in section 3.4.2. The other is for dynamic rule generation, where
by use of the good connection between the goal-related feature view and the
νRule structure, a well-behaved goal-related νRule set is dynamically derived
from the νRules in the static knowledge base.

We have applied the framework to design a smart room system. Our experimen-
tal results (Section ??) show that (1) our approach reaches a much higher degree of
goal satisfaction than the traditional rule-based adaptation approach; and (2) our
approach scales and works more efficiently than the traditional goal-based approach.

2 Running Example: Smart Rooms

Let us imagine such a typical scenario: developers want to construct a smart home
for its residents as shown by the goal model [7] in Figure 1. A smart home system is
usually designed under three main concerns: it should reduce energy consumption,
provide a high level of resident comfort and ensure home security. In the literature of
smart home [8], thermal comfort, visual comfort and good air quality are regarded as
three basic factors that determine the quality of life in buildings. Besides, different
smart home system take some more factors into account, for example, acoustic
comfort. These factors can be treated as goals that adaptive system should satisfy.

An example of dynamic adaptation to meet the goals suitable lighting intensity
and suitable screen brightness are as follows. A computer with adaptive capacity
can adjust itself to indoor lighting intensity. When the residents modify computer

1The system is available at http://www.prg.nii.ac.jp/members/stefanzan/viewrule.html.
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Figure 1: A Goal Model for Smart Home

screen brightness, this modification should be kept to make the user feel that he
has full control of the room. At the same time, if there comes a request of suitable
light intensity for the room, it should give several possible resolutions to the request,
such as, turning on the light, opening the blind or both of them.

The adaptation mechanism in a smart home system should not be immutable,
rather, the mechanism itself should also be adaptive to user goals, priority of goals,
and user preferences. This is because that different residents might pay their
attention to different goals according to their interests. Generally, a self-adaptive
system could well adapt itself to dynamic changing environment without human
intervention. However, for a smart home, its resident may need to have a full control
of all the home states, and have the permission to add new devices and new rules
into the adaptation engine.

It is, however, not easy for the developers to build such a smart home system
that meets all these requirements. To set the smart room developers free from
this tough task, it will be helpful to have a new framework to facilitate them
to construct such kinds of smart home system in an easy way like following:
1) formalizing the smart home context, including the physical environment, the
devices and their reconfigurable parameters, by the feature modeling technique; 2)
specifying adaptation logic by a set of adaptation rules that associate with user goals.
With these two kinds of information, the new framework will generate automatically
an adaptation engine for the smart home system.

The following characteristics are desired for the new framework:
• Free from conflicts. As long as the adaptive rules provided by the developer

meet the standards of our framework, possible conflicts of these adaptive rules
would be detected statically and there will be free from runtime conflict. Therefore,
there is no need to bother the residents of smart home to resolve on-line conflicts.

• Flexibility of control. The adaptation engine could adapt to user goals and goal
priority. Once the user goals or goal priorities change, the adaptive engine should
be regenerated automatically. it should provide a certain flexibility to the control
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Figure 2: Overview of νRule-based Adaptation Framework

mechanism that links the capability of monitoring the context and the capability of
reconfiguring the devices .

• Integration of human preference. Once the user modifies the states or proper-
ties of certain devices, the modification would be preserved, and not at the expense
of sacrifice other selected user goals.

• Easy for evolution. It will be free for the user to add new features or new rules
into the adaptive engine. The new added rules can be validated and added into the
original rules set in a conflict-free way.

3 νRule-based Adaptation Framework

To establish aforementioned framework in Section 2, we propose a νRule-based
adaptation framework, which is depicted in Figure 2. The adaptation cycle follows
the traditional MAPE-K Loop [4], which stands for Monitor, Analyze, Plan and
Execute based on a Knowledge base.

While, the improvement of our framework is the knowledge base. We distinguish
two knowledge bases in this framework, i.e., the static knowledge base that is built
in the development time and the dynamic knowledge base that is dynamically
constructed in terms of the static knowledge base according to the current user goal
setting. Owe to the characteristics of νRule that will be detailed in Section 3.2, the
Plan part has the capability of combining the rule-based plan and the goal-based
plan together. So, the run-time adaptation can response the changes in both the
environment and the user goals.

The main points of our framework can be summarized as follows:
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It basically follows the traditional MAPE loop of a dynamic adaptive system
[4], consisting of monitor, analyzer, planner and executor.

3.0.1 Monitor and Executor

The monitor is realized by a set of sensors, which is, for example, to collect physical
information such as outside temperature and room properties as well as information
of devices in the smart room. According to the results of the monitor, the context
(model) will be configured with specific values to form the monitored context
(model), which would be further used by Analyzer and Planner to make a plan. The
executor is to enforce the plan derived from Planner to implementation through the
architecture level.

3.0.2 Analyzer and Planner

The adaptation engine in our framework plays the role of analyzer and planer
in the MAPE loop in the sense that it filters and analyzes information given by
the monitored context and work out an adaptation plan in the requirements. Our
framework generates the adaptation engine automatically by a three-step process
that integrates user goals and adaptation rules together.

3.0.3 Static Rule Checking

Our framework is equipped with a validity checking mechanism that guarantees the
well-structured νRules free from the possibility of conflicts, and the validated rules
will be further used for generation of conflict-free adaptation engines.

In the rest of this section, we will elaborate the core of our framework: (A)
context feature models to capture running contexts, (B) formal definition of view-
based adaptation νRules, (C) the static rule validity checking algorithm, and (D)
generation of adaptation engine, as denoted in Figure 2.

3.1 Context Feature Model

For an adaptive system, its context consisting of the dynamic changing physical
environment, and all the devices and applications running in the environment.

We employs feature model in our framework to depict and specify the context
under consideration and establishes the context feature model (abbr. to CFM).
Feature models have been adopted due to the following two reasons:

• First, feature models provide intuitive ways to express variation points and
constraints, and widely adopted as variability management model in the
literature of software product line ([9], [10]).

• Second, each feature in the feature model can be mapped to one or more
components in the architecture [11], and thus it’s easy to transform a plan
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Figure 3: Context Model

expressed in feature model to a corresponding one in the architecture ([12],
[13]).

Figure 3 shows a feature model for the context of a smart home system, in which,
features are hierarchically organized in a tree-like structure through refinement
relationship, optional feature is denoted with a small white circle on top of the
feature, whereas mandatory features with a small black circle on top of the feature.
A feature is mandatory if it must be selected whenever its parent is selected.

For the smart home system, its context is comprised of the physical environment
and all devices equipped in this home. The physical environment consists of
temporal factor, weather factor, user presence and room properties. temporal
factor further includes time and season, whereas room properties includes volume,
brightness, humidity and temperature. These features could be configured with
various values monitored from the sensors. Considering the feature temperature,
its value could be one collected by a thermal sensor which reflect the current
temperature. Different from these features with continuous values, some features
can only have enumerated states. For example, season only has four possible values:
spring, summer, autumn and winter, Which can also be specified as sub features of
season.

Another source of the contextual information is from devices. To each device,
all the other devices can be regarded as its context, and its corresponding feature
model is only a subtree in the whole context feature model.

This whole context feature model represents all the possible states of the smart
home system. A legal configuration of the feature model, consisting of a set of
selected features and their relationship, describes a valid state of the context. For
example, the features set of context, external environment, temporary factor, time,
day, user presence, weather, sunny, room, light intensity, electric poser, other devices,
light, power on, blind, open, describes a valid state of the whole smart home. Once
certain features are reconfigured, the context state will migrate from one to another.

3.2 νRule: View-based Adaptation Rule

One key contribution of this paper is a novel way to structure rules by refining
the rule into view-based adaptation rule (νRule), which contains four parts, an
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observable state view (v) of a component (device, environment), a conjunction of
conditions (C), an unordered sequence of actions (A), and a set of tagged goals (G).
The concrete syntax of νRule is shown in Figure 4.

view-based rule νRule ::= v `G C ⇒ A
view v ::= fb
feature binding fb ::= feature = value

| feature = value interval
conditions C ::= c1 ∧ c2 ∧ . . . ∧ cm
condition c ::= fb
action sequence A ::= a1 ; a2 ; . . . ; an
action a ::= feature := value
goals G ::= {g1 , g2 , . . . , gp}
goal impact g ::= name : impact

Figure 4: Syntax of νRule

The νRule rule shows that if a component is of a state v, an action A should
be taken under the condition C for the purpose of G and preservation of state
v. fb is called feature binding which has two alternatives: feature can be either
assigned with a value or a value interval . For example, Light.brightness = 20
means the brightness of the light is 20, Light.brightness = (10, 30] equals to 10
< Light.brightness ≤ 30. Each action a is a non-incremental assignment which
assigns a constant value to a feature. Each rule is bound with a list of goals. The
impact for each goal g specifies the actual effect for the specific state v. Let us give
a νRule example:

(R4) Light .Power = off `{sl : −5 ,es : +3 }
Time = daytime ∧ Blind .State = close
⇒ Blind .State := open; Window .State := open

R4 declares that (1) if the light is power off, for the purpose of “suitable lighting”
(sl) and “energy saving” (es), we should open the blind and the window if it is in
daytime with the blind being closed. (2) the fact of the Blind and the Window are
open implies the fact of the light is off in daytime and the blind is closed implies
that someone is at home.

Generally, the νRule implies that the component state is a representative view
of a system state (after adaptation), which will be thus called view-based adaptation
rule.

The point is the use of the idea of “view” in the rule specification.
Rather than showing how to propagate changes (out), the new rules
specify how a component state can be achieved (in) through changes of
necessary components.

Note that in the condition of a νRule, we do not support or operation, this would
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not weaken the expressiveness of νRule as a rule with a c1 or c2 condition equals
to two νRules with conditions c1 and c2 separately.

Jf = valK = {(f , val)}
Jf ∈ ivalK = {(f , ival)}
Jf := ivalK = {(f , ival)}
Jc1 ∧ c2 ∧ . . . ∧ cmK = Jc1 K

⊎
Jc2 K

⊎
. . .

⊎
JcmK

Ja1 ; a2 ; . . . ; anK = Ja1 K
⊎

Ja2 K
⊎

. . .
⊎

JanK

Figure 5: Representation of νRule.

Even though the νRule is easy for developer to write view-adaptation rules, in
order to clarify properties of νRule clearly, we interpret νRule using sets as shown
in Figure 5. A feature binding fb is represented as {(f , val )} which means the status
of feature f is val . The operator

⊎
is the same as set union except that when a

feature appears in both, they will be merged in the way of: (1) if the value of both
are val and equal, then either is ok; (2) if the value of both are ival, the common
interval are chosen as the result; (3) if one is a val and another is a ival and the val
belongs to the ival, then the val is the union result.

Definition 3.1 (Invariant of νRule). A νRule v `G C ⇒ A is invariant if the
state of v is preserved after execution. That is, let {(f , val )} = JvK. For each (f ′, s)
∈ JAK, if f = f ′, then s ∈ val .

Note that s is always a value, while v can be either a value or value interval. For
simplicity, it is considered as a special case of value interval which has only one
value when v is a value.

If a rule r is invariant, the observable state v should be compatible with the
action A under a condition C. Thus the rule R4 described before shows that under
the goal of “suitable lighting” (sl) and “energy saving” (es), both blind and window
are open implies the light is power off.

In other words, actions in A shall not change the state of v. For example, the
following rule is not a proper view-based update rule.

(R5) Light .Power = on `{sl : +5 }
Time = daytime ∧ Blind .State = open
⇒ Light .Power := off

The light is on, while according to the condition that if it is daytime and the
blind is open, an action of power off will be done. This violates the definition of
well-behavedness of νRule, even though the rule itself makes sense. We could
rewrite this rule to a proper one by considering blind as the view:

(R5’) Blind .State = open `{sl : +5 }
Time = daytime ∧ Light .Power = on
⇒ Light .Power := off
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Lemma 3.2 (Rule Stability). Let r be a correct view-based adaptation rule, m be a
feature model and r(m) means executing rule r on feature model m resulting in a
new feature model. We have r(r(m)) = r(m). We call such rule r is stable.

This means using the same rule to consecutively update feature model m twice
shall be the same as that of updating only once which is obvious since (1) each
action a is atomic and assigns a value to the feature. (2) executing an action a
twice acts as only once as Ja;a K = JaK, so we have JA;A K = JAK. The stability
of a rule is important for self adaptive system as any times of this rule application
shall not change the system. And it is also related to goals, the contribution of twice
execution of the rule for a goal shall be the same as once.

Compared with the traditional rules, the view-based adaptation rules have the
following characteristics:

• It is simple and expressive: view is constructed with a single feature from the
whole context feature model, which reduces the design complexity of rules
for developer. And a bigger and complex view can be constructed through
production of simple views.

• It is invariant and stable: these two properties are important for simplifying
validity checking. Each νRule is associated with one or more goals which
are used for goal-based optimal rule selection.

3.3 Rule Validity Checking

In the previous section, we have discussed the invariant and stability of νRule. In
this section, we will give an algorithm for checking the well-behavedness (will be
shown later) of the whole rule set.

Definition 3.3 (Order Independence). Let ri, rj be two different νRules, m be
a feature model. Rules ri and rj are said to be called order independent if the
execution result of ri followed by rj on the model m is the same as rj followed by
ri.

If two rules are order independent, their effects on features are either none-
overlapped or the same. For a set of rule R, we say it is confluent if the execution
result of all rules in R is always the same regardless how they are applied. The
stability of R means twice execution of R is the same as only executed once.

Theorem 3.4 (Well-behavedness). Let R be a finite set of rules, ri and rj are two
rules in R, i 6= j. If the following two conditions are satisfied: 1. each rule r is
stable; 2. rules in R are order independent. R is confluent and stable.

This theorem is easy to prove by induction on the size of R.
Validity checking of rules contains two aspects: a) stability of rule set R;

b) confluence of rule set R. We omit the algorithm for checking the stability of set
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R as it is implied by stability of each rule r in R and order independence of all rule
pairs.

The confluence of R is done by checking whether rules in R are order inde-
pendent. Thus checking all the rule pairs: if all the pairs are not conflict (order
independent), the whole set of rules are not conflict (order independent). Whether a
pair of rules is order independent or not is done by the following Algorithm 1.

Algorithm 1: Order Independence Checking of Rule Pair
input : rule pair (ri, rj)
output : true, or suggestion for resolving conflicts

1. represent vi, Ci, Ai, vj , Cj and Aj as (fvi, svi), JCiK, JAiK, (fvj , svj),
JCj K and JAj K
2. ACij= ft(JAiK) ∩(ft(JCj K) ∪ ft({(fvj , svj)}))
3. ACji= ft(JAj K) ∩(ft(JCiK) ∪ ft({(fvi, svi)}))
4. Aij= ft(JAj K) ∩ ft(JAj K)
5. case (ACij , ACji) of

(∅, ∅) → checkAction(ri, rj , Ai, Aj , Aij)
(ACij , ∅) → checkConsistency(ri, rj , Ai, Cj , ACij)
(∅, ACji) → checkConsistency(ri, rj , Aj , Ci, ACji)
(ACij , ACij) →

checkConsistency(ri, rj , Ai, Cj , ACij)
checkConsistency(ri, rj , Aj , Ci, ACji)

function checkConsistency(ri, rj , Ai, Cj , ACij){
foreach feature element acij of ACij do
if (value(JAiK[acij]) 6= value((JCj K ∪ Jvj K)[acij])
then output conflict:(JAiK[acij], (JCj K ∪ JvK)[acij])

suggestion for rj : (JCj K ∪ Jvj K)[acij] }
function checkAction(ri, rj , Ai, Aj , Aij){
foreach feature element aij of Aij do
if (value(JAiK[aij]) 6= value(JAj K[aij])
then output conflict:(JAiK[aij], JAj K[aij])

suggestion for ri: JCj K ∪ Jvj K
suggestion for rj : JCiK ∪ JviK }

Algorithm 1 checks whether a rule pair is order independent or not. If not, it will
give suggestions for resolving conflicts. The input of this algorithm is a rule pair (ri,
rj). Firstly it represents conditions and actions into sets. ACij is a set of features of
join of Ai and vj ∪ Cj . If no common features in Ai and (vj ∪ Cj) , this means the
execution of ri would not affect the execution of rj , so it is the same for ACji. If
both ACij and ACji is empty, we only need to check the common features in Ai

and Aj have no conflict by calling function checkAction; if either ACij or ACji is
not empty, calling function checkConsistency to output the conflicted feature and
give suggestions for resolve conflicts.
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Function checkConsistency finds out all the possibilities that an action ai in
Ai could make a condition cj in Cj become false, thus rule rj will no longer be
executed.

Let us again recall R1 and R3 shown in Introduction (Section 1) in νRule form:

(rR1) Blind .State = close `{brightness:−3}
SomebodyHome = true ∧ Time = daytime

⇒ Light .Power := on
(rR3) Time = daytime

` Weather = sunny
⇒ Light .Power := off

According to Algorithm 1, JC1K = {(SomebodyHome, true), (Time, daytime),
(Blind.State, close)}, JA1K = {(Light.Power, on)}, JC3K = {(Weather, sunny), (Time,
Daytime)} and JA3K = {(Light.Power, off)}. AC13 = ∅, AC31 = ∅ and A13 =
{(Light.Power, off), (Light.Power, on)}. Then it calls the checkAction function and
find out Light.Power is on in one rule and off in another rule, thus rR1 and rR3 are
conflict. We could give one possible revision of rules by restructuring rR1 and rR3
as follows:

(rrR1) Blind .State = close `{brightness:−3}
SomebodyHome = true ∧ Time = daytime

⇒ Light .Power := on
(rrR3) Time = daytime

` Weather = sunny
⇒ Light .Power := off

3.4 Generation of Adaption Engine

The adaptation engine, which is used as our analyzer and planner in the adaptive
system, is automatically generated by a three-step process: goal-based configuration,
νRule implementation and reconfiguration of CFM.

3.4.1 Goal based Configuration

This step obtains a slice of context feature model and then configures it according
to user goals by an algorithm. The feature model slice (CFMS) comprises goal-
related features and supplementary information, aiming to provide a sub feature
model relate to user goals. This CFMS is then configured for the optimization of
overall goal satisfaction. In the process of slice and configuration, step 1 generates a
collection of goal-related νRules for further rule-based adaptation. Here, a νRule is
said to be goal-related if it’s tagged by one or more customized goals, and a feature
is said to be goal-related if it acts as the view feature in more than one goal-related
νRules.
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Step 1 takes inputs from two sources: one is from developers at the offline
phase, and the other is from residents’ daily life dynamically. The first input
comprises a context feature model (CFM) and a collection of validated νRules,
which we have already introduced in Section 3.1 and 3.2 respectively. The second
input includes the set of customized user goals and the priority of these goals.
The set of customized user goals are obtained from the user goal model, through
a process of goal customization. In this example, we assume the residents has
concern about goals of {energy saving (es), room brightness (rb), computer screen
brightness (csb), thermal comfort (tc), home security (hs)} and no interest in goals
like acoustic comfort and indoor air quality . All the concerned goals constitute
a set of customized user goals. The other dynamic input is goal priority, which
reflects the relative importance of the customized user goals. The priority of user
goals are expressed here using a vector of weights , each of whose values denotes
how much influence the corresponding goal has on overalll user satisfaction, i.e.

{ωes, ωrb, ωcsb, ωtc, ωhs} = {0.2, 0.3, 0.1, 0.1, 0.3}

User goals and goal priorities, as two inputs of this step, might change dynamically.
Once either user goals or goal priorities have changed, step 1 will be performed
iteratively.

Algorithm 2 realizes the function of step 1 by first picking out a collection of
goal related νRules. For the above example, 4 goal related νRules in this set are as
follows, and they are tagged by rb, csb or es respectively.

(GR1) Light .Power = on
`{rb:+3,es:−3} Time = daytime ∧Weather = sunny

⇒ Blind .State := close
(GR2) Blind .State = close

`{rb:−2} Time = daytime ∧ SomebodyHome = true

⇒ Light .Power := on
(GR3) Computer .Properties.ScreenBrightness = 1

`{csb:+1} Time = daytime ∧Weather = sunny

⇒ Blind .State := open
(GR4) Computer .Properties.ScreenBrightness = 1

`{csb:+1} Time = daytime ∧Weather = cloudy

⇒ Blind .State := open ∧ Light .State = on

Algorithm 2 then constructs a feature model slice (CFMS), a sub model of the
context feature model (CFM). Goal related features, extended features, together with
their interrelationship constitute CFMS. First, goal related features will be added
into the CFMS. Since g are already tagged on each νRule, the algorithm can find the
goal-related features by simply examining the collection of goal related νRules and
extracting their v part. Secondly, the extended features and refinement relationship
will be added to the CFMS as supplementary information, where extended features
denote those features that have refinement relationship with the goal related features,
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Algorithm 2: Goal Oriented Selection and Configuration
input :vRules vRules,context feature model CFM,

customized user goals goals, goal priority priority
output : configured CFM slice configured-CFMS, goal-related νRules

gνRules,

gνRules = ∅;
features = ∅;
FtoGImpacts = ∅;
for each νRule in νRules do

if νRules.getGoals() ∩ goals 6= ∅ then
gνRules = gνRules ∪ νrule;
νFeature = rule.getνFeature();
features = features ∪ νFeature;
for each g in νRule.getGoals do

impact = νRule.getImapctFor(g);
fgimpact = (νFeature, g , impact);
FtoGImpacts = FtoGImpacts ∪ fgimpact ;

end
end

end
extendedFeatures = ∅;
refinementRelation = ∅;
for each feature in features do

fArray = CFM .getExtendedFeatures(feature);
extendedFeatures = extendedFeatures ∪ fArray ;
refinementRelation = refinementRelation
∪CFM .getRelation(feature, fArray);

end
SFM = features ∪ extendedFeatures ∪ refinementRelation;
sogs=calOverallGoal(features,goals, priority, FtoGImpacts);
while time<threshold do

for each feature in features do
currentState=feature.getState();
feature.changeState();
S ′
ohs=calOverallGoal(features,goals, priority, FtoGImpacts);

if Sohs≥S′
ohs then feature.setState(currentState);

else Sohs=S ′
ohs ;

end
end
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Figure 6: Feature Model Slice
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Figure 7: Configured Context Feature Model Slice

e.g. the parent feature Computer of computer.screenBrightness. Figure 6 is one
CFM slice for the running example. With this model slice, users can concentrate on
those goal related features rather than the whole feature model, and easily determine
whether the context state coincides with his or her wishes.

After having obtained the CFMS, Algorithm 2 configures it to optimize the
overall goal satisfaction Sogs .

sogs =
∑
g∈G

(
Impg × ωg

)
=

∑
g∈G

(
∑
f∈F

Impftog)× ωg


In this function, Impg denotes the impact for a specific goal, which is the sum

of impact from current features’ status. The configuration uses a mountain climbing
algorithm to optimize sogs by calling calOverallGoal. It keeps changing the state
of features within a given time threshold, and calls calOverallGoal to calculate
a new sogs . The change of state will only be accepted if it leads to a larger sogs ,
otherwise the change will be discarded. The configured CFMS as figure 7 shows.
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3.4.2 Implementation of View-based Adaption Rules

One important part of the whole view-update framework is the adaptation engine for
executing νRule, which is implemented by employing the powerful bidirectional
transformation languge BIFLUX [14]. BIFLUX proposed a new programming
by update paradigm which is different from all existing approaches that it let
programmer have flexibility to write bidirectional transformations as intentional
updates, while getting bidirectional transformations for free. Since the rules are
described as an update of the context feature model, the translation from νRule to
update is quite straight-forward.

The implementation of νRule by BIFLUX including two parts: representation
of a view feature model which only specifies one feature and a context feature
model which includes all features monitored from Context, not only every device
in the environment such as computer, TV and air conditioner etc, but also the real
environment like temperature, weather and moisture; and translation of νRules as
BIFLUX updates.

The context is represented using the widely-used format XML and the document
type definition language DTD for defining the data structure. All well-structured
adaptive rules are translated into updates in BIFLUX. As νRules have been ex-
plained, let us describe the translation from rule to BIFLUX update by using the
rule R4 in section 3.2.

The goals suitable lighting (sl) and energy saving (es) specified in this rule have
been used in section 3.4.1 for choosing a set of rules to satisfy user’s goals, thus we
remove it when translating rule into update. For simplicity, we omit the definition
of both source and target DTD, the XML representation of context feature model
and view feature model. The translated update is shown in the following.
PROCEDURE updateFM($fm:FeatureM, $v:FeatureV) =
UPDATE $fm BY {
MATCH -> REPLACE IN $fm/Devices/Blind/State WITH ’open;’

REPLACE IN $fm/Devices/Window/State WITH ’open;’
}
FOR VIEW $lightPower IN $v/Light
WHERE $fm/PhyEnv/TemporalFactor/Time = ’daytime’
and $fm/Devices/Blind/State = ’close’
and $lightPower = off

This program means updating feature model $fm which corresponds to a DTD
named FeatureM by one feature $v: if the view feature $v satisfies the condition that
the light power is off , then check whether it is daytime and the Blind is closed. If
both are true, update the status of Window and Blind in feature model $fm to ‘open’.
νRules translated to BIFLUX are automatically checked against well-behavedness
[14] of bidirectional transformation which further guarantees the correctness of the
νRules.
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3.4.3 Reconfiguration of CFM

Step 3 reconfigures the current context feature model. The CFM has been configured
through monitor and filter procedure, demonstrating the information of running
context in feature level. Then it is reconfigured through step 3, and the reconfigured
model acts as an adaptation plan in feature level. The reconfiguration process
constitutes two parts: reconfiguration based on CFMS and reconfiguration based on
vRules.

The first time of reconfiguration is based on configured CFMS from step 1. This
configured CFMS comprises a collection of (feature, state) pairs to be maintained.
For synchronization, features in context feature model will first be configured ac-
cording to their states in the feature model slice. Through first time of configuration,
goal-related features in the context feature model are configured.

The second time of reconfiguration is based on vRules. Step 1 has generated a
collection of goal-related νRules for further rule-based adaptation. Since a νRule
specifies how to maintain a state, this step will activate a subset of νRules to
maintain (feature, state) pairs for goal-related features. The pair (Computer.screen-
Brightness,1) needs to be kept according to configured smart-room CFMS, so the
νRules GR3 and GR4 (shown in 3.4.1) are activated for runtime adaptation.

An activated rule will only be performed when its condition is evaluated to be
true. The condition of rules are evaluated on the current configuration of CFM.
When the condition of GR3 (Time = daytime ∧Weather = sunny) is true, the
action part of this rule will be performed to set the state of blind open. When
physical environment migrates, changes will be monitored and condition of rules
will be reevaluated. Condition of GR4 (Time = daytime ∧Weather = cloudy)
will be evaluated to be true when weather turns into cloudy. Afterwards action part
of GR4 will be performed to configure feature states.

4 User Preferences

On the basis of MAPE loop, we have made two important extensions to support dy-
namic user requirements. One extension is about the integration of user preferences,
and the other is about the evolution of νRules (shown in Figure 8). To integrate
user preferences into MAPE loop, we provide an interface for the users to read and
update. On the other hand, the users could add new rules to the set of νRules, and
validity check will be performed to eliminate conflicts.

4.1 Integration of User Preference

The comprehensive system acts autonomously towards the system goals and assists
the users to reach their preferred states. Since different users do not expect a same
adaptation results, we provide an interface for the users to modify according to their
personal preferences. This modification will be kept to satisfy users, resulting in
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the reconfiguration of some other features. Modification could be performed in two
levels: feature level and architecture level.

4.1.1 Modification in Feature Level

The feature model slice in the adaptation engine, which consists of goal-related fea-
tures and supplementary information, will be provided to users through an interface.
The users can justify whether they are satisfied with the current configuration of
CFMS, and make feature level modification for personal likings. They could change
the state of feature f from S1 to S2 if they prefer (f, S2).

Through the modification, user preferences have been integrated into the re-
configured CFMS. This reconfigured CFMS will be used for further rule-based
adaptation. Our νRules have defined what(C : A) is necessary to keep a state for
the view feature. Therefore, νRules which embed (f, S2) will be activated to keep
the modified status for feature f .

4.1.2 Modification in Architecture Level

Our framework supports user intervention. The users could conduct modification
in architecture level directly, i.e. the position of the blind, the power state of the
appliances and the volume of multimedia devices.

These modification will be traced to modify the state of corresponding features.
If the corresponding feature is not a goal-related one, it won’t cause further modi-
fication. On the other hand, if this feature is a goal-related feature, it will lead to
further reconfiguration and adaptation. First the current CSFM will be reconfigured
through trace and analysis.Then the related nuRules will be activated to maintain
this reconfiguration, guaranteeing that the modification will not be revoked and it is
not at the expense of the collision of other goals.
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4.2 Rule Evolution

At the run time phase, the νRules set does not stay static and it has a possibility of
evolution. Since the incomplete knowledges at design phase, new features might be
discovered and new rules might be added into the νRules set. Our framework has a
good scalability and could well support rules evolution.

For example, there is a νRule in the set.

(R6) airCon.Power = off `{es:+3,tc:−3} Temperature > 27

⇒ Window .State := open

Afterwards, a new feature rainy’ has been discovered on the run-time phase,
and the users add a νRule related to rainy into the νRules set.

(R7) airCon.Power = off `{es:+3,tc:−3} Weather = rainy

⇒ Window .State := close

When the goal es or tc is customized, conflict will arise between the νRules
R6 and R7 . This conflict is caused by the implement information in the condition
part of R6 . Therefore, we modify R6 to add additional condition rainy .

(R6’) airCon.Power = off

`{es:+3,tc:−3} Temperature > 27 ∧Weather = rainy

⇒ Window .State := open

This modification eliminates the conflicts between the two rules. The new
νRule R7 are added into the set, and the old one R6 are updated and become more
reasonable.

5 Threats to Validity

This section discusses some important factors that must be considered in our adap-
tation framework, and potential threats that might affect the validity of our work, as
well as how they are mitigated or accommodated.

5.1 Expressiveness

Threats to expressiveness involves questions of whether our νRule-based adaptation
framework is powerful enough to express any user goal driven adaptation.

The core of the framework is the νRule, which has a well formed structure,
with two interesting properties (i.e., invariant view state for any single rule, and
order-independent between rules) that guarantee against conflicts between rules. It
seems that the properties weaken the expressive power of our framework at first
glance, but actually it is not the case. This is because (1) a complex adaptation rule
can be constructed through combining small and simple rules, due to the structured
characteristic of our νRule, as well as (2) new rules can be added with the rule
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evolution mechanism provided by our framework. The capability of combination
and evolution of rules makes our framework be endowed with powerful expressive
ability.

5.2 Construct

Threats to construct validity involve questions of whether our adaptation framework
has been implemented by using adequate methodology and technology. First of all,
our framework is an enhancement to the traditional MAPE-K loop approach with
the view-update rules as the adaptation knowledge, and the rules can further evolve
over time in response to changes in the operating context and user requirements.
Moreover, our framework employs feature model to modeling and managing the
commonality and variability of the domain under consideration. Feature model,
on one hand, can be easily reconfigured according to different requirements and
also slices according to different goals, and on the other hand, there exist relatively
mature platforms ([9], [15], [16]) to support the product generation from a feature
model configuration.

5.3 Applicability to Practice

We have demonstrated our adaptation framework throughout the paper using the
nontrivial case of smart home system. And we are confident that our framework can
be effective in any systems that can be supported by either MAPE-loop based or
rule-based approaches, though we have not yet tested it with other larger cases in
practice. To mitigate the threats to its applicability, we will further study in the field,
and investigate more systems by equipping them with adaptation capability using
our framework.

6 Related Work

Our idea of view-based adaptation rules was greatly inspired by bidirectional
transformation [17, 18, 19], a new mechanism for synchronizing and maintaining
the consistency of information between input and output. Bidirectional transfor-
mations, originated from the view updating mechanism in the database commu-
nity [20, 21, 22], have been recently attracting a lot of attention from researchers
in the communities of programming languages and software engineering since the
pioneering work of Foster et al. on a combinatorial language for bidirectional tree
transformations [17]. Bidirectional transformations have seen many interesting
applications, including the synchronization of replicated data in different formats
[17], presentation-oriented structured document development [23], interactive user
interface design [24] or coupled software transformation [25]. Different from the
existing approach whose focus is on bidirectionalization of unidirectional transfor-
mation, we have made the first attempt to design simple but powerful view-based
adaptation rules (a single-view bidirectional transformation) for systematically

20



constructing adaptive systems. This is a continuation of our effort in designing a
powerful language to specify intentional update propagation [14].

Dynamic product line and feature models have provided new opportunity to
dynamic adaptive systems. There are already some work in this area.[26] analyses
commonality and differences between software product line and runtime adaptation,
and gives a conclusion that it is feasible to integrate variability management in
both areas. [27] introduces how to utilize parts of SPL infrastructure to adapt at
runtime, and introduce that major uses of SPL in design of self-adaptive system are
variability models and runtime reconfigurations.[12] [5] [13] are three important
works using DSPL ideas to enable self-adaptation. They use feature models as
the variability model and enable runtime reconfiguration. These work fill the gap
between features and architecture by various approaches, including direct link[13],
transformation rule[28], aspect model weaving and common variability language.

A lot of work uses action based rules for runtime analysis and plan ([29], [30]
,[31]), where an adaptation management system is responsible for monitoring events,
evaluating conditions and initiating actions. In a rule-based dynamic adaptation
system, ability to evolution is necessary to handle unanticipated situations and
enhance efficiency. There are mainly two types of evolution including modifying
rules and discovering new system variants. [32] which enable evolution. Our work
could also well support evolution.

Our approaches are based on dynamic software product line technique ([33,
34]) and bidirectional model transformation ([35, 18, 14]) to address these issues.
DPLC has provided new opportunities for self-adaptation cause it has properties of
context-awareness, resource-aware decision-making, permanent service delivery,
and consistent dynamic reconfiguration. There are a few researches applying
DPSL techniques to support self-adaptive systems. Our approach is also based on
dynamic software product line techniques and we have introduced bidirectional
transformation between variability models.

7 Conclusion

In this paper, we propose a systematic view-based adaptation framework for realiz-
ing more programmable and safer self-adaptive system. In our framework, rules are
well structured according to each component by defining how a component state can
be achieved through changes of necessary components. With the help of view-based
approach, it becomes much easier to detect collision and keep rules consistent, and
the detection can be conducted at design-phase statically. In order to ensure that the
adaptation rules can best realize user goals, we tagged goals and impact on νRules
and we use goal models as the input for generation of adaptive engine. We make an
extension to support dynamic user requirements at run-time.

The νRule based framework can be used to support dynamic adaptation. In this
paper, we apply our framework only on smart room systems. We will apply it on
some bigger scenario and combine it with practical software product line in the

21



future.
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