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Abstract. The linguistic (language-based) approach plays an important role in
the development of well-behaved structural bidirectional transformations. It has
been successfully applied to solve the challenging problem of bidirectional trans-
formation on graphs by establishing a clear bidirectional semantics based on a
bulk semantics of the structural recursion. However, this result was limited to un-
ordered graphs, where the order between outgoing edges of nodes is disregarded,
and it was not clear how to treat ordered ones such as XML documents with point-
ers. λFG is a language for querying ordered graphs, in which, a bulk semantics of
structural recursion, extended with children rearrangement capability, is provided
in a unidirectional setting. In this paper, we show that (the first-order subset of)
λFG can be bidirectionalized by a three-stage procedure. The forward evalua-
tion generates a view graph with comprehensive order-aware trace information.
The traceable view enables us to reflect the edits on the view to the updates in
the source by backward evaluation. We adopt a classical notion of ε-edges to
represent the unobservable short cuts between nodes, which are fully utilized in
bidirectionalization to keep the original shape of the input graphs. Thus our bidi-
rectionalization is completed by a novel order-aware bidirectional procedure to
eliminate ε-edges.

1 Introduction

Bidirectional transformations [9,8] provide a graceful mechanism for the synchroniza-
tion and maintenance of the structures and contents in transformations. They are perva-
sive and have many potential applications, including the synchronization of replicated
data in different formats [9], presentation-oriented structured document development,
interactive user interface design [19], coupled software transformation, and the well-
known view updating mechanism which has been intensively studied in the database
community [3,10].

The linguistic (language-based) approach [9] gives us a promising way for the de-
velopment of structured and well-behaved bidirectional transformation, in which ev-
ery expression simultaneously specifies both a forward and the corresponding (correct)
backward transformation, and every composition of expressions defines a structural glu-
ing of smaller bidirectional transformations to a bigger one. Despite its usefulness for
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bidirectional transformation on lists and trees [9,5,18,16,21], it is a challenge to imple-
ment it on graphs. Firstly, unlike lists and trees, there is no unique way of representing,
constructing, or decomposing a general graph, and this requires a more precise def-
inition of equivalence between two graphs. Secondly, graphs have shared nodes and
cycles, which makes both forward and backward evaluation non-trivial; naı̈ve recursive
evaluation for tree structures would visit the same nodes possibly infinitely many times.

In our previous work [14], we tackled the problem by showing that the linguistic
approach can be applied to bidirectional transformation on graphs, where a clear bidi-
rectional semantics is given for UnCAL, a graph algebra of the known graph query
language UnQL [6]. The key to this success is that the bulk semantics of the structural
recursion function is evaluated by first processing in parallel on all edges of the in-
put graph and then combining the results. This bulk semantics relies on ε-edges (short
cuts between nodes like those in automata) to graphs, providing a smart way of treating
shared nodes and cycles in graphs and of tracing back from the view to the source.
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Fig. 1. Ordered Graph Representation of Books

However, the graphs that can be
dealt with in this manner must be un-
ordered, which means the order of out-
going branches of nodes are disregarded.
It has not yet been known, in a bidirec-
tional setting, how to treat ordered graphs
such as XML graphs like that in Figure 1
that represents book data with ordered
sections and mutually cyclic references,
where we would like to extract the dot-
ted part to see outlines of the book, by
selecting first sections (first branches are
rendered in thick arrows) while removing references, and further reflect the updates on
the outline to the original book data. One might consider to encode the ordered graphs in
terms of unordered ones by introducing some special edge labels, but this would make
it difficult to keep consistency of the labels as discussed in [11]. In [11], a transforma-
tion language λFG for ordered graphs is provided, where a bulk semantics to transform
ordered graphs is also given in unidirectional setting. Thus, a natural question is how we
can bidirectionalize transformation on ordered graphs via λFG. However, combination
of [11] and [14] is not straightforward, since λFG not only respects the order of siblings
during transformation, but also rearranges them, like the example above that extracts
only the first sections. The order-aware ε-edge elimination should also be bidirectional-
ized. It is required not only from user interface point of view where users usually do not
directly operate on graphs with ε-edges, but also from theoretical point of view because
ε-edges should be eliminated before every structural recursion in ordered settings to
make structural recursion well-defined [11].

In this paper, we show that the transformation on ordered graphs can be bidirec-
tionalized. An earlier attempt [12] with UnCALO also extended UnCAL. However,
UnCALO cannot rearrange siblings as we do in this paper. Our work is based on a
first-order subset of λFG defined in [11]. As a result, we are able to bidirectionalize
all the examples appeared in [11] that use bulk semantics, as well as the example men-
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tioned in this section. The first-order restriction comes from the fact that we do not have
clear semantics of updates of function-type views. Nevertheless, we lose no expressive
power relative to [14]. Rather, we have refined the condition in which well-behavedness
is guaranteed in the presense of interference between variable bindings, as well as the
strategies of edge-deletion reflections. The main technical contributions are three folds.
First, a novel three-stage bidirectional transformation strategy is designed for ordered
graphs. Next, we establish a bidirectional evaluation semantics for λFG. Finally, we give
an order-aware bidirectionalized procedure to eliminate ε-edges.
Organization of the Paper We shall start from a preliminary on the ordered graph
model and the ordered graph transformation language λFG in Section 2. In Section 3,
we present an overview of our three-stage bidirectionalization, and the properties which
specify the goal of the design. The semantics of forward evaluation enriched with trace
information, and backward evaluation to reflect view updates, are discussed in Sections
4 and 5. Then in Section 6, we present a bidirectionalized procedure for eliminating
ε-edges. Finally, we discuss the related work and make a conclusion in Sections 7 and
8. The completed semantics, proofs and other materials are provided in the Appendix.

2 Preliminaries

2.1 Ordered Graphs

The Graph Model We start with an introduction of the formal definition for ordered
graphs, which is inherited from [11].

We presuppose a finite set L of labels and an abbreviationLε forL∪{ε}. Let X and
Y be finite sets of input and output markers, and we add the prefix & for markers like
&x. An ordered graph G is defined by a triple (V, B, I), where V is a finite set of nodes,
B : V → List(Lε × V + Y) is the total function mapping a node to a list of branches:
a branch in Lε × V + Y is either a labeled edge Edge(l, v) to node v with label l, or
an output marker Outm(&y), and I : X → V is the total function which determines the
input nodes (roots) of the graph.

Example 1. The ordered graph in Figure 2(a), is represented as (V, B, I), where

V = {1, 2, 3, 4, 5, 6}
B = {1 �→ [Edge(ε, 2),Edge(a, 3),Edge(ε, 4)], 2 �→ [Edge(ε, 5)], 3 �→ [],

4 �→ [Edge(a, 3),Edge(b, 6)], 5 �→ [Edge(a, 6)], 6 �→ [Outm(&y)]}
I(&) = 1

We use GX
Y to denote a graph G with an input marker set X and an output marker set

Y. Moreover, we write GX
Y to represent the set of such graphs. Although the graph data

model in [11] also theoretically consider infiniteness of branches, it is sufficient for us
to consider only finite cases.

For input markers, we allow a graph to have multiple roots. When the graph is
single-rooted, we often use & as the default marker to indicate the root and use GY to
denote G{&}Y .
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Proper Branches and Bisimilarity In the definition of ordered graphs, ε-edges are in-
troduced to represent shortcuts between nodes. However, the sequence of ε-edges makes
some observable branches of a node which are reachable from shortcuts implicit, i.e.
we can not get every immediate observable branch of a node without searching through
such sequence. We handle this difficulty by defining the notion of proper branch, which
is a path from a node v, going through zero or more ε-edges until it reaches a non-ε-
edge or an output marker. This notion relates the source and destination of an observable
edge or an output marker.

Let us consider Figure 2(a) in which the list of branches of nodes are drawn in
counter-clockwise order with the first branches marked by thicker lines. Node 1 and

6 are connected by two proper branches (1
ε−→ 2

ε−→ 5
a−→ 6 and 1

ε−→ 4
b−→ 6). However,

such connectivity information does not appear explicitly in the branches before
ε-elimination.
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Fig. 2. Two Equivalent Graphs

Let G = (V, B, I) and v ∈ V . The path
starting from v

v(= v0)
ε−→ i0 v1 . . .

ε−→ in−1 vn−→ in

(v
l−→ i denotes the i-th edge branch (la-

beled l) of node v) is called a proper
branch of v if the in-th branch B(vn).in is
not an ε-edge (either a non-ε edge or an output marker), and all the previous steps are
ε-edges. The set of all proper branches of v in G is denoted by Pb(G, v).

We impose a total order on proper branches. Let us consider two proper branches in
an arbitrary graph, p = (v

ε−→ i0 v1 . . .
ε−→ in−1 vn−→ in ), and p′ = (v

ε−→ i′0 v′1 . . .
ε−→ i′

n′−1
v′n′−→ i′n ).

Let their branch index sequences be p̃
def
= (i0, . . . , in−1, in) and p̃′

def
= (i′0, . . . , i

′
n′−1, i

′
n′ ).

We define p ≤Pb p′
def⇐⇒ p̃ ≤l p̃′ where ≤l is the lexicographical order between branch

index sequences. This order helps us to define a bisimilarity and ε-elimination as natural
extensions of those in unordered setting, as well as to retain the correspondence of
branches within the procedure of bidirectional elimination of ε-edges.

For a given proper branch p, we use p.last to denote the last step of the branch
sequence, which is either a non-ε edge or an output marker.

For the soundness of the graph model, we need an equivalence relation that can
judge whether two arbitrary graphs are the same. Here we use the bisimilarity on or-
dered graphs defined in [11]. For example, the two graphs in Figure 2 are bisimilar, but
not isomorphic. Note that we assume that node 1 is the root node. Thus the bisimilar-
ity equivalence would only respect to the behavior of the parts reachable from node 1
through proper branches. The equivalence relation relates the pair of nodes which has
an order isomorphism on their proper branch index sequence, satisfying that their reach-
able nodes through correspondent proper branches with identical edge label or output
marker, respectively, are also equivalent.
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2.2 The Core λFG

λFG is a language for transforming (querying) ordered graphs. It is an extension of
typed λ-calculus with graph constructors and list functions. It has a powerful feature
of structural recursion, and is capable of manipulating the sibling branches of nodes,
which considerably extends the expressiveness of the language. The syntax of λFG is
given as below, in which we only focus on a graph-related first-order subset.

e� $x | λ$x.e e | (e, e) | prl e | prr e { terms of lambda calculus }
| nil | cons(e, e) | foldr(e, e) | . . . { functions for lists }
| if e then e else e | isEmpty(e) { conditional and emptiness}
| a | e = e { labels (a ∈ L) and label equality }
| [] | e� e | [e : e] | [&y] | &x � e
| () | e ⊕ e | e@e | cycle(e) { graph constructors }
| srec(e, e) e { structural recursion functions}

prl and prr respectively denote left and right projections of pairs.
The graph constructors are introduced in Appendix A, and the type rules are dis-

cussed in Appendix B. The enriched semantics is briefly given in Section 4 and com-
plemented in Appendix C.
Structural Recursion Functions Here we focus on the explanation of structural re-
cursion, which provides a mechanism to describe the queries and transformations that
guarantees termination of the computation and preserves finiteness.

In general a structural recursion is written as a function srec(e, d), where
e : Label × GY → GZ

Z is the body function applied on the labels of labelled edges
and the subgraphs reachable from the edges, and d : List(GZ

Z×α + GZ
Z×Y ) → GZ

Z×α+Z×Y
is a rearrangement function manipulating sibling branches obtained from the body
functions for each node. The output marker type Z × α in the domain of d corresponds
to the output marker branch produced by the body function, where α is instantiated
to node identifier and used to make connections to other fragment of the result
of structural recursion in the bulk semantics. Parametricity implied by α means
programmer of d do not manipulate this output marker. Another output marker type
Z × Y corresponds to the output marker branches of the input graph of srec. Therefore,
the output markers in the result of d are disjoint sum of these output marker types.

1&

2 3 4

&y

1&

&y

4

&y

3 2

(a) (b)

a b c

b a

b d

bd

Fig. 3. Source (a) and view (b) of a2d xc

For an example of d, we consider a simple
case where d = foldr(
, ι
) for some monoid
(
, ι
) on GZ

Z×α(graph type with sets of input
markers Z and output markers Z × α). We
provide a bulk semantics for the evaluation of
structural recursion functions, and its trace-
able forward semantics is given in Section 4.

Example 2. This example shows how to ma-
nipulate edges of the graph and change its shape by structural recursion. As shown
in Figure 3, the following function a2d xc replaces all labels a with d and contracts
c-labeled edges, and reverse the order of the branches of each node. Note that the con-
traction of the edge from Node 1 to Node 4 leads to a shortcut from Node 1 to an output
marker branch.
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a2d xc = srec(rc, foldr(�̂, []))
where x �̂ y = y� x

rc($l, $g) = if $l = a then [d : [&]]
else if $l = c then [&]
else [$l : [&]]

Example 3. The next example removes the branches in the even positions in the siblings
of the root. The d funciton prl ◦(foldr( f , (nil, nil)))) is used to do the selection using
tupling technique [15].

even remove = srec(id, prl(foldr( f , (nil, nil))))
where id($l, $g) = [$l : $g]

f ($x, $xs) = (prr $xs, cons($x, (prl $xs)))

Restrictions on the second argument of srec We restrict the form of the second argu-
ment d of srec into foldr(e1, e2), where e1 and e2 should not necessarily form a monoid.
Even with this restriction, the function d can do rearrangement (i.e., (1) swapping, (2)
selection, (3) replication, (4) constructing new element) of siblings of given nodes by
taking list of sibling graphs and returns another graph. Further graph transformations
in (first-order subset of) λFG on these siblings are also possible. When e1 and e2 are
restricted to monoids, selection of siblings like in Example 3 would not have been pos-
sible. foldr, instead of unbiased fold on join list, is also crucial to achieve order-based
selection like selecting the first element, in order to provide unique decomposition of
sibling graphs.

Example 4. Figure 1 represents books with cyclic references. The following transfor-
mation outline extracts outlines of these books by selecting first sections while remov-
ing references. The transformation returns the subgraph that is rendered with dotted
edges.
outline = srec(λ($l, $g).[$l : fstsection(sections(cutref ($g)))], foldr(�, []))
where cutref = srec(λ($l, $g). if $l = refs then [] else [$l : [&]], foldr(�, []))

sections = srec(λ($l, $g). if $l = section then [$l : $g] else [], foldr(�, []))
fstsection = srec(λ($l, $g).[$l : $g], foldr(prl, []))
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Fig. 4. Illustration of bulk semantics

Bulk Semantics The
structural recursion of
λFG has two equivalent
semantics. One is recur-
sive semantics. It defines
the function behavior
and the program trans-
formation/optimization
recursively. It appears to be
more concise and is useful for reasoning. Another one is bulk semantics. By allowing
ε-edges, we can evaluate a structural recursion in a bulk manner. The bulk semantics
consider the transformation on the whole. It is useful in parallel computation and the
proof of termination and finiteness-preserving property.
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Let us consider a structural recursion srec(e, d). In the bulk semantics, the evalu-
ation on every graph component is applied in parallel. It involves the following three
steps (an enriched formal semantics is presented in Section 4). We shall also revisit
the transformation a2d xc to transform the graph in Figure 3(a) to Figure 3(b). The
corresponding bulk semantics is illustrated in Figure 4.

1. Map computation on edges with e: the function e is applied on each labeled edge
and the following subgraphs, yield a set of intermediate result graphs for e. These
are surrounded by dotted round squares in Fig. 4(a). Results are bundled into list of
graphs for each node of input graphs which are surrounded by dotted round squares
in Fig. 4(b), where output markers are associated with the node id to be connected.

2. Map computation on nodes with d: The above list of graphs are merged by the
rearrangement measure defined in d, leading to a set of merged graphs for each
node. In Figure 4(c), the rearrangement places the output marker branch under node
1 in the first position and edge d in the last position in the siblings.

3. Groups new graphs with ε-edges: to get the final result, the graphs for each node
need to be grouped together by ε-edges. This is depicted in Figure 4(c). The ε-edges
are added according to the input and output markers of the previous result. After
ε-elimination, we the graph in Figure 3(b) is obtained.

3 An Overview of Bidirectional Transformation

3.1 Bidirectional Properties
GS GV

G′VG′S

F [[e]]

update

B[[e]]

Fig. 5. Schema of Bidirectional Transformation

The bidirectionalization of transformation
on ordered graphs is approached by pro-
viding the bidirectional semantics of λFG.
We aim to obtain a semantics that has
bidirectional properties as defined in the
previous work for UnCAL [14]. A whole
picture of bidirectional transformation is
shown in Figure 5. Let F [[e]]ρ denote a
forward evaluation (get) of expression e
under environment ρ containing the source graph GS to produce a view GV , and
B[[e]](ρ,G′V) denote a backward evaluation (put) of expression e under original environ-
ment ρ to reflect a possible modification on the view G′V to the source by computing an
updated environment ρ′, from which the updated source graph G′S could be extracted.
An environment ρ is a mapping with a form {$x �→ X, . . .} where X is a graph G or
a label l, and $x is a variable. The transformation needs to satisfy the following two
important properties (equality stands for exact equivalence here):

F [[e]]ρ = GV

B[[e]](ρ,GV ) = ρ
(GETPUT)

B[[e]](ρ,G′V ) = ρ′F [[e]]ρ′ = G′′V
B[[e]](ρ,G′′V ) = ρ′

(WPUTGET)

The (GETPUT) property states that unchanged view GV should give no change on
the environment ρ in the backward evaluation, while the (WPUTGET) property states
that the modified view G′V and the view G′′V obtained by backward evaluation on G′V
immediately followed by forward evaluation may differ, but both of the views have the
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same effect ρ′ on the original source ρ if backward evaluations are applied on them.
We consider a pair of forward and backward evaluation is well-behaved if it satisfies
(GETPUT) and (WPUTGET) properties.

In general, forward and backward transformations may not be totally defined. In our
language, forward transformation fails if ε-elimination fails, and we have an effective
decision procedure [11]. Backward transformation fails if the update on the view is not
propagable, like update of constant values created in the transformation. See Sections 4
and 5 for more detail on each case of failure.

On our proposed bidirectionalization, we have the following theorem.

Theorem 1 (Well-behavedness). The proposed forward and backward evaluations on
λFG are well-behaved, provided their evaluations succeed.

According to the (WPUTGET) property, given a certain forward evaluation func-
tion, there could be more than one backward evaluation that would satisfy the well-
behavedness property. Moreover, the modifications on the view graph could be catego-
rized into three types: in-place updates (edge-renaming), edge deletion and subgraph
insertion. We select the rational choice for updating the source graph by three princi-
ples: location correspondence to reflect modifications on the corresponding part in the
source, the least change [19] on the set of updating edges, and the monotonicity on the
modification operations (deletion is reflected to deletion, and so on). Henceforth, such
choice could be a prescriptive goal in designing the bidirectional transformation. The
goal is to let the updates on the source most possibly meet the intention of the users for
the change on the view.

3.2 Three-Stage Bidirectionalization

In UnCAL, a two-stage framework is proposed for bidirectionalizing unordered graph
transformation [14], in which during the forward transformation we first apply the eval-
uation with semantics enriched with trace information, then eliminate the ε-edges to
produce a usual view.

The most challenging part of bidirectionalization on λFG comes from the capability
of rearrangement of sibling branches in the structural recursion. It requires a three step
bulk semantics as discussed in Section 2, which makes it more complicated to retain a
consistent trace between the source and view. The original method in [14] is not capable
of handling the sibling transformations. Further, there is a requirement that the structural
recursion with general d function only accepts input graphs without ε-edges to keep
the bisimulation genericity (actually, the presence of ε-edges breaks the bisimulation
genericity, see [11] for a counterexample). Thus, an ε-elimination procedure is essential
before applying the structural recursion for an arbitrary graph. Also, the ε-edge should
be eliminated before it is presented to the end-user. Moreover, the order of the branches
must be recorded during the bidirectional transformation. Our basic idea is to divide the
forward evaluation into three stages, each of which could be bidirectionalized.

– Stage 1: Elimination of ε-edges on the source, to produce a simple source on which
we can apply bulk semantics.
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– Stage 2: Forward evaluation using bulk semantics. This stage may create some
new ε-edges, so that the output graph will have a similar shape to the input graph.
Appropriate trace information might be appended locally on the nodes in the result
graph.

– Stage 3: Elimination of ε-edges to produce a usual view. The method is the same
as that in Stage 1.

In our bidirectional transformation framework, we will propose in Section 6 a gen-
eral bidirectionalized ε-edge elimination procedure for both Stage 1 and Stage 3. For
Stage 2, a bidirectionalized semantics for λFG is provided in Section 4 and 5. Thus, the
whole transformation is bidirectionalized by an inductively defined procedure.

4 Traceable View and Reflection of Inplace-Updates

Practically, a λFG expression usually specifies a forward transformation that maps a
source ordered graph (possibly a database or an XML file) to a view graph, and a back-
ward transformation is the procedure to reflect view updates to the source graph. How-
ever, the structural information kept by ε-edges is implicit in the view graph. Moreover,
the newly constructed parts during transformation can not be traced back in the source.
In this sense, some appropriate trace information (like provenance traces [7]) should be
added to the view, to make the view more informative, in other words, traceable. In this
section, we will enrich the original semantics of λFG to produce a traceable view after
forward transformation.

4.1 Local Trace Information

In our scenario, a view is obtained by evaluating a λFG expression with an ordered
graph. A node in the view graph could be obtained from the source graph, or con-
structed by the λFG expression, or generated by a structural recursion function (in bulk
semantics). To record this lineage of computations, we wrap the tracing information up
in every node locally in the view graph. We define TraceID for every node as

TraceID � SrcID | Code Pos Marker
| RecN Pos TraceID Marker | RecE Pos TraceID TraceID Num
| RecM Pos Marker TraceID Num | RecD Pos TraceID TraceID

where SrcID ranges over the identifiers uniquely assigned to all nodes in the source
graph, Pos ranges over code positions in the λFG expressions, Marker ranges over in-
put/output makers, and Num ranges over the lists of integers, which represent the posi-
tion of the branch among its siblings.

Now we briefly explain the information recorded by each TraceID. SrcID means the
node is generated from the corresponding one in the source. Code p &m is the informa-
tion for the nodes created by the λFG constructor on the code position p, where &m
is used only for constructors involving markers. RecN, RecE, RecM, RecD are four
kinds of trace information used in bidirectionalizing structural recursion srec(e1, d)(e2).
RecN, RecE, RecM represent the node in the intermediate result after e1 is applied,
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which are generated from the nodes/non-marker branches/output marker branches re-
spectively, and RecD information is added when the rearrangements on the lists of sib-
lings are applied by d. RecN p v &m denotes a node originated from node v generated
by e2 for component &m (each component of mutually recursive functions are encoded
by a marker), and it corresponds to nodes ©1 through ©4 in Figure 4. RecE p v w i de-
notes a node originated from node w generated by e1, which in turn is generated by i-th
branch of node v generated by e2, and node w corresponds to the nodes drawn with small
circles in the round dotted squares except the one on the right bottom of Figure 4(a).
RecM p &m v i denotes a node originated from i-th marker (&m) branch of node v gener-
ated by e2, and corresponds to the nodes drawn with small circles in the dotted squares
on the right bottom of Figure 4(a). and RecD p v w denotes a node originated from
node v generated by the function d applied on node w, where the node w(∈ TraceID) is
marked by RecN and identifies the list appeared in that d function. RecD constructor
is applied to the nodes drawn with small circles in Figure 4(b) and (c).

4.2 Enriched Bidirectional Semantics and the Reflection of Inplace-updates

Now we proceed to define the enriched forward semantics of λFG which generates a
traceable view. Compared with the original semantics [11] of λFG, the trace informa-
tion is recorded whenever a node is created by the forward transformation. For each
expression, we define its backward evaluation reflecting the inplace-update. We adopt
the notion of code position to specify the expression which creates new graph elements.
Let ep denote a λFG subexpression e at code position p. We write ρ($x) for G when
($x �→ G) ∈ ρ, and eρ applies the variable substitution using ρ in the expression e.
We only give the semantics for some representative expressions here, and complete
with the remaining operators in Appendix C D. Moreover, the well-behavedness of the
semantics is discussed in Appendix F

In order to merge the updated environment computed by the backward evaluation,
we introduce a merge operator [14].

ρ1 
ρ ρ2 =

(x �→ mg(G,G1,G2)

∣∣∣∣∣∣∣∣
(x �→ G1) ∈ ρ1

(x �→ G) ∈ ρ
(x �→ G2) ∈ ρ2


where mg(G,G1,G2) =


G1 if G2 = G ∨G1 = G2
G2 if G1 = G
FAIL otherwise

The operator 
ρ unifies environments on both hand sides (ρ1 and ρ2) updated relative
to original environment ρ. For each variable x, if only one binding is updated, or both
bindings are updated consistently, then the updated binding is adopted. Otherwise, the
unification of inconsistent updates fails.
Graph Constructor Expressions The functions of graph constructor expressions are
illustrated in Appendix A. For instance, the enriched forward semantics of single node
graph constructor at code position p is (see also Figure 6(a)),

F [[[]p]]ρ = ({Code p}, {Code p �→ []}, {& �→ Code p}).
Note that the code position is recorded as a TraceID, which infers that it is generated
by the expression at position p.
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Code p&

F [[[]p]]ρ F [[(e1 � e2)p]]ρ

Code p&x1

&x1

Code p&xm

&xm

F [[e1]]ρ F [[e2]]ρ

. . .

. . .

(a) (b)

Fig. 6. F [[[]p]]ρ and F [[(e1 � e2)p]]ρ

As its forward evaluation only generates a constant graph, in the backward evalua-
tion, no modification is accepted on the view. The backward semantics is defined as:

B[[[]p]](ρ,G′) = ρ if G′ = F [[[]p]]ρ FAIL otherwise

Here, the parameter ρ is the original environment and G′ is the updated view. We
simply require that G′ is equal to the result of forward evaluation on ρ. Thus the well-
behavedness property is guaranteed whenever the backward evaluation succeeds.

For another example, the enriched forward semantics of the expression e1 � e2 is
defined as follows (see also Figure 6(b)).
F [[(e1 � e2)p]]ρ = F [[e1]]ρ �p F [[e2]]ρ

where G1 �
p G2 = (V1 ∪ V2 ∪ V ′, B1 ∪ B2 ∪ B′, I′)

(V1, B1, I1) = G1

(V2, B2, I2) = G2
M = inMarker(G1) = inMarker(G2)
V ′ = {Code p &m | &m ∈ M}
B′ = {Code p &m �→ [Edge(ε, I1(&m)),Edge(ε, I2(&m))] | &m ∈ M}
I′ = {&m �→ Code p &m | &m ∈ M}

where �p is a union operator for two graphs concerning position p. We write
inMarker(G) and outMarker(G) to denote the set of input and output markers in a
graph G, respectively.

For its backward evaluation, we first decompose the updated graph G′ and ap-
ply backward transformation on each of the subexpressions e1 and e2 using the frag-
ment graphs. We have the following definition, given decompG1�G2

(G′) defined in Ap-
pendix D as the decomposition of the graph G′, then

B[[(e1 � e2)p]](ρ,G′) =B[[e1]](ρ,G′1) 
ρ B[[e2]](ρ,G′2)
where G1 = F [[e1]]ρ, G2 = F [[e2]]ρ (G′1,G

′
2) = decompG1�pG2

(G′)
Variables The query of ordered graph via λFG requires lambda abstraction and variable
reference. The forward semantics for variable reference looks up the variable in the
environment ρ and returns its binding.

F [[($v)p]]ρ = ρ($v)



12

For an inplace-update, a variable simply updates its bindings as B[[$v]](ρ,G′) =
ρ[$v← G′]. Here, ρ[$v← G′] is an abbreviation for (ρ \ {$v �→ }) ∪ {$v �→ G′}.
Condition The forward semantics of a condition is defined as

F [[(if e1 then e2 else e3)p]]ρ =
{

F [[e2]]ρ if F [[e1]]ρ
F [[e3]]ρ otherwise

It first evaluates the conditional expression e1, and it chooses the right branch to evaluate
according to the result of the conditional expression.

And the procedure of its backward evaluation is defined by

B

[[
if e1 then e2

else e3

]]
(ρ,G′) =



ρ′2 if F [[e1]]ρ ∧F [[e1]]ρ′′2 , where ρ′2 = B[[e2]](ρ,G′)
ρ′′2 = pr(ρ′2, utrans(upd∆, t

′
1))

t′1 = external trace for e1 (see Section F)
ρ′3 if ¬F [[e1]]ρ ∧ ¬F [[e1]]ρ′′3 , where ρ′3 =B[[e3]](ρ,G′)

ρ′′3 = pr(ρ′3, utrans(upd∆, t′2))
t′2 = external trace for e2

FAIL otherwise

It is reduced to the backward evaluation of e2 if e1 holds, and to the backward evaluation
of e3 otherwise. To guarantee well-behavedness, we further ensure that the boolean
expression e1 does not change after backward evaluation. Because the result of e1 may
be influenced indirectly by backward evaluation of the bodies e2 and e3, if they update
variable bindings, and the values of variables in the condition are produced from the
updated bindings. It is essential to check the value of the condition with the new binding
of variables. To compute the influence, we separately compute, for every expression, the
mapping from every edge produced by the expression, to the corresponding edge in the
source graph (if the view edge is originated from the edge in the source graph), and use
these mappings to reflect (top-level) view updates to the edges bound to free variables
in e1. It is achieved by a mechanism similar to the classification of view edges used in
[13]. See equation BIf in Appendix F for the detailed description.

1 GE1,(1) GE1,(2) GE1,(3)

2 GE2,(1)

3 GE3,(1)

4 GM4,(1)

RecE 1 1 (1)&m

RecE 2 1 (1)

(&m,RecN 2)

RecM &y 4 (1)&m

(&m, y)
RecN 1(&m, &y)

RecN 4 RecN 3 RecN 2

GE1,(2) GE1,(1)

GE2,(1)GE3,(1)

GM4,(1) GE1,(3)

(a)
(b)

(c)(d)

d

Fig. 7. Forward Evaluation of Bulk Semantics

Structural Recursion Figure 7
illustrates an overview of bidi-
rectionalization of structural re-
cursion functions. It applies the
transformation in Example 2 to
the source graph in Figure 3(a)
to get a view graph in Fig-
ure 3(b). For simplicity, we omit
code positions in these figures.
As shown in Figure 7(a), the
forward evaluation first applies
edge mapping using body ex-
pression eb which is rc, and re-
sults in a mapping from every
node to a list of subgraphs. Two
of these subgraphs are shown in Figure 7(b) and (c), which are corresponding to the
results of a labelled edge and an output marker, respectively. The lists rearrangement
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and merging with ε-edges are illustrated in Figure 7(d). Finally, the view graph in
Figure 3(b) is obtained by an ε-elimination procedure.

An overview of the forward evaluation is given below. Note that the functions
EMap, DMap and Merge are defined for edge mapping eb, list mapping d and view
construction respectively.
F [[(srecZ(eb, d)(ea))p]]ρ = (g′)

where g′ = Merge(g.V, BDMap, g.I) g =F [[ea]]ρ
EMap(B) = {u �→ BMap(x) | (u �→ x) ∈ B}

BMap(x) =




ELable(F [[eb]]ρ′ , v, u, i) b = Edge(l, v)

ρ′ = ρ ∪ {$l �→ l, $g �→ g|v}
(MLabel(&y, u, i)) b = Outm(&y)

∣∣∣∣∣∣∣∣∣∣
(b, i) ∈L x


DMap(B) = {u �→ (λg.DLabel(g, u))F [[d]]ρ∪{$b�→x} | (u �→ x) ∈ B}
BDMap = DMap(EMap(g.B))

[e | (x, i) ∈L l] def
= [e | x = l.i]i∈|l|

Backward evaluation of a structural recursion function is defined by the fol-
lowing stepwise procedure. It performs an inverse procedure of the forward
evaluation. The most crucial point is to decompose the updated view graphs
and to remove the ε-edges generated during the forward evaluation using trace
information. Further, when we merge the updated environment, we first merge
local updates on environments of body expressions, and then merge them to
the whole updated environment. Since there might be overlapped parts among
them, we let the backward evaluation fail if the overlapped parts are inconsistent.
B[[srec(eb, d)(ea)]](ρ,G′srec) = B[[ea]](ρ,G′) 
ρ ⊎{ρ′v,i \ {$l �→ } \ {$g �→ }}

where (Vsrc, Bsrc, Isrc) =F [[ea]]ρ, (V ′srec, B
′
srec, I

′
srec) = G′srec

G′ = (V ′ ∪⋃ ρ′v,i($g).V, B′ ∪⋃ ρ′v,i($g).B, Isrc)
V ′ = {v | (v �→ s) ∈ B′} ∪ {w | Edge(l,w) ∈ s, (v �→ s) ∈ B′}
B′ = EMap′(B′EMap) = EMap′(DMap′(Merge′(G′srec)))
Merge′(G′) = {u �→ (VMerge′(G′.V, u),BMerge′(G′.B, u), IMerge′(G′.B, u)) | u ∈ Vsrc}
DMap′(B′DMap) = {u �→ B[[d]](ρu,DLabel′(B′Dmap(u)))($b) | u ∈ V}
EMap′(B′EMap) = {u �→ [emapB′(u, b, i)|(b, i) ∈L x

] | (u �→ x) ∈ B′EMap}

emapB′(u, b, i) =


Edge(ρ′u,i($l), ρ′u,i($g).I(&))

where ρ′u,i = B[[eb]](ρu,i,ELabel′(Gu,i))
(b, i) = (GEu,i , i)

MLabel′(GMu,i ) (b, i) = (GMu,i , i)
We put the complete semantics for the bidirectional transformation of structural re-

cursion functions in Appendix CD, where the detailed explanation of every subfunction
can be found.

5 Reflection to Deletion and Insertion

A node in the view graph is either originated from a node in the source graph, or gen-
erated by the query (graph constructor or structural recursion function). Using the trace
information generated by enriched forward evaluation, we are able to figure out its ori-
gin. In this section, we categorize backward evaluation algorithms by the types of view
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updates: (1) edge-renaming (in-place updates), (2) edge-deletion, and (3) insertion of
edges or a subgraph rooted at a node. We already have dealt with the first case in Sec-
tion 4. In this section, we proceed to reflect the other two types of updates.

5.1 Reflection of Edge Deletion

Similarly to the method in our previous work in [14], we reflect deletion of an edge
in the view as deletion of corresponding edge in the source utilizing the information
within TraceIDs. Here we identify an edge in the view by a tuple of its origin node and
branch order.

The function corr defined below computes a corresponding edge of an edge in the
view as a tuple of origin node ID and its branch order in the source.

corr((u, i)) = (u, i) if u ∈ SrcID corr((RecE p u v i, j)) =
{

corr((u, j))if corr((u, j)) � FAIL
corr((v, i))if corr((u, j)) = FAIL

corr((RecD p u v, j)) = corr((u, j)) corr(ζ) = FAIL otherwise
FAIL means failure in finding the corresponding edge. Also note that for the RecE-
labeled branches, we choose the corresponding edge from the body expression of struc-
tural recursion first, rather than from the argument expression, to make the change to
the new view created by the next forward transformation smaller (we later discuss as
the principle of least change [19]). When the tracing hits the edge created by the query
(the TraceID must be of the form Code), the evaluation fails. Moreover, the user would
be informed of such invalid deletion.

Note that only non-ε edges are allowed to be deleted in the view. Thus, a node with
trace information RecN or RecM never appears as an argument of corr.

Suppose the user deletes one edge, say (u, i) on the view graph GV . We can get
one corresponding edge on the source corr((u, i)). In fact, multiple edges from the view
GV might have the same value on corr with (u, i). Let Du,i = {(v, j) | corr((v, j)) =
corr((u, i))}. The set is computed by an enumeration on all the edges in GV . We adopt
G′V = GV − Du,i as the updated view.

The failure of the computation corr((u, i)) results in the failure of backward evalua-
tion. Otherwise, we compute the updated source G′S by removal of corr((u, i)) in GS . As
mentioned in Section 2.1, we use a list of integers as the branch order, which forms a
total order. Thus the relative position of the following (sibling) branches will not change
if we delete one edge.

Finally, we return ρ′ = ρ[$g → G′S ], if F [[e]]ρ′ = G′V , or failure otherwise. One of
the cases of failure here is that, the deletion of corr((u, i)) in GS changes the value of
boolean expressions during evaluation of some condition clauses. It would change the
evaluation into the other branch in such condition clauses, which is invalid according
to our assumption that the value of boolean expressions are invariant during the view up-
dates.

srec((λ($l, $g).
if $l=a then srec((λ($l, $g).

if $l=b then $db
else []), id)($db)

else []), id)($db)

Another case of the violation of (WPUTGET)
can be demonstrated as follows. For the query
on the right, suppose we have graph [a, b, c]
and remove a on the view. Then we trace back
the edge a and delete a on the source. How-
ever, another forward transformation will result in an empty graph. Backward transfor-
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mation on that empty view will result in an empty source graph. Therefore, (WPUT-
GET) is not satisfied. The checking rules out these cases. For the successful case, a
query srec((λ($l, $g). if $l=a then $g else []), id)($db) with the same input graph will
extract subgraph under edge labeled a, i.e., [b, c]. Then the deletion of c succeeds. The
trace-based approach is unable to detect the change of reachability or boolean values
caused by edge deletion. Nevertheless, such failures are distinguished from invalid up-
dates on the query (which could be detected by the corr function). A compromise to
detect such failures is to use a final check to conclude the failure of evaluation.

Hence, the (WPUTGET) property is straightforward (actually we are imposing
stronger (PUTGET) property) from our final check, which leads to the well-
behavedness. A natural question is to avoid the final check and the failure of evaluation.
To do so, we provide an alternative solution with more refined semantics as well as a
more detailed case study on the user’s intention of updates in Appendix E.

5.2 Reflection of Subgraph Insertion

The method used in previous work of handling insertion in unordered graph [14] can be
adopted here.

The insertion operation on the view is specified by a triple of a node v on the view
and the position i where a graph is inserted, and the inserted graph Gvins. Then we first
compute the corresponding source node u at which insertion of corresponding subgraph
Gsins takes place, by the following function tr.

tr(SrcID) = SrcID tr(RecN v ) = tr(v) tr(Code ) = FAIL
tr(RecE v ) = tr(v) tr(RecD v ) = tr(v) tr(RecM ) = FAIL

We find a graph Gsins connected to u and the corresponding position j at which Gsins

is connected, by inversion computation on G′V using the Universal Resolving Algorithm
(URA) [1], where G′V is obtained by adding ε-edge from v at position i to Gvins. Further,
we conjecture that well-behavedness of the above insertion reflection can be directly
derived from the soundness of URA.

6 Bidirectionalizing ε-Elimination Procedure

The idea of the ε-elimination procedure is to substitute the shortcuts within proper
branches with new labeled edges. As mentioned in Section 2.1, we use a list of inte-
gers as a total order over proper branches on a node, so we are able to access one of the
branches from the list by a list of integers (denoted p̃ below) rather than a single integer.

For a graph G = (V, B, I) ∈ GX
Y , the ε-elimination ε-elim(G) of G gets a graph

(V, B′, I) ∈ GX
Y . We let |B′(v)| def

= |Pb(G, v)|, and B′(v). p̃
def
= Pb(G, v). p̃.last, where

Pb(G, v). p̃ is a proper branch p = (v
ε−→ i0 . . . vn−→ in ) in B′(v). Note that this procedure

could fail. Since if there are some ε-edge cycles, it would lead to infinite number of
proper branches, as mentioned in [11]. We use the effective procedure in [11] to decide
the eliminability of ε-edges.

Next we will introduce a mechanism to reflect view updates over GV = ε-elim(GS )
to the source graph GS . We make use of the correspondence between the proper
branches in the source graph GS and the new branches in the view graph GV .
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1. For the in-place updates on an arbitrary edge B′(v). p̃ ∈ GV , the corresponding
labeled edge on the source is Pb(GS , v). p̃.last. We just apply the same in-place
update operation on this edge.

2. For the deletion of an edge B′(v). p̃ ∈ GV , we update the source graph by deleting
the corresponding edge Pb(GS , v). p̃.last.

3. For the edge insertion, since the set of nodes V is the same on the view and the
source, we just need to insert the edge to the same location on the source.

After we have done the update operation on the source, an ε-elimination procedure
need to be applied again on the updated source. The reason is that, the updated labeled
edge may be duplicated in different branches in the view. For example, in Figure 2, (b)
is the graph obtained by ε-elim from (a). The a-labeled edge from nodes 5 to 6 in (a)
is related with three a-labeled edges, respectively from node 1, 2 and 5 to node 6 in
(b). In case one of them is deleted, we need to delete the rest to retain the consistency.
Thus, the corresponding edges of these proper branches on the view graph need to be
updated to maintain the consistency between the source and the view. Therefore, the
whole procedure would satisfy the well-behavedness. Moreover, three principles for
rational updates in Section 3.1 are also implied from this constructive bidirectionalizing
procedure.

7 Related Work

In the database community, bidirectional transformation has been discussed as view
updating problem. Bancilhon and Spyratos proposed a general approach to this problem
in [3]. The method was to define a constant complement view, from which the original
database can be computed with the correlated information in the user-defined view. This
method was applied to relational databases [10,17], as well as tree structures [18]. The
constant complement view satisfies a very strong bidirectional properties at the sacrifice
of the number of reflectable updates. It was too strong for our purpose, i.e., model
transformation in software engineering, despite some particular applications [10]. A lot
of linguistic approaches in the area of programming languages was proposed [8,9,5]
for strings, trees and relational databases. However, they are difficult to be applied on
graphs models due to the cycles and sharing nodes in graphs. In the context of software
engineering, there has been several works on bidirectional (graph) transformation, one
of the representative methods is the triple graphs grammars [20], which is powerful in
graph transformation, however still not implemented on ordered graphs.

Another strongly related concept is structural recursion, which has been studied in
the database and functional programming communities. It was adopted by graph trans-
formations in UnCAL [6]. UnCAL enjoys many nice properties, including treating
graphs as regular trees via bisimulation equivalence, functional style programming and
reasoning, and termination property. Further, UnCAL [6] was separately extended to (1)
give bidirectional semantics through traces [14], and to (2) introduce order among out-
going branches of a node (and thus order-aware bisimulation was also introduced), rear-
ranging transformation of these sibling branches within structural recursion, and higher
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order function [11], while keeping all the UnCAL features. The present work joins 3 the
above two research lines – bidirectionalization from [14] and order introduction from
[11]. However, this is not just a simple combination. In [14], we reused the Skolem
terms in the bulk semantics for trace information to decompose target graphs, and two-
stage bidirectionalization enabled to defer all the ε elimination at the end of the entire
forward transformation. However, when sibling transformation is introduced in [11], to
keep the structural recursion well-defined, ε have to be eliminated for every structural
recursion application, which means we can no longer use two-stage bidirectionalization
strategy. Therefore our bidirectional ε elimination is inserted along with every structural
recursion application. Also, [14] did not discuss the diversity in the backward transfor-
mation reflection strategy as we did with respect to least-change principles [19], in
particular, in the edge-deletion handling. Moreover, [14] did not have clear condition
to keep WPutGet property in relation to branching behavior change, while we clarified
using the classification of edges similarly to that in [13]. With respect to [11], higher or-
der transformation was dropped, because we do not have clear semantics of the updates
on functional values. We lose no expressive power relative to[14].

With respect to the notion of traces, apart from general studies like provenance
traces [7], self-adjusting computation by Acar et al. [2] also leaves traces during com-
putation, to make the recomputation with slightly modified input efficient, utilizing the
locality of the modification. Dynamic dependency graph is used to record the depen-
dencies among data and computations. In the present paper, we also leave trace dur-
ing forward computation. Although our trace IDs are natural extensions of the Skolem
functions, we could also consider them as run-time relation between operations and
data, because we associate the code position of the operators with the edges and nodes
in the arguments of the Skolem functions. However, we propagate the changes in the
opposite direction, from output to input. Therefore we would not be able to reuse the
same technique, at least in a direct manner. However, as we mention in the conclusion,
with pure trace approach, we could have propagated changes directly through mapping
between source and target edges, with branching behavior change checking. Then our
approach would become closer to the self-adjusting computation approach in the sense
that trace is used to exploit locality. Instead, we currently reverse all the computation
regardless of the presence of the modification.

Handling ordered structure in the bidirectional transformation has been studied ex-
tensively through lenses [9], later improved to deal with rearranging updates through
dictionary lenses [5] with key-based alignments, and the alignment strategies were gen-
eralized through matching lenses [4]. Although we support rearranging by the trans-
formation, our update is operation based, so update should always be decomposed into
edge renaming, edge deletion and subgraph insertion. Rearranging update cannot be fed
to our backward transformation directly.

3 Earlier attempt can be found in [12] as bidirectional language UnCALO. However, sibling
transformation was not considered.
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8 Conclusion

In this paper, we bidirectionalized transformation on ordered graphs, in which a three-
stage bidirectionalizing strategy is provided. With trace-enriched semantics, we are able
to reflect three kinds of view updates: inplace updates, edge deletion and subgraph
insertion. In future work, we plan a practical implementation. Also, we would like to
utilize the externalized traces defined in Appendix F that directly maps between source
and target edges/nodes for reflecting other than inplace updates.

Acknowledgement. We thank the authors of the paper [12] on which our present work
is built. We also thank Prof. Zhenjiang Hu for his valuable comments and suggestions.
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A Graph Constructors

[] [a : G]
G

a 
G

&x := G

&x

()

&x1 ... &xk

&y1 ... &yn

&x’1 ... &x’m

&y1 ... &yn

G1 G2

G1 G2 G1@G2

&x1 ... &xk

&y1 ... &ym
G1

&z1 ... &zn

&y1 ... &ym

G2

ε ε

cycle (G)

&x1 ... &xm

&x1 ... &xm

ε ε

G

[&y]

&y

G1 ++ G2

G1 G2

&x1 ... &xm

&y1 ... &yn

Fig. 8. Graph Constructors

We have nine graph constructors (Figure 8) as the operators to construct ordered
graphs inductively.

G� [] { single node graph }
| G1 �G2 { graph concatenation }
| [a : G] { an edge pointing to a graph }
| [&y] { a node graph with

output marker }
| &x � G { label the root node with an

input marker }
| () { empty graph }
| G1 ⊕G2 { disjoint graph union }
| G1 @ G2 { append of two graphs }
| cycle(G) { graph with cycles }

The single node graph constructor [] constructs a root-only graph. G1 � G2 joins two
graphs by connecting every pair of roots from G1 and G2 to a new root with ε-edges.
[a : G] adds an a labeled edge pointing to the root of G. [&y] constructs a single node
graph with an output marker &y. &x � G associates an input marker &x to the root node
of G. () constructs an empty graph with neither a node nor an edge. G1 ⊕ G2 joins two
graphs by using a componentwise (V, B, I) union. Note that � unifies input nodes while
⊕ does not. G1 @ G2 joins two graphs by connecting the output marker branches of G1

with the corresponding input nodes of G2 with ε edges. cycle(G) connects the output
marker branches of G with the corresponding input nodes with ε edges, which would
form cycles.

For the set of input nodes of constructed graphs, the set of input markers of G1 and
G2 in G1 � G2 should coincide, and matching input nodes are bundled with ε edges.
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Whereas the set of input markers of G1 and G2 in G1 ⊕G2 are disjoint, and their union
becomes the new set of input markers. For G1 @G2, the input nodes of the first operand
becomes the new input nodes and the input nodes of the second operands are connected
with the output marker branches if exists.

B Type Definition and Typing Rules of λFG

The type definition in λFG is given as follows:

σ� σ→ σ | σ + σ | σ × σ { function, coproduct, product types }
| List(σ) | Bool { list and boolean types }
| Label | GX

Y { label and graph types }
The typing rules for graph-related expressions in λFG are given as follows:

(a ∈ L)
� a : Label

� e1 : Label � e2 : Label
� e1 = e2 : Bool

� [] : GY

� e1 : GX
Y � e2 : GX

Y

� e1 � e2 : GX
Y

� e1 : Label � e2 : GY

� [e1 : e2] : GY

(&y ∈ Y)
� [&y] : GY

� e : GY

� &x � e : G{&x}
Y

� () : G∅Y
� e1 : GX1

Y � e2 : GX2
Y (X1 ∩ X2 = ∅)

� e1 ⊕ e2 : GX1∪X2
Y

� e1 : GX
Y � e2 : GY

Z

� e1@e2 : GX
Z

� e : GX
X∪Y(X ∩ Y = ∅)

� cycle(e) : GX
Y

� e : GX
Y

� isEmpty(e) : Bool
� e : Label ×GY → GZ

Z � d : List(GZ
Z×α +GZ

Z×Y )→ GZ
Z×α+Z×Y

� srec(e, d) : GX
Y → GZ×X

Z×Y
We have omitted the rules for lambda terms, which are standard. Note that for rules

like e1 � e2, we do not require the output markers of e1 and e2 to be identical. Here, we
just choose a set Y, which is a superset of the set of output markers of both expressions.
Moreover, for rules like [], there is exactly the default marker & in the set X, which is
why it is not mentioned.

C Formal Semantics of Traceable Forward Evaluation

In this section we present the complete semantics of traceable forward evaluation that
generates traceable views, in a similar way to the semantics of UnCALO[12]. The for-
ward semantics F [[ep]]ρ for a λFG expression e and a variable binding environment ρ
is inductively defined on the structure of e. We complete the semantics for λFG here
together with the contents in Section 4.

In addition, we replace the composition of markers in X × Z by a monoid (., &),
with & as the identity, i.e., &.&x = &x.& = &x. The associativity of the monoid structure
is needed here. In particular, we let {&}.Z = Z.{&} = Z for any Z, and we call “.” the
Skolem function.
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Graph Constructors Expressions

The enriched forward semantics of the expression e1 � e2 is defined as below. Note
that � retains the order of the new branches when they link the input nodes.

F [[(e1 � e2)p]]ρ = F [[e1]]ρ �p F [[e2]]ρ
where G1 �

p G2 = (V1 ∪ V2 ∪ V ′, B1 ∪ B2 ∪ B′, I′)
(V1, B1, I1) = G1, (V2, B2, I2) = G2

M = inMarker(G1) = inMarker(G2)
V ′ = {Code p &m | &m ∈ M}
B′ = {Code p &m �→ [Edge(ε, I1(&m)),Edge(ε, I2(&m))] | &m ∈ M}
I′ = {&m �→ Code p &m | &m ∈ M}

where �p is a union operator for two graphs concerning position p. We write
inMarker(G) and outMarker(G) to denote the set of input and output markers in a
graph G, respectively.

e1 ⊕ e2 is a componentwise union operator like �, except that no ε-edges are involved
to concatenate two subgraphs.

F [[(e1 ⊕ e2)p]]ρ = F [[e1]]ρ ⊕F [[e2]]ρ
where G1 ⊕G2 = (V1 ∪ V2, B1 ∪ B2, I1 ∪ I2)

(V1, B1, I1) = G1; (V2, B2, I2) = G2

The forward semantics for the empty graph constructor and the constant marker
graph are defined as follows.

F [[()p]]ρ = ({}, {}, {})
F [[[&m]p]]ρ = ({Code p}, {Code p �→ [Outm(&m)]}, {& �→ Code p})

The next two constructors prepend labeled edges and markers with a graph respec-
tively.

F [[[l : e]p]]ρ = ({Code p} ∪ V, {Code p �→ [Edge(lρ, I(&))]} ∪ B, {& �→ Code p})
where (V, B, I) =F [[e]]ρ

F [[(&m � e)p]]ρ = (&m � F [[e]]ρ)
where (&m � G) = (V, B, I′)

(V, B, I) = G
I′ = {&m.&x �→ v | (&x �→ v) ∈ I}

Here “.” is the Skolem function introduced before.

e1 @ e2 appends two graphs by connecting the output marker branches of the left
operand and corresponding input nodes of the right operand with ε-edges.

F [[(e1 @ e2)p]]ρ = F [[e1]]ρ @p F [[e2]]ρ
where G1 @p G2 = (V1 ∪ V2, B′1 ∪ B2, I1)

(V1, B1, I1) = G1, (V2, B2, I2) = G2

B′1 = {u �→
[

x.i = Edge(l, v) ⇒ x.i
= Outm(&m) ⇒ Edge(ε, I2(&m))

]
i∈|x|
| (u �→ x) ∈ B1}

cycle(e) links the output marker branches with the corresponding input nodes of a
graphs with ε-edges and forms a cycle, and its forward semantics is defined as follows.
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F [[(cycle(e))p]]ρ = cyclep(F [[e]]ρ)
where cyclep(G) = (V, B′, I)

(V, B, I) = G
B′ = {u �→ b(x) | (u �→ x) ∈ B}

b(x) =


s = Edge(l, v)⇒ s
= Outm(&m) ∧ &m ∈ dom(I)⇒ Edge(ε, I(&m))
= Outm(&m) ∧ &m � dom(I)⇒ s

∣∣∣∣∣∣∣∣ s ∈ x


Labels In λFG the types of labels and boolean values are formally declared. The forward
semantics for label and label equality are

F [[ap]]ρ = aρ (a ∈ L)
F [[(l1 = l2)p]]ρ = l1ρ = l2ρ

Emptiness Checking The forward semantics of emptiness checking function is defined
as

F [[(isEmpty(e))p]]ρ = isEmpty(F [[e]]ρ)
Function on Lists There is a formal method for bidirectional transformation on lists [9],
so we will not include the details.
λ Expressions We restrict the occurrence of λ expressions only to applied forms, so
the forward semantics of the application is determined by the forward semantics of e1
with environment extended with the bindings using the result of the forward evaluation
of e2. We allow tuple patterns in the arguments to cope with functions taking multiple
arguments like �̂ = λ($x, $y).$y� $x in Example 2.

F [[(λ($x1, .., $xn).e1 e2)p]]ρ =F [[e1]]ρ′
where v1, .., vn = F [[e2]]ρ

ρ′ = ρ ∪ {$x1 �→ v1} ∪ ... ∪ {$xn �→ vn}
We provide the semantics only for occurrences in applied forms.

Products As mentioned in Section 4, it is also essential to define the forward semantics
of products of expressions.

F [[(e1, e2)p]]ρ = (F [[e1]]ρ,F [[e2]]ρ)
Projections prl and prr are syntactic sugars of λ($x, $y).$x and λ($x, $y).$y and the
semantics are provided through that of λ expression.
foldr Forward semantics of foldr is standard, while backward semantics decompose the
view based on the binary operators 
 to feed the backward evaluation of e and ea.

 ∈ {�,@, cons,}
F [[foldr(
, e)(ea)]]ρ = f l
where l = F [[ea]]ρ

f nil = F [[e]]ρ
f cons(x, xs) = x 
 ( f xs)

Structural Recursion The forward semantics of a structural recursion in λFG is for-
mally given by bulk semantics.

To have a clear insight of the bulk semantics of structural recursion function, we
recall the type rules for all component.

eb : Label×GY → GZ
Z , d : List(GZ

Z×α+GZ
Z×Y )→ GZ

Z×α+Z×Y . F [[(srec(eb, d)(ea))p]]ρ =
Gsrec is a GX

Y → GZ×X
Z×Y function

where Gsrc = F [[ea]]ρ, Z = inMarker(eb)
(Vsrc, Bsrc, Isrc) = Gsrc (Gsrc has no ε-edges),
G|v = (Vsrc, Bsrc, {& �→ v})
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It can be formally defined by three stages. For bisimulation genericity, we require that
the input graph in this stage has no ε-edges (this is guaranteed by an ε-elimination
procedure stated in Section 6).

The forward evaluation does the following mapping operation: Bsrc → BEMap →
BDMap → Gsrec, which are implemented by EMap, DMap and Merge.

1. First apply edge mappings using eb. The edge mapping function
EMap : (V→ List(Label × V + Y))→ (V→ List(GZ

Z×V +GZ
Z×Y )) is defined by

EMap(Bsrc) = BEMap, where :

BEMap = {u �→


x.i = Edge(l, v)⇒ ELabel(F [[eb]]ρu,i, v, u, i)
ρu,i = ρ ∪ {$l �→ l, $g �→ G|v}
x.i = Outm(&y)⇒ Mlabel(&y, u, i)


i∈|x|
| (u �→ x) ∈ Bsrc}

BEMap collects the set of branches resulted from the forward evaluation of eb in
each sub-environment ρu,i and annotate each resulted branches with some trace in-
formation. The sub-environment ρu,i is extended by adding the label l and v-rooted
subgraph G|v.
The branches are annotated by either ELabel or Mlabel, for edge or marker
branches respectively.
ELabel : GZ

Z×V×V×Num → GZ
Z×V adds the trace information RecE to a subgraph

G resulted from eb. Note that a pair (u, i) uniquely identifies an edge in the source
graph.
ELabel(G, v, u, i) = GE

where,
G = (V, B, I), GE = (VE, BE, IE)
VE = {RecE p w u i | w ∈ V}
BE = {RecE p w u i �→

[
x′. j = Edge(l,w′)⇒ Edge(l,RecE p w′ u i)
x′. j = Outm(&m)⇒ Outm(&m, v)

]
j∈|x|
| (w �→ x) ∈ B, &m ∈ Z}

IE = {&m �→ RecE p w u i | (&m �→ w) ∈ I}
Mlabel : Y × V × Num → GZ

Z×Y adds the trace information RecM to the marker
branch &y identified by the pair (u, i).
Mlabel(&y, u, i) = GM
where
GM = (VM, BM, IM)
VM = {RecM p &m u i | &m ∈ Z}
BM = {RecM p &m u i �→ [Outm(&m, &y)] | &m ∈ Z}
IM = {&m �→ RecM p &m u i | &m ∈ Z}
Hence, we get BEMap as the result of the edge mappings in this stage.

2. Then apply list manipulation function d. It is applied by the function Dmap : (V→
List(GZ

Z×V +GZ
Z×Y ))→ (B→ GZ

Z×V+Z×Y ),
Dmap(BEMap) = BDmap

where
BDmap = {u �→

[
DLabel(F [[d]]ρu, u)ρu = ρ ∪ {$b �→ BEMap(u)}

]
| u ∈ V}

Here $b is a variable binds the branch BEMap for node u generated in the previous
step, and are supposed to be referred to during the evaluation of d for operations on
these branches like permutation or selection.
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The function DLabel : GZ
Z×V+Z×Y × V → GZ

Z×V+Z×Y adds the RecD information
to every node in the graphs resulted from list manipulation d. It uses the root
node u of the list to identify the original list of each components in the graph.
DLabel(G, u) = GD
Let G = (V, B, I), GD = (VD, BD, ID)
where,
VD = {RecD p v u | v ∈ V}
BD = {RecD p v u �→

[
x.i = Edge(l,w)⇒ Edge(l,RecD p w u)
x.i = Outm(&m,m′)⇒ x.i

]
i∈|x|
| (v �→ x) ∈ B}

ID = {&m �→ RecD p v u | (&m �→ v) ∈ I}
3. Finally we merge all the nodes and subgraphs in BDmap with ε-edges, using the

Merge : V→ GZ
Z×V+Z×Y → GZ×X

Z×Y .
Merge(BDmap) = Gsrec
Let Gsrec = (Vsrec, Bsrec, Isrec),
we now explain the way of generating each components.
The set of nodes Vsrec = Nlabel(Vsrc) ∪ VMerge(BDmap), where Nlabel maps every
node from the source graph to the corresponding set of nodes used to connect each
subgraphs in BDmap, it annotates each node with RecN information identifying its
original node.
Nlabel(Vsrc) = {RecN p u &m | u ∈ Vsrc, &m ∈ Z}
And VMerge collects all the nodes from the result of d function, which is defined
as follows.
VMerge(BDmap) = {u | v ∈ Vsrc, (v �→ GD) ∈ BDmap, u ∈ GD.V}
The set of branches Bsrec = NMerge(BDmap) ∪ BMerge(BDmap). The function
NMerge adds ε-edges to connect the RecN nodes obtained from Nlabel with the
input nodes of the corresponding subgraph.
NMerge(BDmap) = {RecN p v &m �→ [Edge(ε,GD.I(&m)

] | v ∈ Vsrc, (v �→ GD) ∈
BDmap, &m ∈ Z}
And BMerge(BDmap) collects the set of branches for the resulted graph by connect-
ing all the subgraphs using ε-edges.

BMerge(BDmap) = {u �→


x.i = Edge(l,w)⇒ x.i
x.i = Outm(&m,w), w ∈ Vsrc ⇒ Edge(ε,RecN p w &m)
x.i = Outm(&m, &y)⇒ x.i


i∈|x|
|

v ∈ Vsrc, (v �→ GD) ∈ BDmap, (u �→ x) ∈ GD.B}
Note that in this step an output marker branch in GD becomes an ε-edge to the cor-
responding RecN node if it is of the form (&m, u), otherwise, it remains unchanged.
A remark is that the marker branches generated by the function ELabel finally be-
come ε-edges, and those generated by function MLabel finally remain to be output
markers for the result graph.
Finally, the input marker Isrec are assigned by Imap : (X → V) → (Z × X → V),
where
Imap(Isrc) = Isrec where,
Isrec = {(&m, x) �→ RecN p v &m | &m ∈ Z, (&x �→ v) ∈ Isrc}

In the above comprehension of the form {e | g}, we essentially wrap the information
appeared in the g parts with the constructors defined in Section 4.1.
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D Formal Semantics of Backward Evaluation for In-place Updates

We now proceed to present the complete backward semantics. [], &y and () construct
constant graphs in the forward evaluation. Therefore, for the backward evaluation, they
accept no modification on the view.

B[[[]p]](ρ,G′) = ρ if G′ = F [[[]p]]ρ
B[[[&m]p]](ρ,G′) = ρ if G′ = F [[[&m]p]]ρ
B[[()p]](ρ,G′) = ρ if G′ = F [[()p]]ρ

[l : e] Its backward evaluation detaches the (possibly modified) edge from the top of the
modified graph. Other modification on the graph is reflected to the other operand G2 (as
G′2)

B[[[l : e]p]](ρ,G′) = B[[l]](ρ, a′) 
ρ B[[e]](ρ,G′2)
where a = lρ

G2 = F [[e]]ρ
(a′,G′2) = decomp[a:pG2](G′)

Here, the decomposition function is defined as follows
decomp[a1:pG2](G′) = (a′1, (V

′ \ {r′}, B′ \ {r′ �→ ζ′}, {& �→ v}))
where (V2, B2, {& �→ v}) = G2

(V ′, B′, {& �→ r′}) = G′
ζ′ = the unique branch in B′ of the form [Edge(a′1, v)]

.

The modified view G′ is decomposed into its unique root branch ζ′ = [Edge(a′1, v)]
from the original root r′ and the rest of the graph rooted at v. If G′ has more than one
branches from the root node or the new root v does not match the root node of the
original result G2, the backward evaluation fails.

e1 � e2 we first decompose the updated graph G′ and apply backward transforma-
tion on each of the subexpressions e1 and e2 using the fragment graphs. We have the
following definition, given decompG1�G2

(G′) as the decomposition of the graph G′,
then

B[[(e1 � e2)p]](ρ,G′) =B[[e1]](ρ,G′1) 
ρ B[[e2]](ρ,G′2)
where G1 = F [[e1]]ρ, G2 = F [[e2]]ρ (G′1,G

′
2) = decompG1�pG2

(G′)
decomp is defined as below. G1 \G2 for G1 = (V1, B1, I1) and G2 = (V2, B2, I2) denotes
(V1 \ V2, B1 \ B2, I1 \ I2), where B1 \ B2 and I1 \ I2 respectively removes the bindings
in B2 and I2 from those in B1 and I1. Simple union of graphs G1 ∪ G2 is defined by
(V1 ∪ V2, B1 ∪ B2, I1 ∪ I2). reachable collects all the parts reachable from input nodes,
while unreachable collects the rest. xreachable restores complete graphs by restoring
the unreachable parts. Note that the unreachable parts restored from the original graph
can not be decomposed or modified in the reachable parts of the view.

decompG1�pG2
(G′) = (xreachable(G′′1 ,G1), xreachable(G′′2 ,G2))

where (V ′, B′, I′) = G′ (Vi, Bi, Ii) = Gi

G′′i = reachable((V ′, B′, Ii))
satisfying M = dom(I1) = dom(I2)

∀&m ∈ M, Edge(ε, v′) ∈ B′(I′(&m)) : (&m �→ v′) ∈ I1 ∪ I2

unreachable(G) = G \ reachable(G)
xreachable(G′′,G) = reachable(G′′) ∪ unreachable(G)

e1 ⊕ e2 It is like �, except that no ε-edge is involved.
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B[[(e1 ⊕ e2)p]](ρ,G′) = B[[e1]](ρ,G′1) 
ρ B[[e2]](ρ,G′2)
where G1 = F [[e1]]ρ

G2 = F [[e2]]ρ
(G′1,G

′
2) = decompG1⊕pG2

(G′)
decompG1⊕pG2

(G′) = (xreachable(G′′1 ,G1), xreachable(G′′2 ,G2))
where (V ′, B′, I′) = G′ (Vi, Bi, Ii) = Gi

G′′i = reachable((V ′, B′, Ii))
The decomposition function is almost the same as decompG1�pG2

(G′). The only differ-
ence is that it excludes the satisfying condition.
e1 @ e2 Because of unmatched I/O nodes, it may introduce unreachable part in the sec-
ond argument during forward evaluation. So the backward evaluation carefully leaves
those parts untouched to avoid unnecessary failure because of inconsistency, and those
parts are within the ordinary computation (computation on reachable parts) before dis-
carding by the @ operator.

B[[(e1 @ e2)p]](ρ,G′) = B[[e1]](ρ,G′1) 
ρ B[[e2]](ρ,G′2)
where G1 = F [[e1]]ρ

G2 = F [[e2]]ρ
(G′1,G

′
2) = decompG1@pG2

(G′)
decompG1@pG2

(G′) = (xreachable(G′′1 ,G1), xreachable(G′′2 ,G2))
where (V ′, B′, I′) = G′ (Vi, Bi, Ii) = Gi

B′′ = {u �→


x.i = Edge(ε, v) ∧ u ∈ V1

∧B1(u).i = Outm(&m)
∧(&m �→ v) ∈ I2 ⇒ Outm(&m)
otherwise ⇒ x.i


i∈|x|

| (u �→ x) ∈ B′}
G′′i = reachable((V ′, B′′, Ii))

&m � e It “peels off” the marker on the left hand side from each of the input markers
in G′ at the front.

B[[(&m � e)p]](ρ,G′) = B[[e]](ρ,G′1)
where (V ′, B′, I′) = G′

I′1 = {(&x �→ v) | (&m.&x �→ v) ∈ I′}
G′1 = (V ′, B′, I′1)

cycle(e) It removes the ε-edges introduced in the forward evaluation and restores the
original output markers.

B[[(cycle(e))p]](ρ,G′) = B[[e]](ρ,G′2)
where (V ′, B′, I′) = G′ (V, B, I) = F [[e]]ρ

Bcycle = {u �→


x.i = Edge(ε, v)
∧B(u).i = Outm(&m) ⇒ Outm(&m)
otherwise ⇒ x.i


i∈|x|

| (u �→ x) ∈ B′}
G′2 = (V, Bcycle, I)

Labels A label constant and label equality accepts no modification.
B[[a]](ρ, a′) = ρ if a′ = a
B[[(l1 = l2)]](ρ, e′) = ρ if e′ = F [[(l1 = l2)]]ρ

Emptiness A backward evaluation of an emptiness checking is defined by
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B[[isEmpty(e)]](ρ, e′) = ρ if e′ = F [[isEmpty(e)]]ρ
As the reason explained before, we simply do not accept any change of boolean values
in the backward evaluation.
λ Expressions

The backward evaluation of e1 generates new bindings ρ′1 including the ones for the
bound variables. These bindings are used for the backward evaluation of e2 to reproduce
the updated environment ρ′2. The overall result will be the merger of the updated bind-
ings. Note that the bindings for the bound variables should be removed before merging
as we do for the semantics of srec.

B[[(λ($x1, .., $xn).e1 e2)p]](ρ,G′)
= (ρ′1 \ {$x1 �→ } \ ... \ {$xn �→ }) 
ρ ρ′2
where v1, .., vn = F [[e2]]ρ

ρ′ = ρ ∪ {$x1 �→ v1} ∪ ... ∪ {$xn �→ vn}
ρ′1 = B[[e1]](ρ′,G′)
ρ′2 = B[[e2]](ρ, (ρ′1($x1), .., ρ′1($xn)))

Products The backward evaluation of products simply unifies the result of backward
evaluation on its subexpressions.

B[[(e1, e2)p]](ρ, (G′1,G
′
2)) = ρ′1 
ρ ρ′2

whereρ′1 = B[[e1]](ρ,G′1)
ρ′2 = B[[e2]](ρ,G′2)

foldr
B[[foldr(
, e)(ea)]](ρ,G′) = B[[e]](ρ, ḡ′n) 
ρ B[[ea]](ρ, [g′1 . . . g

′
n])

where [g1, . . . , gn] = F [[ea]]ρ
ḡn = F [[e]]ρ
ḡk = gk 
 ḡk+1, 1 ≤ k < n
(g′1, ḡ

′
1) = decompg1
ḡ1

(G′)
(g′k, ḡ

′
k) = decompgk
ḡk

(ḡ′k−1), 1 < k < n
Decomposition with respect to standard constructors are straightforward.

decomp(x,y)(x′, y′) = (x′, y′)
decompcons(x,y)(cons(x′, y′)) = (x′, y′)

Decomposition with respect to binary operator constructed through λ expressions are
given below. Unlike other decomposition functions, the original environment ρ is also
required.

decomp(λ($x,$y).e)(x,y)(ρ, z) = (ρ′($x), ρ′($y))
where ρ′ = B[[e]](ρ ∪ {$x �→ x, $y �→ y}, z)

Structural Recursion Backward evaluation of a structural recursion function is defined
by the following stepwise procedure. It performs the inverse procedure of the forward
evaluation. The most crucial point is to use the trace information recorded in the nodes
of view graph to decompose the view graph into subgraphs and to remove the ε-edges
generated during the forward evaluation. Further, when we merge the updated environ-
ment, we first merge local updates, then merge it to the whole updated environment.
Since there might be overlapped parts among them, we let the backward evaluation fail
if the overlapped parts are inconsistent. The backward evaluation is,

B[[srec(eb, d)(ea)]](ρ,G′srec) = ρ′
where (V ′srec, B

′
srec, I

′
srec) = G′srec
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It also consists of three stages, basically are the reverse operations in the forward
evaluation.

1. We first decompose the updated view graph into subgraphs by the trace information
encapsulated in RecD and RecN, which is exactly the reverse procedure of Merge,
and is defined as follows:
Merge′(G′srec) = B′Dmap
where,
B′Dmap = {v �→ (VMerge′(V ′srec, v),BMerge′(B′srec, v), IMerge(I′srec, v)) | v ∈ V}
Here VMerge′, BMerge′ and IMerge′ evaluate the subgraph associated with node
v by collecting the nodes belonging to the same group identified by the last argu-
ment of RecD. The input and output marker of each subgraph are obtained from
disconnecting the ε-edges associated with RecN nodes.
VMerge′(V ′srec, v) = {RecD p u v | RecD p u v ∈ V ′srec}

BMerge′(B′srec, v) = {RecD p u v �→


x.i = Edge(l,RecD p w v)⇒ x.i
x.i = Edge(ε,RecN p w &m)⇒ Outm(&m,w)
x.i = Outm(&m, &y)⇒ x.i


i∈|x|
|

(RecD p u v �→ x) ∈ B′srec}
IMerge′(V ′srec, v) = {&m �→ u | RecN p v &m �→ [Edge(ε, u)] ∈ B′srec}

2. Then apply the backward evaluation of function d on each subgraph to get updated
environment ρ′u for each list of branches. Dmap′(BDmap) = B′EMap
where,
B′EMap = {u �→ B[[d]](ρu,DLabel′(B′Dmap(u)))($b) | u ∈ V}

In this step we first use DLabel′(B′Dmap(u)) to erase the label RecD to the graph G′D
obtained from B′Dmap(u),
DLabel′(G′D) = G′
where
G′ = (V ′, B′, I′), G′D = (V ′D, B

′
D, I

′
D)

V ′ = {v | RecD p v u ∈ V ′D}
B′ = {v �→

[
x.i = Edge(l,RecD p w u)⇒ Edge(l,w)
x.i = Outm(&m,m′)⇒ x.i

]
i∈|x|
| (RecD p v u �→ x) ∈ B′D}

I′ = {&m �→ v | (&m �→ RecD p v u) ∈ I′D}
Hence, we can apply the backward evaluation of d on this graph, and extract B′EMap
from the updated environment. Note that the environment ρu is obtained from the
second step of forward evaluation.

3. Finally, we apply the backward evaluation of eb: EMap′. Then reconstruct the up-
dated source graph G′ by composing the bindings obtained from the backward eval-
uation of eb. Thus , we are able to reconstruct the updated environment ρ′ for the
source graph.

EMap′(B′EMap) = B′ = {u �→


x.i = GEu,i ⇒ Edge(ρ′u,i($l), ρ′u,i($g.I(&)))
ρ′u,i = B[[eb]](ρu,i,ELabel′(Gu,i))
x.i = GMu,i ⇒ MLabel′(GMu,i )


i∈|x|

|

(u �→ x) ∈ B′EMap}
We distinguish the case of different type of branches in B′EMap. If it contains nodes
with RecE information, then we should apply ELabel′ on this graph, and then
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apply backward evaluation of eb on this labeled edge. The reconstructed edge can
be extracted from the updated environment ρ′u,i. Otherwise, we apply MLabel′ to
get an output marker. The functions ELabel′, MLabel′ are defined as the inverse
operation of ELabel and MLabel.
ELabel′(G′E) = G′
where

G′ = (V ′, B′, I′), G′E = (V ′E, B
′
E, I
′
E)

V ′ = {w | RecE p w u i ∈ VE}
B′ = {RecE p w u i �→

[
x′. j = Edge(l,RecE p w′ u i)⇒ Edge(l,w′)
x′. j = Outm(&m, v)⇒ Outm(&m)

]
j∈|x|

| (RecE p w u i �→ x) ∈ B′E, &m ∈ Z}
I′ = {&m �→ w | (&m �→ RecE p w u i) ∈ I′E}

MLabel′(G′M) = &y
if (&m, &y′) ∈ OutMarker(G′M), then &y = &y′

Finally, we can reconstruct the updated environment
G′ = (V ′ ∪⋃ ρ′v,i($g).V, B′ ∪⋃ ρ′v,i($g).B, Isrc)

where V ′={v | (v �→ s) ∈ B′} ∪ {w | Edge(l,w) ∈ s, (v �→ s) ∈ B′}
B′=EMap′(B′EMap)

ρ′ = B[[ea]](ρ,G′) 
ρ ⊎{ρ′v,i \ {$l �→ } \ {$g �→ }}
Note that we unify all the updated sub-environments ρ′u,i evaluated from the body
expression eb of srec, with the updated environment evaluated from the graph con-
structor expression ea.

E Reflection to Edge Deletion without Final Check

A natural question is to avoid the final check and the failure of evaluation. Here we
provide an alternative solution to avoid the final check in the backward evaluation of
edge deletion, which is to allow multiple deletions and to use an iterative procedure. We
define the function corrset as follows:
corrset({(u, i)}) = {(u, i)} if u ∈ SrcID
corrset(A ∪ B) = corrset(A) ∪ corrset(B)
corrset({(RecE p u v i, j)}) = corrset({(u, j)}) ∪ corrset({(v, i)})
corrset({(RecD p u v, j)}) = corrset({(u, j)})
corrset({ζ}) = ∅ otherwise

We start from D0 = {(u, i)}, where (u, i) is the deleted edge on the view. Then, we can
compute the set of all the correlated edges on the source D′0 = corrset(D0) that could
cause deletion for one of the edges in set D0 on the view. If it is an empty set, then
the evaluation fails for invalid deletion on the edges generated from the transformation.
Otherwise, we could find the set of corresponding edges D1 = D0∪{(u, i) | corr((u, i)) ∈
D′0}. Then we can continue to compute D′1,D2,D′2, . . . by corrset and collect D2,D3, . . .
iteratively. The iteration terminates at some fixpoint where Dn = Dn−1. We take G′S =
GS − D′n as the updated source, and G′V = GV − Dn to be the updated view.

This procedure would definitely terminate, for the graphs are finite, and Dk−1 ⊆ Dk

for k = 1, 2, 3, . . .. Therefore, there must be a fixpoint. Moreover, the (WPUTGET)
property is also guaranteed, since the function corrset collects the correspondent edges
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from the body expressions as well as the argument expressions. And the procedure
terminates when no other edges could be affected anymore. Moreover, if we exclude
isEmpty from λFG, the remaining boolean expressions becomes invariant after deletion.
Thus the consistency between G′S and G′V is maintained. To support all the boolean
expressions, we can add a special mark during the forward evaluation of Condition
clauses, and we disallow the deletion on such edges. Hence corr function tells FAIL if
we need to delete such edges, which leads to an invalid update.

As a final remark, the iterative procedure might cause multiple deletion of edges in
the source with one action from the user. For the previous example, if we remove the
edge a on the view, the iterative call to corrset ends up with both G′S and GV to be empty
graphs. This method sacrifices the least change principle [19] to obtain a consistent
pair of updated graphs. We could provide an interactive interface for the user to decide
whether to take such pair as the updated results.

F Proofs for well-behavedness

The peculiarity of our language (with respect to the well-behavedness) compared to
other bidirectional transformation languages is summarized with the following four as-
pects.

1. Duplication. λFG duplicates inputs using multiple occurrences of the same vari-
ables. View update operation should modify these duplicates consistently (intra-
copy consistency), but we accept imperfectly consistent updates, allowing updates
on only part of these duplicates in the view.

2. Variable reference (non-point-free). References to free variables in the terms allow
receiving data from language constructs that are not immediately preceding. In the
point-free style, data flows only between directly adjacent combinators, like id ×
flatten ◦ unzip ◦map. On the contrary, variable references allow to jump language
constructs.

3. Condition. Back propagation of updates may change the control flow. We detect
and reject these changes.

4. Injection of information by the forward transformation. It corresponds to constants
in the transformation. We prohibit updating this injected information triggered by
view updates.

5. Indirect aliasing by label variable and graph variable in the presence of cycles. For
example, graph variable bound by srec may refer to edges whose label is bound to
the label variable introduced by the same srec through cycles.

With the above peculiarities, well-behavedness cannot by proved by very simple
induction on the structure of λFG.

The brief idea of well-behavedness preservation can be found in a technical re-
port [13] in an unordered setting, but here we further clarify the extension of backward
semantics to take the above aspects into consideration, namely, we take the dependen-
cies between free variables (dependencies between bound edges) into account.

To do this, forward semantics is extended to return traces paired with the original
values, and the variable environment correspondingly stores trace information associ-
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ated with the values bound to the variables. More precisely, graph and label type values
are extended to be paired with trace information.

σ = . . . | (Graph × Trace) | (Label × TraceL)

The shaded part represents the extended part and we apply the same shading in the
sequel. The type of forward semantics for graph-valued expressions thus becomes

F [[e]] : Env→ (Graph × Trace)
and similarly for label-valued expressions:

F [[e]] : Env→ (Label × TraceL)
Trace = (Node ∪ Edge)→ Node ∪ Edge ∪ Pos
TraceL = Edge ∪ Pos
TraceL corresponds to the trace for labels, which consists of either source edge or

the code position which created the label value.
Since we do not change the rule producing values before this extension, we just

denote the original constructor semantics using the constructor itself.

F [[[]p]]ρ = (G[]p, {G.I(&) �→ p}) (T-Emp)
F [[()p]]ρ = (G()p, {}) (G-Emp)

F [[[&m]p]]ρ = (G[&m]p, {G.I(&) �→ p}) (OMrk)

F [[(e1 ⊕ e2)p]]ρ = (g1 ⊕ g2, t1 ∪ t2)
where ((g1, t1), (g2, t2)) = (F [[e1]]ρ,F [[e2]]ρ)

(G-Uni)
F [[(e1 @ e2)p]]ρ = (g1 @p g2, t1 ∪ t2)

where ((g1, t1), (g2, t2)) = (F [[e1]]ρ,F [[e2]]ρ)
(Apnd)

F [[(&m � e)p]]ρ = (&m � g, t)
where (g, t) = F [[e]]ρ

(Imrk)

F [[cyclep(e)]]ρ = (G cyclep(g), t ∪ {v �→ p | (&x �→ v) ∈ G.I})
where (g, t) = F [[e]]ρ

(Cyc)

F [[[e1 : e2]p]]ρ = (G[l : e1]p, {G.I(&) �→ p, (G.I(&), [1]) �→ τ} ∪ t)
where ((l, τ), (g, t)) = (F [[e1]]ρ,F [[e2]]ρ)

(Edg)

F [[(e1 � e2)p]]ρ = (G(e1 � e2)p, t1 ∪ t2 ∪ {v �→ p | (&x �→ v) ∈ G.I})
where((g1, t1), (g2, t2)) = (F [[e1]]ρ,F [[e2]]ρ)

(T-Uni)
F [[ap]]ρ = (a, p) (a ∈ L) (LCnst)

F [[$xp]]ρ = ρ($x) (Var)
F [[(λ($x1, . . . , $xn).e1 e2)p]]ρ = F [[e1]]ρ∪{$x1 �→y1,...,$xn �→yn}

where (y1, . . . , yn) = F [[e2]]ρ
(LApp)

List type expressions create lists consisting of pair of values and traces generated
by the element expressions. Thanks to the transparent extension, the definition of the
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forward semantics remains unchanged for variable references and λ-expression appli-
cations.

F [[foldr(
, e)(ea)]]ρ = f l
where l = F [[ea]]ρ

f nil = F [[e]]ρ
f cons(x, xs) = x 
′ ( f xs)

where y 
′ ys =


(π1y 
 π1ys, π2y ∪ π2ys) 
 ∈ {�,@}
y 
 ys 
 = cons

(Fldr)

foldr behaves differently only when graph constructors are fed as 
.
In the following definition for srec, we use two auxiliary functions that operate on

traces in a way similar to ELabel and DLabel.
recep,(u,i)t = {( f x) �→τ | (x �→ τ) ∈ t}

where f x =
{

(RecE p w u i, j) if x = (w, j) ∈ Edge
RecE p x u i if x ∈ Node

recdp,ut = {( f x) �→τ | (x �→ τ) ∈ t}
where f x =

{
(RecD p w u, j) if x = (w, j) ∈ Edge
RecD p x u if x ∈ Node

We also need the external trace for ε-elim.

ε-elim((G, t)) = (G′, t′)
where (V, B′, I) = G′

B′ = {v �→ [B(v).in | p ∈ Pb(G, v), p = (v
ε−→ i0 . . . vn−→ in )] | v ∈ V}

t′ = {v �→ t(v) | v ∈ V} ∪ {(v, i) �→ t((v, Pb(G, v).i)) | (v, i) ∈ edges(G′)}
(EElim)

F [[(srecZ(eb, d)(ea))p]]ρ = (g′,
⋃

v∈g.V
(π2 ◦ B′) v ∪ t′V)

where g′ = Merge(g.V, BDMap, g.I)
(g, t) = ε-elim(F [[ea]]ρ)
EMap(B) = {u �→ BMap(x) | (u �→ x) ∈ B}

BMap(x) =





(EL × re)F [[eb]]ρ′ b = Edge(l, v)
ρ′ = ρ ∪ {$l �→ (l, t(u, i)),

$g �→ (g|v, t|v)}
EL g = ELabel(g, v, u, i)
ret = recep,(u,i)t

(MLabel(&y, u, i), {}) b = Outm(&y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(b, i) ∈L x


DMap(B) = {u �→ ((λg.DLabel(g, u)) × recdp,u)F [[d]]ρ∪{$b�→x} | (u �→ x) ∈ B}
B′ = DMap(EMap(g.B))
BDMap = {v �→ g | (v �→ (g, t)) ∈ B′}
t′V = {v �→ p | v ∈ NLabel(g.V)}

(Srec)
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[e | (x, i) ∈L l] def
= [e | x = l.i]i∈|l|

The basic idea in this extension to augment trace information in the forward se-
mantics is to maintain correspondence between source node/edge and those in the view.
Since the composition is realized through variable bindings, the composition of the
correspondence is maintained through the extended environment. The process is like
hypothetical syllogism; if A is related to B and B is related to C, then we relate A to C.
A variable plays a role of mediation by B.

Nullary graph constructors (G-Emp)(T-Emp)(OMrk) generate no trace information
for edges, since they do not create them. Only node trace that associates the node with
its code position is generated for node-creating constructors. For label constant expres-
sion (LCnst), its code position is generated as the trace information. Graph construc-
tion expressions create traces for both nodes and edges. For edge-constructing expres-
sion (Edg), the constructed edge is associated with the trace of the label expression. The
edge is identified by its origin node and branch position. The position uses the list of in-
tegers as the local trace we already introduced in the paper. Since it also creates nodes,
the node is associated with the code position as its trace. The trace for the second expres-
sion is unified with these traces. Graph binary constructors (T-Uni)(G-Uni)(Apnd) unify
the trace information from both operands. Since the environment stores both the value
and trace, variable reference looks up these information directly. λ-expression (LApp)
extends the environment by the value and trace created by the argument e2 to evaluate
body expression e1. The semantics for srec (Srec) shows how environments for label
variable is generated using trace t of its argument expression ea. t|v is a restriction of
the domain of t to the set of edges and nodes reachable from the node v. Note that the
mapping goes through auxiliary function ε-elim (EElim) to obtain the mapping between
nodes/edges before/after ε elimination. For d function, the environment for its argument
is generated by the list of graphs paired with list of traces and the traces are inherited
from those generated by eb for the list of sibling subgraphs for each node of the input
graph g.

Given these extended semantics, we obtain, for the top-level environment initialized
using input graph gs with identity traces

ρ0 = {$db �→ (gs, {(v �→ v) | v ∈ gs.V} ∪ {(v, i) �→ (v, i) | (v �→ x) ∈ gs.B, ( , i) ∈L x})}

a trace that maps a node/edge in the view to a source node/edge if there is a corre-
sponding node/edge in the source, or code position if the node/edge is created in the
transformation e, by

(gT, t) = F [[e]]ρ0

At the beginning of the backward transformation, the edge-renaming is detected by
the “delta-discovery” from original graph gT and the updated graph g′T as ∆ = (gT,g′T)
by comparing its two components. It includes the map from edge in the view to its new
label value : upd : Upd, Upd = Edge→ Label.

upd∆ = {(v, i) �→ l′ | (v �→ x) ∈ π1(∆).B, (Edge(l, ), i) ∈L x,
(Edge(l′, ), i) = π2(∆).B(v).i, l � l′}
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Then we can calculate the propagated updates by utrans : Upd × Trace → Upd to
any other intermediate view for a subexpression e′ and its trace t′ under its environment
ρ′ : (g′, t′) = F [[e′]]ρ′

upd′ = utrans(upd∆, t
′) = {ζ′ �→ upd∆(ζ) | ζ′ ∈ edges(π2(∆)), ζ ∈ dom(upd∆), t

′(ζ′) = t(ζ)}

where edgesg collects every edge in the graph g.

edgesg = {(v, i) | (v �→ x) ∈ g.B, ( , i) ∈L x}
Now we describe the backward semantics using the traces and update propagation func-
tion. The backward transformation fails for the attempts to update constants in the
transformation. That corresponds to Upd defined for an edge ζ such that t(ζ) ∈ Pos.
For variable reference, we update entry of environment accordingly, but here we also
update binding of other variable affected, just like we did for computation of upd′.
pr : Env × Upd × Trace→ Env.

pr(ρ, upd, t) = ρ′
where, for a graph variable $g
ρ′($g) = (g′, t′)

where (g, t′) = ρ($g)
g′ = (g.V,B′, g.I)
B′ = {v �→ [u(v, b, i) | (b, i) ∈L x] | (v �→ x) ∈ g.B}

u(v, b, i) =


Edge(upd(ζ), u) b = Edge( , u) ∧ ∃ζ.t′((v, i)) = t(ζ)
b otherwise

For a label variable $l
ρ′($l) = (l′, τ′)

where (l, τ′) = ρ($l)

l′ =


upd(ζ) τ′ = t(ζ)
l otherwise

By doing this, we detect inconsistent edge renaming caused by duplicates and aliasing
at the merging phase using 
 for binary operators and binders like srec.

For a variable we do not just simply update its bindings as B[[$v]](ρ,G′) = ρ[$v←
G′] but we propagate this change to other bindings using upd∆ as defined above.

B[[$g]](ρ,G′) = pr(ρ, utrans(upd∆, t′))
where(g′, t′) = ρ($x)

(BVar)

Therefore,
B[[(e1 � e2)p]](ρ,G′) =B[[e1]](ρ,G′1) 
ρ B[[e2]](ρ,G′2)

where (G1, t1) = F [[e1]]ρ, (G2, t2) = F [[e2]]ρ
(G′1,G

′
2) = decompG1�pG2

(G′)
will detect failure via the propagation, for example, in case of

B[[$db� [$l : []]]](ρ,G′)
ρ includes at least both bindings of $db and $l. Since B[[$db]] returns bindings with not
only entry of $db but also $l is updated, if they are affected with each other, and B[[$l]]
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returns correspondingly variables with both entries updated, the merge operation 
 for
both backward transformation detects binding conflicts (if exists) and fails.

Next we recap the backward semantics of srec in the following. Given the revised
backward semantics of variable references, the backward semantics remains unchanged.
B[[srec(eb, d)(ea)]](ρ,G′srec) = B[[ea]](ρ, ε-elim−1(G′)) 
ρ ρ′′

where (Vsrc, Bsrc, Isrc) = g = ε-elim(F [[ea]]ρ)
B′EMap = DMap′(Merge′(G′srec))

Merge′(G) = {u �→ (VMerge′u(G.V),BMerge′u(G.B), IMerge′u(G.B)) | u ∈ Vsrc}
VMerge′v(V) = {v′ | v′ ∈ V, v′ = RecD p u v}
BMerge′v(B) = {v′ �→ [bmapB′(b) | b ∈ x

] | (v′ �→ x) ∈ B, v′ = RecD p u v}
bmapB′ (Edge(ε,RecN p w &m)) = Outm(&m,w)
bmapB′ b = b otherwise

IMerge′v(B) = {&m �→ u | RecN p v &m �→ [Edge(ε, u)] ∈ B}
DMap′(B) = {u �→ B[[d]](ρu,DLabel′(B(u)))($b) | u ∈ Vsrc}

B′ = EMap′(B′EMap)
EMap′(B) = {u �→ [emapB′(u, b, i)|(b, i) ∈L x

] | (u �→ x) ∈ B}

emapB′(u, b, i) =


B[[eb]](ρ′,ELabel′(b)) Bsrc(u).i = Edge(l, v)

ρ′ = ρ ∪ {$l �→ l, $g �→ g|v}
MLabel′(b) otherwise

B′′EMap = {u �→
[
emapB′′(u, b, i)|b ∈L x

] | (u �→ x) ∈ B′EMap}
emapB′′(u, b, i) =


Edge(b($l), b($g).I(&)) Bsrc(u).i = Edge( , )
b otherwise

G′ = (V ′ ∪ ⋃
(v �→x)∈B′′EMap

∪[ρ($g).V | ρ ∈ x], B′ ∪ ⋃
(v �→x)∈B′′EMap

∪[ρ($g).B | ρ ∈ x], Isrc)

V ′ = {v | (v �→ s) ∈ B′} ∪ {w | Edge(l,w) ∈ s, (v �→ s) ∈ B′}
ρ′′ =

⊎
(v �→x)∈B′′EMap


[b \ {$l �→ } \ {$g �→ } | b ∈ x]

MLabel′(G′M) = Outm(&y)
where (&m, &y′) ∈ OutMarker(G′M)

ELabel′(G′E) = (V ′, B′, I′)
where V ′ = {stripE(v) | v ∈ G′E.V}

B′ = {stripE(v) �→ [stripB(b) | b ∈L x
] | (v �→ x) ∈ G′E.B, &m ∈ Z}

I′ = {&m �→ stripE(v) | (&m �→ v) ∈ G′E.I}
stripE (RecE p w u i) = w
stripB Edge(l, v) = Edge(l, stripE(v))
stripB Outm(&m, v) = Outm(&m)

DLabel′(G′D) = (V ′, B′, I′)
where V ′ = {stripD(v) | v ∈ G′D.V}

B′ = {stripD(v) �→ [stripB(b) | b ∈ x
] |∈ (v �→ x) ∈ G′D.I}

I′ = {&m �→ stripD(v) | (&m �→ v) ∈ G′D.I}
stripD (RecD p w u) = w
stripB (Edge(l, v)) = Edge(l, stripD(v))
stripB (Outm(&m,m′)) = Outm(&m,m′)

For the backward semantics of if, the propagation by pr and utrans is used.
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B

[[
if e1 then e2

else e3

]]
(ρ,G′) =



ρ′2 if F [[e1]]ρ ∧F [[e1]]ρ′′2 , where ρ′2 = B[[e2]](ρ,G′)
ρ′′2 = pr(ρ′2, utrans(upd∆, t1))

(g1, t1) = F [[e1]]ρ
ρ′3 if ¬F [[e1]]ρ ∧ ¬F [[e1]]ρ′′3 , where ρ′3 =B[[e3]](ρ,G′)

ρ′′3 = pr(ρ′3, utrans(upd∆, t2))
(g2, t2) = F [[e2]]ρ

FAIL otherwise
(BIf)

Example 5. Suppose we have transformation

srec(λ($l, $g). if $l = a then $db else [$l : [$l : []]], id)($db)

and source graph bound to $db is [a : [b : []]], and view graph [a : [a : []]] is updated
to [c : [a : []]]. Then we compute the update operation translation utrans to the source
edges. In this case, it is renaming a to c at the top level edge, because the view is
created by the then clause of if, which is a direct reference to $db. Then, during the
backward transformation of if which is reduced to that of the then clause, we update
the binding of free variables in the condition $l = a, which is $l in this case, and obtain
the corresponding source edge by looking up the trace stored in the environment to find
the edge a. Since the binding intersects with the user’s update above, the binding is also
updated to label c. This is achieved by (BVar). Then we re-evaluate ($l = a) which is
false, and compare with the value during the forward transformation and detect control
flow change. So the backward transformation of if fails and rejects the update.

Given the detection of update conflict and attempts to update constants, we can
focus on the successful propagation for the proof of WPUTGET by induction on the
structure of λFG expressions.

Before we start the proof of well-behavedness of�, we need the following lemmas.

Lemma 1 (Well-behavedness of decomp�).

∀g1, g2 ∈ GX
Y .decompg1�g2

(g1 � g2) = (g1, g2)
∀g1, g2, g ∈ GX

Y .(�) ◦ decompg1�g2
(g) = g

The equations respectively correspond to GetPut and PutGet.

Lemma 2 (Well-behavedness of 
).

ρ 
ρ ρ = ρ
ρ′ = ρ1 
ρ ρ2 ⇒ ρ′ 
ρ ρ′ = ρ′

Theorem 2 (Agreement of B[[ ]] and prop). Given expression e, its result of transfor-
mation g with trace t, update ∆ of g to g′ and the successful backward transformation
with g′, the result ρ′ agrees with direct propagation of ∆ along with trace t using prop,
i.e.,

prop(∆, t, ρ) = pr(ρ, upd∆, t)
F [[e]]ρ = (g, t) ∧ ∆ = (g, g′) ∧ ρ′ =B[[e]](ρ, g′)⇒ prop(∆, t, ρ) = ρ′
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This theorem also intuitively shows that we avoid useless backward semantics that
always does nothing to the source environment, which still satisfies WPUTGET.

Proof Theorem 2 can be proved using induction on the structure of λFG. For �, we
show prop(∆, t, ρ) = B[[e1 � e2]](ρ, g′).

prop(∆, t, ρ)
= { distribution property of ∆ and t over � }

prop(∆1 ∪ ∆2, t1 ∪ t2, ρ)
= { property of prop and 
 }

prop(∆1, t1, ρ) 
 prop(∆2, t2, ρ)
= { induction hypotheses on e1 and e2 }

B[[e1]](ρ, g′1) 
ρ B[[e1]](ρ, g′2)
= { definition of B[[ ]] for � }

B[[e1 � e2]]ρ(g′)
Other cases are treated similarly.

Theorem 3 (Label forward propagation). Edges in the view graph has the same label
as that of the origin.

F [[e]]ρ = (g, t)⇒ ∀ζ ∈ edges(g), label(ζ) = label(t(ζ))

This can be proved by a straightforward induction.

Corollary 1 (Copy has the same label). Given F [[e]]ρ = (g, t),

∀ζ1, ζ2 ∈ edges(g), t(ζ1) = t(ζ2)⇒ label(ζ1) = label(ζ2)

This corollary leads to Theorem 4, because right after forward transformation (i.e.,
before view updates), all the edges in the equivalence class has the same labels, meaning
that no more propagation is possible. So this view corresponds to the one that includes
the maximum updates.

Theorem 4 (Maximum propagation). The graph g′′ in (g′′, t′′) =F [[e]]B[[e]](ρ,g′) con-
tains all the updates applied for all duplicates in the view on updates ∆ = (g, g′) =
(π1(F [[e]]ρ), g′).

It corresponds to intra-view update propagation in [16].
The proof of theorem 4 can be done using the induction on the structure of λFG

expressions, assuming maximum propagation property of subexpressions and that of 
.
By theorem 4, we have that the entire round-trip of expression e consisting of the

backward transformation on the target graph g for update on a given edge ζ will propa-
gate to all the other edges in g within the equivalence class of ζ, denoted by [ζ]∼ defined
by ζ1 ∼ ζ2 ⇔ t(ζ1) = t(ζ2) for F [[e]]ρ = (g, t).

This theorem and theorem 2 leads to a well-behavedness property that is slightly
stronger than WPUTGET, because WPUTGET only guarantees that the second and
the third backward transformation lead to the same updated environment, but does not
characterize the view graph of the second forward transformation.
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To complete the proof of WPUTGET for an entire transformation, we also check
that control flow change do not occur for the other execution paths for the edges in
the equivalence class. So we have to check this control flow stability through checking
all the if conditions along with these paths. With the assumption that these conditions
remain unchanged, the round-trip propagates updates on (subset of) edges in the equiv-
alence class and the backward transformation on the new target graph lead to the same
updated environment so that WPUTGET is satisfied.

The second and the third view has the same shape.

Definition 1 (shape of graphs). Graphs g1 and g2 has the same shape, denoted by
g1 � g2 if and only if they are exactly the same after forgetting their edge labels.

g1 � g2 ⇔ g1.V = g2.V ∧ g1.I = g2.I ∧ fl(g1.B) = fl(g2.B)
where fl(B) = {v �→ [ f b | b ∈ x] | (v �→ x) ∈ B}

f (Edge(l, v)) = Edge(ε, v)
f (Outm(m)) = Outm(m)

Definition 2 (Shape genericity). Function f is shape generic if and only if, for any
two graphs g1 and g2 with g1 � g2, application of f produces the graphs with the same
shape.

g1 � g2 → f (g1) � f (g2)

Theorem 5. Under unchanged control flow, all λFG expressions are shape generic.

Proof can be done using a simple induction on the structure of λFG. No graph construc-
tor inspects labels, so by induction on their operand expressions, they preserves the
shape. For srec, the intermediate results generated has the same shape regardless of the
labels in the input graph. Therefore, with induction hypotheses on the body, argument
and d function, srec also preserves the shape. Since we assume unchanged control flow
(which is checked by pr), if expression preserves the shape by the induction hypotheses
on both clauses.

Theorem 6. Under unchanged control flow, all λFG expressions generate the same
trace for the source graphs with identical shape.

This can be proved in a similar manner as the proof of Theorem 5.
Now we prove WPUTGET for edge renaming.

Theorem 7. All λFG expression satisfy WPUTGET for edge renaming.

Proof. By Theorem 2, backward transformation propagates edge renaming on the view
to those of the source. By the assumption that backward transformation succeeds, con-
trol flow does not change. Since the edge renaming does not change the shape, the
forward transformation on the updated environment generates another view graph with
the same shape and same trace, i.e., we have g′ � π1(F [[e]]B[[e]](ρ,g′)). By Theorem 4,
update is propagated to all the edges in the equivalence class, so there will be no con-
flict encounter on another backward transformation with the view (F [[e]]B[[e]](ρ,g′)). By
Theorem 2, results on this backward transformation agrees with direct propagation with
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Fig. 9. Compositionality of WPUTGET

the trace, which, by Theorem 6 has the same as the previous trace, so that result in the
same updated environment.

In a formal reasoning,
B[[e]](ρ, π1(F [[e]]B[[e]](ρ,g′)))
= { B[[e]](ρ, g′) succeeds, Thm 2, π2(F [[e]]ρ) = π2(B[[e]](ρ, π1(F [[e]]B[[e]](ρ,g′)))), Thm 4 }

B[[e]](ρ, g′)

Definition 3 (Completion of view label updates). Given (g, t) = F [[e]]ρ and view
update ∆ = (g, g′). For each edge-renaming on ζ ∈ edges(g), completion of view label
updates applies the same renaming to all the other view edges ζ′ ∈ [ζ]∼.

compl(g, ∆, t) = g′
where g′ = (g.V,B′, g.I)

B′ = {v �→ [u(v, b, i) | (b, i) ∈L x] | (v �→ x) ∈ g.B}

u(v, b, i) =


Edge(upd∆(ζ), u) b = Edge(l, u) ∧ (v, i) ∈ [ζ]∼
b otherwise

The backward transformation B[[e]](ρ, g′), if succeeds and results in ρ′, leads to the
same updated environment as the one obtaining without the completion of view label
updates. The completed view coincides with F [[e]]ρ′ .

The compositionality of WPUTGET is illustrated by Figure 9. This situation can be
caused by λFG expression like

(λ$g.copy($g)� $g)(copy($db)� $db)

such that copy(g) copies the graph deeply. It is just used to generate graph equivalent to
g but has different set of node ids. Then the transformation duplicates the input twice.
These duplicates are sequentially composed by the λ expression. The figure shows that
the view side effects are caused only by duplicates (we have totally four copies) (control
flow change is detected and rejected by the backward semantics of if). Suppose the
view G2 is updated to G′2 by updating only one of the duplicates. Then the backward
transformation of the second transformation g will propagate the update, and the second
forward transformation of g will propagate the change to the other copy in the view
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(G′′2 ). Assuming WPUTGET for g, the backward transformation by G′′2 agrees at graph
G′1. The backward transformation and next forward transformation of f will propagate
the change on G′1 to the other copy to produce G′′1 . Forward transformation of g on
it will produce G′′′2 in which the updates are propagated to all the four copies. Since
they are updates on the copies, backward transformation of g on G′′′2 succeeds and goes
back to G′′1 , and again, the updates are all on the copies caused by f , so backward
transformation f on G′′1 will go back to ρ′. Therefore, backward transformation of g ◦ f
relative to ρ results in ρ′, satisfying WPUTGET on the whole.

In general, backward transformation arbitrarily updates variable binding environ-
ments through free variables, so this simple compositionality does not hold. That is
why the proof of WPUTGET does not use WPUTGET of subexpressions as induction
hypotheses.


