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Abstract. Bidirectional graph transformation is expected to play an
important role in model-driven software engineering where artifacts are
often refined through compositions of model transformations, by propa-
gating changes in the artifacts over transformations bidirectionally. How-
ever, it is often difficult to understand the correspondence among ele-
ments of the artifacts such as to which part in the source an edit on the
view is to be propagated. It is equally hard to predict whether an edit
is propagable to the source, if the edit affects other parts in the target,
or where in the transformation should be changed to accommodate the
edit. These issues are critical for more complex transformations. In this
paper, we propose an approach to analyzing the above correspondence as
well as to classifying edges according to their editability on the target, in
a compositional framework of bidirectional graph transformation. These
are achieved by augmenting the forward semantics of the transforma-
tions with explicit correspondence traces. By leveraging this approach,
it is possible to solve the above issues, without executing the entire back-
ward transformation. We demonstrate the effectiveness of our approach
via GUI using non-trivial transformations.

Keywords: Bidirectional Graph Transformation, Traceability, Editabil-
ity

* This is a full version of the paper submitted to the 8th International Conference on
Model Transformation (ICMT) 2015. LNCS style file is used to format this article.
This is also a revised version of GRACE Technical report GRACE-TR-2015-03 [13].
In particular, the mechanisms for correspondence analysis and editability analysis
are unified in the present paper, and whereas the previous correspondence analysis
relied on the structured node IDs, the present paper does not.



1 Introduction

Bidirectional transformations has been attracting interdisciplinary stud-
ies [7,21], for example as the view-update problem in the database community
[3,8] and more recently in the programming language community [11,4]. In
model-driven software engineering where artifacts are often refined through
compositions of model transformations, bidirectional graph transformation
is expected to play an important role, because it enables us to propagate
changes in the artifacts over transformations bidirectionally. Other usage of
bidirectional model transformation could be distilling a complicated model
down to just the features a certain stakeholder is interested in, or converting
information to a different platform, such as classes to relational databases.
A bidirectional transformation consists of forward (F)
and backward (B) transformations [7,21]. F takes a
source model (here a source graph [16,17]) Gg and )
transforms it into a view graph Gy. B takes an up- | edit
dated view graph G}, and returns an updated source Gg{_ G%/
graph G, with possibly propagated updates.

In many, especially complex transformations, it is not immediately apparent
whether a view edge has its origin in a particular source edge or a part in the
transformation, and what that part is. Thus, it is not easy to tell where edits to
the view edge are propagated back too. In particular, backward transformation
rejects updates if (1) the label of the edited view edge appears as a constant of
the transformation, (2) a group of view edges are edited inconsistently or (3)
edits of view edges lead to changes in branching behavior in the transforma-
tion. If a lot of edits are made at once, it becomes increasingly difficult for the
user to predict whether these edits are accepted by backward transformation.
Bidirectional transformations are known for being hard to comprehend and pre-
dict [10]. Two features are desirable: 1) Explicit highlighting of correspondence
between source, view and transformation 2) Classification of artifacts according
to their editability. This way, prohibited edits leading to violation of predefined
properties can be recognized by the user early.

Our bidirectional transformation framework called GRoundTram (Graph
Roundtrip Transformation for Models) [19,16,17] features compositionality, a
user-friendly surface syntax, a tool for validating both models and transforma-
tions, and an optimization mechanism. However, the framework also had the
above issues. So we have incorporated these features by augmenting the forward
semantics with explicit trace information. Our main contribution is to exter-
nalize enough trace information through the augmentation and to utilize for
correspondence and editability analysis. For the user, corresponding elements in
the artifacts are highlighted with different colors according to editability and
other properties. For example, the system highlights the corresponding source
edge for a view edge if there is one. The edge constructor or graph variable in
the transformation that has produced the view edge is highlighted in blue or
yellow, respectively. The edges created by constant labels in the transformation
are drawn in dashed lines and GRoundTram disables editing them. Groups of
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view edges that cannot be inconsistently modified to different label names are
highlighted in green.

There is some existing work with similar objectives. For tracing, Van Amstel
et al. [2] proposed the visualization of traces, but in the unidirectional model
transformation setting. For classification of elements in the view, Matsuda and
Wang’s work [22] in the context of extension of semantic approach [27] to general
bidirectionalization, is also capable of similar classification, while we reserve
opportunities to recommend variety of consistent changes for more complex
branching conditions. In addition, our approach can trace between nodes of the
graph, not just edges.

The rest of the paper is organized as follows: Section 2 overviews our moti-
vation and goal with a running example. The simplicity of the example is for the
sake of explanation, and we have more involved examples related to software en-
gineering in our project website mentioned in Section 6. Section 3 summarizes the
semantics of our underlying graph data model, core graph language UnCAL [5],
and its bidirectional interpretation [14]. Section 4 introduces an augmented se-
mantics of UnCAL to generate trace information for the correspondence and
editability analysis. Section 5 explains how the augmented forward semantics
can be leveraged to realize correspondence and editability analysis. An imple-
mentation is found at the above website. Section 6 describes how the proposed
mechanisms in the preceding sections are integrated in GRoundTram.® Section Z
discusses related work, and Section 8 concludes the paper with future work.

2 DMotivating Example

This section exemplifies the importance of the desireble features mentioned in
Sect. 1. Let us consider the source graph in Fig. 1 consisting of fact book informa-
tion about different countries, and suppose we want to extract the information
for European countries as the view graph in Fig. 2. This transformation can be
written in UnQL (the surface language of our target language UnCAL) as below.

select {result: {ethnic: $e, language: $lang, located: $cont}}
where {country: {name:$g, people: {ethnicGroup: $e},
language: $lang, continent: $cont}} in $db,
{$1:3Any} in $cont, $I = Europe

Listing 1.1. Transformation in UnQL

In the view graph (Fig. 2), three edges have identical labels “German”
(3, German, 1), (4, German,2) and (12, German, 11), but have different origins
in the source graph and are produced by different parts in the transformation.
For example, the edge ¢ = (3, German, 1) is the language of Germany and is a

® The implementation is based on our earlier approach [13], in which (1) Mechanism
for correspondence analysis and editability analysis were separated, while present
paper unifies them. (2) Correspondence traces mainly relied on the structured node
ID, while current paper does not.
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Fig.2. View graph generated by
ethnicGroup 5y Austrian_y  transformation of the graph in
Fig. 1

Fig. 1. Example source graph

copy of the edge (1, German, 0) of the source graph (Fig. 1). On the other hand,
¢ has nothing to do with the edge (11, German, 10) of the source graph despite
identical labels. This later edge denotes the ethnic group instead. In addition, ¢
is copied by the graph variable $lang in the select part of the transformation.
Other graph variables and edge constructors do not participate in creating (. It
would be much easier for the user to understand, if the system visually highlights
corresponding elements between source graph, view graph and transformation
to increase comprehensibility.

In this example, the non-leaf edges of the view graph (“result”, “located”,
“language” and “ethnic”) are constant edges in the sense that they cannot be
modified by the user in the view. The user may not be aware of this and try
to rename “located” to “location”, but backward transformation rejects this
change. Ideally, the system should make such constant edges easily recognizable
to prevent the edits in the view and guide the user to make an edit to the
constant in the transformation instead.

In another scenario, the user decides that the language of Germany
should better be called “German (Germany)” and the language of Austria
be called “Austrian German” and thus rename the view edges (3, German, 1)
and (4, German,2) to (3,German (Germany),1) and (4, Austrian German, 2)
accordingly. However, the backward transformation rejects this modification
because these two view edges originate from the language “German” in a single
edge of the source graph. The backward propagation of two edits would conflict
at the source edge. The user may not realize this until the rejection. Ideally, the
system would highlight groups of edges that could cause the conflict, and would
prohibit triggering the backward transformation in that case.

Finally, suppose one of the edges labeled “Europe” in the view graph is
edited to “Eurasia”. Since the transformation depends on the label of this
edge, changing it would lead to the selection of another conditional path in
the transformation in a subsequent forward transformation. The renaming would
cause an empty view after a round-trip of backward and forward transformation.
To prevent this, such edits are rejected in our system. Changes in branch behavior



are very difficult or impossible to predict, if the transformation is too complex.
We can assist the prediction by highlighting the conditional branches involved.

3 Preliminaries

We use the UnCAL (Unstructured CALculus) query language [5]. UnCAL has
an SQL-like syntactic sugar called UnQL (Unstructured Query Language) [5].
Listing 1.1 is written in UnQL. Bidirectional execution of graph transformation
in UnQL is achieved by desugaring the transformation into UnCAL and then
bidirectionally interpreting it [14]. This section explains the graph data model
we use, as well as the UnCAL and UnQL languages.

3.1 UnCAL Graph Data Model

UnCAL graphs are multi-rooted and edge-labeled with all information stored
in edge labels ranging over Label U {e} (Label.), node labels are only used as
identifiers. There is no order between outgoing edges of a node. The notion of
graph equivalence is defined by bisimulation; so equivalence between the graphs is
efficiently determined [5], and graphs can be normalized [17] up to isomorphism.

Fig. 3 shows examples of our graphs.
We represent a graph by a quadruple
(V,E,I1,0). V is the set of nodes, E the
set of edges ranging over the set FEdge,,
where an edge is represented by a triple
of source node, label and destination node.
I : Marker — V is a function that iden-
tifies the roots (called input nodes) of a
graph. Here, Marker is the set of mark-
ers of which element is denoted by &z.
We may call a marker in dom(/) (domain
of I) an input marker. A special marker & is called the default marker.
O C V x Marker assigns nodes with markers called output markers. If
(v,&m) € O, v is called an output node. Intuitively output nodes serve as
”exit points” where input nodes serve as "entry points”. For example, the
graph in Fig. 3 (a) is represented by (V, E,I,O), where V = {1,2,3,4,5,6},
E = {(1,a,2),(1,b,3),(1,b,4),(2,2,5),(3,2,5),(5,4,6),(6,¢c,3)}, I = {&+— 1},
and O = {}. This graph has no output node. Each component of the quadruple
is denoted by the “.” syntax, such as ¢.V for V of graph g = (V, E, I, O).

The type of a graphs is defined as the pair of the set of its input markers X
and the set of output markers ), denoted by DB§. The graph in Fig. 3 (a) has

type DB é&}. The superscript may be omitted, if the set is {&}, and the subscript
likewise, if the set is empty. The type of this graph is simply denoted by DB.

Fig. 3. Cyclic graph examples
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Fig. 5. Graph Constructors of UnCAL

3.2 UnCAL Query Language

Graphs can be created in the UnCAL query language [5], where there are nine
graph constructors (Fig. 4) whose semantics is illustrated in Fig. 5. We use
hooked arrows (—) stacked with the constructor to denote the computation by
the constructors where the left-hand side is the operand(s) and the right-hand
side is the result.

There are three nullary constructors. () constructs a graph without any nodes
or edges, so F[()] € DB", where F[e] denotes the (forward) evaluation of
expression e. The constructor {} constructs a graph with a node with default
input marker (&) and no edges, so F[{}] € DB. &y constructs a graph similar to {}
with additional output marker &y associated with the node, i.e., F&y] € DB .

The edge constructor {_: _} takes a label [ and a graph g € DBy, constructs
a new root with the default input marker with an edge labeled [ from the new
root to g.I(&); thus {l: g} € DBy. The union g; U g5 of graphs g; € DB§1 and
g2 € DBgf2 with the identical set of input markers X = {&z, ..., &z, }, constructs
m new input nodes for each &z; € X', where each node has two e-edges to g1.I(&z;)
and g2.I(&z;). Here, e-edges are similar to e-transitions in automata and used to
connect components during the graph construction. Clearly, g1 U go € DBS\;IUJ,Z.

The input node renaming operator := takes a marker & and a graph g €
DB% with YV = {&y1,...,&m}, and returns a graph whose input markers are
prepended by &z, thus (&z := g) € DB&Z’”'J; where the dot “.” concatenates
markers and forms a monoid with & , i.e., &&z &r.& = &x for any marker



& € Marker, and &z.)Y = {&x.&y1,...,&x.&yn} for YV = {&y1,...,&yn} In
particular, when ) = {&}, the := operator just assigns a new name to the root
of the operand, i.e., (& :=g) € DBi,&x} for g € DBy.

The disjoint union g; @ g2 of two graphs ¢; € DB? and gy € DB%, with
X NY = 0, the resultant graph inherits all the markers, edges and nodes from
the operands, thus g; & g2 € DB?UUJ;,.

The remaining two constructors connect output and input nodes with match-
ing markers by e-edges. g1 @ g2 appends ¢ € DB?UZ and gy € DBfUZ/ by
connecting the output and input nodes with a matching subset of markers X”,
and discards the rest of the markers, thus gy @Q g5 € DB§. An idiom &z'Qgs
projects (selects) one input marker &z’ and rename it to default (&), while dis-
carding the rest of the input markers (making them unreachable). The cycle
construction cycle(g) for g € DB%uy with X N Y = () works similarly to @ but
in an intra-graph instead of inter-graph manner, by connecting output and input
nodes of g with matching markers X, and constructs copies of input nodes of g,
each connected with the original input node by an e-edge. The output markers
in )Y are left as is.

It is worth noting that any graph in the data model can be expressed by using
these UnCAL constructors (up to bisimilarity), where the notion of bisimilarity
is extended to e-edges [5].

The semantics of conditionals is standard, but the condition is restricted to
label equivalence comparison. There are two kinds of variables: label variables
and graph variables. Label variables, denoted $/, $/; etc., bind labels while graph
variables denoted $¢,$¢; etc., bind graphs. They are introduced by structural
recursion operator rec, whose semantics is explained below by example. The
variable binders let and llet having standard meanings are our extensions used
for optimization by rewriting [15].

We take a look at the following concrete transformation in UnCAL that
replaces every label a by d and contracts edges labeled c.

rec(A\($/,8g). if $/ = a then {d : &'}?
else if $/ = c then {¢: &*}*
else {$1:8°}5)($db)”

If the graph variable $db is bound to the graph in Fig. 3 (a), the result of the
transformation will be the one in Fig. 3 (b). We call the first operand of rec the
body expression and the second operand the argument expression. In the above
transformation, the body is an if conditional, while the argument is the variable
reference $db. We use $db as a special global variable to represent the input of
the graph transformation. For the sake of bidirectional evaluation (and also used
in our tracing in this paper), we superscribe UnCAL expressions with their code
position p € Pos where Pos is the set of position numbers. For instance, in the
example above, the numbers 1 and 2 in {d: &1}2 denote the code positions of
the graph constructors & and {d : &}, respectively.

Fig. 6 shows the bulk semantics of rec for the example. It is “bulk” because
the body of rec can be evaluated in parallel for each edge and the subgraph
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Fig. 6. Bulk semantics by example

reachable from the target node of the edge (which are correspondingly bound to
variables $/ and $g¢ in the body).

In the bulk semantics, the node identifier carries some information which has
the following structure [14] StrID:

StrID ::= SrcID
| Code Pos Marker
| RecN Pos StrID Marker
| RecE Pos StrID FEdge,

where the base case (SrcID) represents the node identifier in the input graph,
Code p &z denotes the nodes constructed by {}, {_: _}, &y, U and cycle where &z
is the marker of the corresponding input node of the operand(s) of the construc-
tor. Except for U, the marker is always default and thus omitted. RecN p v &z
denotes the node created by rec at position p for node v of the graph result-
ing from evaluating the argument expression. For example, in Fig. 6, the node
, originating from node 1, is created by rec at position 7 (RecN is ab-
breviated to RN in the figure for simplicity, and similarly Code to C and RecE
to RE). We have six such nodes, one for each in the input graph. Then we eval-
uate the body expression for each binding of $/ and $g. For the edge (1,a,2),
the result will be ({(C 2),(C 1)},{(C 2,4,C 1)}, {&+— C 2},{(C 2,&)}), with the
nodes C 2 and C 1 constructed by {_:_} and & respectively. For the shortcut
edges, an e-edge is generated similarly. Then each node v of such results for edge
¢ is wrapped with the trace information RE like RE p v ¢ for rec at position
p. These results are surrounded by round squares drawn with dashed lines in
Fig. 6. They are then connected together according to the original shape of the
graph as depicted in Fig. 6. For example, the input node [RE 7(C2)(1,a, 2)] is
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connected with . After removing the e-edges and flattening the node IDs,
we obtain the result graph in Fig. 3 (b).

Our bidirectional transformation in UnCAL is based on its bidirectional
evaluation, whose semantics is given by F[.] and B[] as follows. Fle]p =
G is the forward semantics applied to UnCAL query e with source variable
environment p, which includes a global variable binding $db the input graph.
Ble](p, G') = p’ produces the updated source p’ given the updated view graph
G’ and the original source p.

Bidirectional transformations need to satisfy round-trip properties [7,25],
while ours satisfy the GetPut and WPutGet properties [14], which are:

Flelp = Gv
Ble](p,Gv) = p

Blel(p,Gy) = ¢ Flelp' = G
Blel(p.G) =/

(GetPut) (WPutGet)

where GetPut says that when the view is not updated after forward transforma-
tion, the result of the following backward transformation agrees with the origi-
nal source, and W(Weak)PutGet (a.k.a. weak invertibility [9], a weaker notion of
PutGet [11] or Correctness [25] or Consistency [3] because of the rather arbitrary
variable reference allowed in our language) demands that for a second view graph
G4, which is returned by F[e]p’, that backward transformation Ble](p, GY) us-
ing this second view graph as well as the original source environment p (from
the first round of forward transformation) returns p’ again unchanged.

In the backward evaluation of rec, the final e-elimination to hide them
from the user is reversed to restore the shape of Fig. 6, and then the graph
is decomposed with the help of the structured IDs, and then the decomposed
graph is used for the backward evaluation of each body expression. The backward
evaluation produces the updated variable bindings (in this body expression we
get the bindings for $/, $¢g and $db and merge them to get the final binding of
$db). For example, the update of the edge label of (1,b,3) in the view to x is
propagated via the backward evaluation of the body {$!: &}, which produces
the binding of $/ updated with x and is reflected to the source graph with edge
(1,1, 3), replaced by (1,x,3).

UnQL as a Textual Surface Syntax of Bidirectional Graph Transformation We
use the surface language UnQL [5] (Fig. 7) for bidirectional graph transforma-
tion. An UnQL expression can be translated into UnCAL, a process referred to
as desugaring. We highlight the essential part of the translation in the following.
Please refer to [5,20,18] for details. The template (directly after the select clause)
appears in the innermost body of the nested rec in the translated UnCAL. The
edge constructor expression is directly passed through, while the graph variable
pattern in the where clause and corresponding references are translated into
combinations of graph variable bindings in nested recs as well as references to
them in the body of recs. The following example translates an UnQL expression
into an equivalent UnCAL one.
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(template) T uw={L:T,...,L:T} | TUT
| $g | if BCthenT elseT
| select T where B,...,B
| letrec sfun fname(L: $G)
= ...in fname(T)
(binding) B == Gpin $G | BC
(condition) BC := notBC | BCand BC
| BCorBC | L=1L
label) L == $l| a
label pattern) Lp == $1 | Rp

(
(
(graph pattern) Gp $G | {Lp:Gp,...,Lp: Gp}
(regular path pat.) Rp == a | _ | Rp.Rp | (Rp|Rp)
Rp? | Rpx | Rp+

Fig. 7. Syntax of UnQL

rec(A($0,3g). if $l = a

select {res:$db} then rec(A\($1',$g). if 8/ =D
where {a:$g} in $db, = then {res:$db}
{b:3g} in $db else {})($db)

else {})($db).

4 Trace-augmented forward semantics of UnCAL

This section describes the forward semantics of UnCAL augmented with explicit
correspondence traces. In the trace, every view edge and node is mapped to a
corresponding source edge or node or a part of the transformation. The path
taken in the transformation is also recorded for the view elements.

The trace information is utilized for (1) correspondence analysis, where a
selected source element is contrasted with its corresponding view element(s)
by highlighting them, and likewise, a selected view element is contrasted with
its corresponding parts in source and transformation, and for (2) editability
analysis, classifying edges by origins to (2-1) pre-reject the editing of edges that
map to the transformation, (2-2) pre-reject the conflicting editing of view edges
whose edit would be propagated to the same source edge, (2-3) warn the edit that
could violate WPutGet by changing branching behavior of if by highlighting the
branch conditions that are affected by the edit.

The augmented forward evaluation F[.] : Expr — Env — Graph x Trace
takes an UnCAL expression and an environment as arguments, and produces a
target graph and trace. The trace maps an edge € Fdge (resp. a node € Node)
to a source edge (resp. source node) or a code position, preceded by zero or more
code positions that represent the corresponding language constructs involved in
the transformation that produced the edge (resp. the node). The preceding parts
are used for the warning in (2-3) above. Thus
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Trace = FdgeU Node — Traceg U Tracey
Tracer, ::= Pos : Traceg | [Edge | Pos]
Tracey ::= Pos : Tracey | [Node | Pos]

The environment Env represents bindings of graph variables and label vari-
ables. Each graph variable is mapped to a graph with a trace, while each label
variable is mapped to a label with a trace that contains only edge mapping.
Thus

Env = Var — (Graph x Trace) U (Label x Traceg).

Given source graph gs and the corresponding distinct graph variable $db, the
top level environment pg is initialized as follows.

po={8db— (95, {C— [l C€ g B} Ufv =[] | v € 9. V]}

As idioms used in the following, we introduce two auxiliary functions of type
Trace — Trace: prep, to prepend code position p € Pos to traces, and recep ¢
to “wrap” the nodes in the domain of traces with RecE constructor to adjust to
bulk semantics.

prep,, t ={ 2z —p7|(x—7T1)Et}

rece,ct ={(fz)— 7|(x—71)€t}
(RecE p u ¢,l,RecE pv () if z = (u,l,v) € Edge
RecE p x ¢ if x € Node

Now we describe the semantics F[_]. The graph component returned by the
semantics is the same as that of [14] and recapped in Section 3, so we focus
here on the trace parts. The subscripts on the left of the constructor expressions
represent the result graph of the constructions.

where fx =

FI{31, = (e} AG1(&) — [p]}) (T-EmP)

Flay"], = (c&y” AG1(&) — [p]}) (OMRK)

F1071, = (O7,0) (G-EMP)

Fler WP ea], = (c(g1 UP go), (t1 Utz U{v = [p] | (&2 v) € G.T}))  (UNI)
where  ((g1,11), (92, 12)) = (Flealp, Flez]p)

Fler & ea], = (91 &P g2,t1 Ut2) (Duni)
where  ((g1,11), (92,t2)) = (Flea]p, Flez]p)

Fler @ es], = (91 QP g2, t1 Ut) (APND)
where  ((g1,t1), (g2, 12)) = (Fle]p, Fle2]p)

Flfen: e}, = (c{l: g}* . {(v. 1, 9.1(&)) = 70— [p]} U ) (Edg)

where ((I,7),(g,t)) = (Fr[eL] ., Fle] )
Fl(&z == ¢)f], = (ax = g,t) (IMRK)
where (g,t) = Fle],
Fleycle?(e)],, = (aeyele?(g),t U {v = [p] | (&x — v) € G.1}) (Cyc)

where (g,t) = Fle],
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For the constructor {}, the trace maps the only node (G.I(&)) created, to the
code position p of the constructor (L=Emp). The same trace information is gen-
erated for the output marker constructor (QMRK). Since neither edge nor node
is created by the constructor (), no trace information is generated (G=Emp). The
binary graph constructors U, & and @ returns the traces of both subexpres-
sions, in addition to the trace created by themselves. The graph union’s trace
maps newly created input nodes to the code position (IINI). Since other two
binary constructors do not create any node or non-¢ edge, no additional trace
is generated (DunNI,APND). For the edge-constructor (Edg), the correspondence
between the created edge and its trace created by the label expression ey, is es-
tablished, while the newly created node is mapped to the code position of the
constructor. The marker-renaming expression (IMRK) does not add any trace to
that of its subexpression, since no additional node or edge is created. The cycle
expression (CxcC) adds traces that map the roots created by the constructor to
the code position of the constructor.

For label expression evaluation Fr[.] : Ezpry, — Env — Label x Traceg,
the trace that associates the label to the corresponding edge or code position is
accompanied with the resultant label value.

Fr[2"], = (a,[p]) (LeNsT)

Fuls?], = (Lp:7) (LVAR)
where (I,7) = p($1)

Label literal expressions (LCNST) record their code positions, while label variable
reference expressions (Lvar) add their code positions to the traces that are
registered in the environment.

Label variable binding expression (LLET) registers the trace to the environ-
ment and passes it to the forward evaluation of the body expression e. Graph
variable binding expression (LET) is treated similarly, except it handles graphs
and their traces. Graph variable reference (MAR) retrieves traces from the envi-
ronment and add the code position to it.

Flet” 81 = ey ine], = Fle] , 51 0pr) (LLET)
where (I,7) = Fi[er],
f[[letp $g = e in 62}] = f[[eQ]]pU{&qH g prep,, )} (LET)

where (g,t) = F[[el]]p
F[59"], = (g, prep, t) (VAR)
where (g,t) = p(39)

if? (e;, = e’ ) then eirye
FH:I (eL eL) else Et ]l =(g, prepp)
false where ((1,.), (', )
(=1

(9,t) = Fles], (IF)

Structural recursion rec (REC) introduces new environment for the label ($1)
and graph ($g) variable that includes traces inherited from the traces generated

(Frlen], Fuler])

)=
b
t) =
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by the argument expression e,, augmented with the code position p of rec. g,
denotes the subgraph of graph g that is reachable from node v. t,, denotes a trace
that are restricted to the subgraph reachable from node v. The function M takes
an edge and returns the pair of the graph created by the body expression ey, for
the edge, and the trace associated with the graph. ¢; is the trace generated by
adjusting the trace returned by M with the node structure introduced by rec.
compose?, . is the bulk semantics explained in Sect. 3.2 using Fig. 6, for the input
graph ¢ and the input/output marker Z of ey, where Vrecny denotes the nodes
with structured ID RecN.

Flrecz(A(81,8g).en)(ea)], = (¢, CEUEtc Uty) (REC)
where (g,t) = Flea]p

M :{CHfﬂeb]]p,|C€g.E,<7é5,(u,l,v):C,
pl=pUl— (I,p:t(()),8g — (9o, prep, tv)}}

g/ = (VRecN U..oyoo 7) = composefeC(M, 9, Z)
t{/ = {U = [p] | (S VRecN}
te = recep c(prep, ma(M(()))

The above semantics collects all the necessary trace information whose uti-
lization is described in the next section. Even though the tracing mechanisms
are defined for UnCAL, they also work straightforwardly for UnQL, based on
the observation that when an UnQL query is translated into UnCAL, all edge
constructors and graph variables in the UnQL query creating edges in the view
graph are preserved in the UnCAL query. For instance, the edge constructor
{language : $lang} and the graph variable $lang of the UnQL query in Listing
11 are transferred to the generated UnCAL query in Listing 1.2.

rec(\ ($L,8fv1). if $L = country
then rec(\ ($L,8g). if $L = name
then rec(\ ($L,8fv2). if $L = people
then rec(\ ($L,3e). if $L = ethnicGroup
then rec(\ ($L,$lang). if $L = language
then rec(\ ($L,$cont). if $L = continent
then rec( ($1,$Any). if $/ = Europe
then {result: {ethnic: $e,
language: $lang,
located: $cont}}
else {})($cont)
else {})($fv1)
else {})($fv1)
else {})($fv2)
else {})($fvl)

else {})($fv1)
else {})($db)

Listing 1.2. UnCAL expression of UnQL query in Listing 1.1
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One limitation is: in our system, the bidirectional interpreter of UnCAL op-
tionally rewrites expressions for efficiency. However, due to reorganization of
expressions during the rewriting, we currently support neither tracing UnCAL
nor tracing UnQL if the rewriting is activated.

5 Correspondence and Editability Analysis

This section elaborates utilization of the traces defined Query
in Sect. 4 for the correspondence and editability analysis
motivated in Sect. 2. It allows us to tell the correspon- Source
dence between elements of the source graph, code positions of the transformation
query and elements of the view graph, and editability of the edges in the view
graph.

Given transformation e, environment pg, and the corresponding trace t for
(9,t) = Fle] ,, through semantics given in Sect. 4, the trace for view edge ¢ has
the following form

View

HO) =p1ipaioeipnila] (n>0)

where z is the origin, and x = {’ € Fdge if  is a copy of ¢’ in the source graph,
or x = p € Pos if ( is created of a label constant at position p in the transfor-
mation. pi1,pe, ..., P, represent code positions of variable definitions/references
and conditionals that conveyed (.

For view graph g and trace t, define the function origin : Edge — FEdge U Pos
and its inverse:

origin ¢ = last(¢(¢))
origin™! z = {¢ | ¢ € g.E,origin¢ = z}

Correspondence is then the relation between the domain and image of trace
t, and various individual correspondence can be derived, the most generic one
being R : Edge U Node U Pos x Edge U Node = {(«',x) | (x — 7) € t,2’ € T},
meaning that 2’ and z is related if (2/,z) € R. Source-target correspondence
being {(z',z) | (x — 7) € t, 2’ =lastT,z’ € (Node U Edge)}. For correspondence
analysis in the GUI, ¢’ is highlighted in the source graph pane, while language
constructs at p for all py,ps,...,p, are highlighted in the transformation pane.
Using origin and origin™!, corresponding source, transformation and view ele-
ments can be identified in both directions. When a view element such as the
edge ¢ = (4, German, 2) in Fig. 2 is given, we can find the corresponding source
edge origin(¢) = (1, German, 0), which will be updated if we change ¢. In con-
trast, given the view edge (14, language,4), the code position of the label con-
stant lang in {lang : $e} of the select part in Listing 11 is obtained. Given
the view edge ¢ = (3,German, 1), the code positions of the the graph variables
$lang of the select part and $db in Listing 11 are obtained, utilizing code
positions in pi,...,p,, because t ¢ includes such positions. These graph vari-
ables copy the source edge origin(¢) = (1, German, 0) to the view graph. Cor-
respondence also works in reverse direction. For example, when a source edge
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¢’ = (1,German,0) is given, we can find the set of corresponding view edges
{(3,German, 1), (4, German, 2)}, since origin~ ¢’ is equal to this set.

For editability analysis, the following notion of equivalence is used.
Given the partial function origing : Edge — FEdge defined by origing ¢ =
origin(¢) if origin(¢) € FEdge, or undefined otherwise. Then, view edges (; and
(2 are equivalent, denoted by (; ~ (o, if and only if origing (1 = origing (2. All
edges for which origing is undefined are considered equivalent. The equivalence
class for edge (¢ is denoted by [¢]~. Then,

1. An edit on the view edge ¢ with ¢’ = origing ¢ defined is propagable to ¢’ in
the source graph by B, when both of the followings hold.
(a) Other view edges in [(]~ are unchanged or consistently updated.
(b) For every if eg ... expression in the backward evaluation path in which
ep refers a variable $/ that binds label of edges originated from ¢’ (i.e.,
p(81) = (L, 7) and last(r) = ¢’), applying the edit to the binding does
not change the condition.
2. An edit on the view edge ¢ with origin(¢) = p € Pos is not propagable to the
source. Editing label constant at p in the transformation would achieve the
edits, with possible side effects through other copies of the label constant.

Consider the example in Listing 1.1 with the source graph of Fig. 1 and
view graph of Fig. 2. We get four equivalence classes, one each for the source
edges (1, German, 0), (3,Europe, 2), (5, Austrian,4) and (11, German, 10), as well
as the class that satisfy condition 2. For view edge ( = (3, German, 1), we have
(4, German, 2) € [(]~ via origing ¢ = (1, German, 0), so these equivalent edges can
be selected simultaneously, inconsistent edits on which can be prevented. Direct
edits of the view edge ¢ = (0,result, 14) are suppressed since origin( € Pos
(condition 2). As for case 1h, when the view edge ( = (7,Europe, 5) is given, all
the code positions in ¢ ¢” for ¢ € origing ! (origing ¢) are checked if the positions
represent conditionals that refer variables, change of those binding would change
the conditions and would be rejected by B. We obtain the position for variable
reference $/ in the condition ($/ = Europe) for warning.

Details on Branch Behavior Change Rejection in the Backward Transformation
and its Prevention Here we briefly review how updates in case 1h are rejected by
B. Given transformation e and view edge ¢ to be updated and the corresponding
source edge ¢’ = origing ¢, for each BJif eg...] invoked from B[e], for all
bindings of label variables with the same source edge, in the condition expression
e, label update to (' is applied, and eg is reevaluated based on the updated
bindings. If the reevaluation result differs from that in the forward direction, the
update is rejected.

Next we explain how the case 1b is detected without conducting the entire
backward transformation. Suppose origing ~'¢’ = E and let E’ the set of edges
in E that are reachable from the roots of the view graph. For each (’ € FE’,
7 =t ¢"” denotes all the trace involved for source edge ¢’. Then for all code
positions in 7 for if expression, apply similar propagation of updates for label
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variables in the condition expression. If any of the conditions change, then the
condition 1b is detected and edits of ( are prevented.

6 Our GRoundTram System

We have integrated the tracing mechanisms in the form of highlighting and
editability support described above into our GRoundTram system. The imple-
mentation is on our project website at http://www.prg.nii.ac.jp/projects/
gtcontrib/cmpbx/. In the following, we summarize the new features available
to the users. Fig. 8 shows a screenshot of GRoundTram.

File Edit View Tool Help

[E2=]r | — | = AN =] R R ] 2 JEER )

ThreePanel | (‘result [ schema |

EEELI=TEEEe BHEL= W EOEEEe
/ésulc “result

g gthnic

% man ! netrian

urope

ke
hni
Burope %erman German

cycle((& = &20, (), &z0 :={}))

~
ern

select {result : {ethnic: $e, language: $lang, located :
$cont} }
where {country :

A T |[ [T

Fig. 8. Screenshot of the GRoundTram system showing traces between source graph,
UnQL transformation and view graph

View edges have their origins highlighted when they are selected, be it a
single view edge in the selection or a whole collection of edges. Direct copies
from the source graph will have their corresponding source edge highlighted, as
well as the graph variable in the query that produced them. Other view edges
have the relevant edge constructor highlighted in the query instead. In Fig. 8, an
edge constructor with a constant label as well as a graph variable are highlighted
(in different colors for the benefit of the user). In addition, several source edges
are identified as the origins of direct copies that are part of the view selection.

Highlighting also works in reverse to find the copies of source edges in the
view as well as the corresponding view edges for a given graph constructor or
graph variable in the query.

Constant edges are marked with dashed lines and editing their label is pro-
hibited. When a view edge is selected, corresponding view edges within the same


http://www.prg.nii.ac.jp/projects/gtcontrib/cmpbx/
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equivalence class are highlighted in a green color (also seen in Fig 8). The system
prevents inconsistent edits from happening.

7 Related Work

Tracing mechanism. Van Amstel et al. proposed a visualization framework
for chains of ATL model transformations [2]. Systematic augmentation of the
trace-generating capability with model transformations is achieved by higher-
order model transformations [26]. Although they also trace between source,
transformation and target, we also use the trace for editability analysis. Our
own previous work [14] introduced the trace generation mechanism, but the
main objective was the bidirectionalization itself. The notion of traces has been
extensively studied in a more general context of computations, like provenance
traces [6] for the nested relational calculus.

Lifting traces from the core language to its surface language (syntactic sugar),
like UnCAL to UnQL in our work, is not easy in general due to the generally big
gap between the two languages. Pombrio and Krishnamurthi [23] tackle with this
gap by automatically reproducing an evaluation sequence of the core language
in the surface language, which may provide a partial solution for us to cope with
higher level sugar like replace in our previous work [20,17].

Triple Graph Grammars (TGG) [24] and frameworks based on them are
studied extensively and are applied to model-driven engineering [1]. They are
based on graph rewriting rules consisting of triples of source and target graph
pattern, and the correspondence graph in-between which explicitly contains the
trace information. Grammar rules are used to create new elements in source,
correspondence and view graphs consistently. By iterating over items in the cor-
respondence graph, incremental TGG approaches can also work with updates
and deletions of elements [12]. Our transformation language UnQL is compo-
sitional in that it allows arbitrary intermediate graphs to be produced in the
transformation, while TGG is not. Our tracing over compositions are achieved
by keeping track of variable bindings.

Editability Analysis. Another well-studied bidirectional transformation
framework called semantic bidirectionalization [27] generates a table of corre-
spondence between elements in the source and those in the target to guide the
reflection of updates over polymorphic transformations, without inspecting the
forward transformation code (thus called semantic). The entries in the target
side of the table can be considered as equivalence classes to detect inconsistent
updates on multiple target elements corresponding identical source element. Al-
though UnCAL transformations are not polymorphic in general because of the
label comparison in the if conditionals with constant labels, prohibiting the se-
mantic bidirectionalization approach. Matsuda and Wang [22] relaxed this limi-
tation by run-time recording and change checking of the branching behaviors to
reject updates causing such change. They also cope with data constructed during
transformation (corresponding to constant edges in our transformation). So our
framework is close to theirs, though we utilize the syntax of transformation. We
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can trace nodes (though we focused on edge tracing in this paper) while theirs
cannot.

8 Conclusion

Bidirectional transformations sometimes receive a reputation that the result of
backward transformation is difficult to understand or predict. This applies to
frameworks like our GRoundTram system in which the backward semantics is
completely provided, rather than (partially) left to the users, so the logic of
backward transformation is rather fixed and hidden by the semantics. The pre-
diction is even more difficult for more complex transformations. In this paper, we
proposed, within a compositional bidirectional graph transformation framework
based on structural recursion, a technique for analyzing the correspondence be-
tween source, transformation and target as well as to classifying edges according
to their editability. We achieve this by augmenting the forward semantics with
explicit correspondence traces. The incorporation of this technique into the GUI
enables the user to clearly visualize the correspondence. Moreover, prohibited
edits such as changing a constant edge and updating a group of edges inconsis-
tently are disabled. This allows the user to predict violated updates and thus do
not attempt them at the first place.

As a future work, we would like to accommodate update operations other
than edge renaming, like insertion of subgraphs, using the same backward
transformation semantics, because we currently handle insertions using a
separate general inversion strategy which is costly. We currently have lim-
ited support, however we do not have bidirectional properties for complex
expressions. One obvious case we can support is subgraph extraction like
select {a:$g} where {a:$g} in $db, in which we could insert an arbitrary
subgraph below the top level edge labeled a. Because the subgraph is not
“observed” in the transformation, an update will never interfere with the
branching behavior. Even though that part is “observed” by the bulk semantics,
that part is left unreachable, so the update does not affect the computation of
the reachable part. Leveraging the traces in the forward semantics indicating
which edge is involved in the branching behavior, we could safely determine
the part that accepts the insertion or deletion of that part reusing the in-place
update semantics, thus achieving “cheap backward transformation”.

We also would like to overcome the limitations of tracing UnQL with opti-
mization activated by defining rules of how to pass position information of edge
constructors and graph variables in an UnCAL expression to the corresponding
elements in the optimized expression. Our foray in this direction shows promising
results.
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