ISSN 1884-0760

GRACE TECHNICAL REPORTS

A Trace-based Approach to Increased
Comprehensibility and Predictability of Bidirectional
Graph Transformations

Soichiro Hidaka Martin Billes Quang Minh Tran

GRACE-TR 2015-03 February 2015

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

A Trace-based Approach to Increased
Comprehensibility and Predictability of
Bidirectional Graph Transformations®

Soichiro Hidaka', Martin Billes?, Quang Minh Tran’
INational Institute of Informatics, Japan
Email: hidaka@nii.ac.jp
2 Augsburg University, Germany
Email: martin.billes @student.uni-augsburg.de
3Daimler Center for IT Innovations, Technical University of Berlin, Germany
Email: quang.tranminh@dcaiti.com

September 2014

Abstract—Bidirectional graph transformation is expected to
play an important role in model-driven software engineering,
where artifacts are often refined through compositions of model
transformations, from high level specifications down to concrete
ones closer to implementation. In such a setting, changes in the
artifacts are reflected not only from upstream to downstream,
but also the other way round.

However, it is often difficult to understand the correlation
between the transformed artifacts. It is equally hard to predict to
which part a change will eventually be propagated, and whether
the propagation will succeed at all. That comprehensibility and
predictability is crucial for more complex transformations.

In this paper, we propose a well-defined tracing mechanism
between source, transformation and target, as well as edge clas-
sification mechanism on the target artifacts, in a compositional
framework of bidirectional graph transformation.

We implemented these mechanisms in our GUI so that users
are informed if an edit on the target is propagable to the source,
where to be propagated, if the edit affects other parts in the
target, or where in the transformation should be changed to
accommodate the edit, without executing a backward transfor-
mation. We demonstrate the effectiveness of our approach using
non-trivial bidirectional graph transformations.

I. INTRODUCTION

Models used for Model-Driven Software Engineering can
become so large that they become difficult to comprehend for
developers. For better comprehension, a view of the model
can be used to highlight certain interesting aspects. A view
of a model does not have to serve simplification alone: it
can also provide a different perspective, such as the classi-
cal transformation from classes to relational databases. With
views arises the problem of view updating. When the view
of a model is modified, the source model should have those
changes reflected, if possible. This view-update problem can
be solved by bidirectional transformations [[]. This problem
is widely studied in the database community [D, B] and more
recently in the programming language community [B, B].

*IEEE conference style file is used to format this paper.

In software engineering, bidirectional transformation is ex-
pected to play an important role in software development [H]
such as model synchronization [@, B, B], round-trip engineer-
ing [[], multiple-view software development [, [2A], and
model-code coevolution [[3]. Transformations serve to manip-
ulate and generate models and other artifacts. Changes down-
stream the chain of transformations are expected to be reflected
upstream so that, for example, a defect found and fixed down-
stream can be propagated to the upstream to avoid reproducing
the defect.

Such bidirectional transformations F
consist of two parts (see to the right): Gs~—— Gy
forward transformation () and back- l edit
ward transformation (53) [0, I@]. A e Vel
source model is transformed to a view s v
model via a forward transformation.
The forward transformation may discard some of the infor-
mation found in the source and create some new information
on its own. It can also rearrange the information found in
the source model, sometimes duplicating parts of the source
model. For this paper, we assume source and view models
to be represented in the form of edge-labeled graphs, Gg
and Gy, since we consider model transformation our primary
application and models are represented by graphs [T, @d].
Our bidirectional graph transformation [[] is based on bidi-
rectional interpretation of an existing unidirectional language
based on structural recursion on unstructured data [[R]. The
bulk semantics of structural recursion allowing per-edge inde-
pendent computation is utilized in the bidirectionalization.

To be useful, bidirectional transformation needs round-trip
properties [M, B]. In our setting, forward transformation F[e]p
computes the transformation expression e for variable bind-
ing p where p corresponds to the source, and at the start it
includes the global variable binding the input graph. The for-
ward transformation outputs the view graph G and backward
transformation p’ = B[e](p, G’) produces the updated source

p’ given the updated view graph G’ and the original source p.
Our bidirectional transformation must satisfy the GetPut and
WPutGet properties [[], which are:

Flelp = Gv
Blel(p,Gv) = p O

Blel(p,Gy) = ¢ Flelp' =

1!
V. (WPut
Ble) (0, G = o/ (WPutGet)

where GetPut says that when the view is not updated
after forward transformation, the result of the following
backward transformation agrees with the original source,
and W(Weak)PutGet (a.k.a. weak invertibility [[Q], a weaker
notion of PutGet [H] or Correctness [H] or Consistency [O]
because of the rather arbitrary variable reference allowed in
our language) says that p’ is returned after being fed into
another round-trip without edit operations.

When looking at an edge in the view graph, it is not imme-
diately apparent whether it has its origin in a certain part of the
source graph or of the transformation and if yes, which part
that is exactly. The exact location where edits will be propa-
gated to is not evident either, which can cause unpredictable
results. Backward transformation in particular can fail, which
happens if 1) the label of the edited view edge appears as a
constant of the transformation, (2) a group of view edges are
edited inconsistently or (3) edits of view edges lead to changes
in branching behavior in the transformation. If a lot of edits
are made at once, it becomes increasingly difficult to predict
whether backward transformation will succeed or not.

For better comprehension and prediction of bidirectional
transformation, we have successfully integrated trace-based
highlighting support into our bidirectional transformation sys-
tem named GRoundTram (Graph Roundtrip Transformation
for Models) [0, ¥, [d] (see Fig. @M). In GRoundTram,
when the user selects a view edge on the right panel, the
system highlights the corresponding source edge if there is
one. The edge constructor or graph variable in the transfor-
mation that has produced the view edge is highlighted in blue
or yellow, respectively. The edges created by constant labels in
the transformation are drawn in dashed lines and GRoundTram
disables editing them. Groups of view edges that cannot be
inconsistently modified to different label names are highlighted
in green.

There is some existing work with similar objectives. For
tracing, Van Amstel et al. [Id] proposed the visualization
of traces, but in the unidirectional model transformation
setting. For classification of elements in the view, Matsuda
and Wang’s work [J] in the context of extension of semantic
approach [[3] to general bidirectionalization, is also capable
of similar classification, while we reserve opportunities to
recommend variety of consistent changes for more complex
branching conditions.

The rest of the paper is organized as follows: Section @
summarizes the semantics of our underlying graph data model,
core graph language UnCAL and the user-level syntax UnQL.

& &
0 o
./ T\b 4/ T\b
Q0 G o0
WO dd

35-9400 G

(a) (b)

Fig. 1. Cyclic graph examples

Readers already familiar with them can safely skip the first two
subsections. Section I motivates our work by an example,
which is also used in the following sections. The simplic-
ity of the example is for the sake of explanation, and we
have more involved examples related to software engieering
in our project website mentioned in Section M. Section M
proposes a tracing mechanism that supports the highlighting of
the correspondence between source, transformation and target.
Section M proposes an algorithm to classify the edges in the
target to support showing the editability (whether particular
editing of the edge(s) fails or not). Section M describes how
the proposed mechanisms in the preceding sections are inte-
grated in GRoundTram. Section M discusses related work,
and Section M concludes with future work.

II. PRELIMINARIES

We use the UnCAL (Unstructured CALculus) query lan-
guage [[¥]. UnCAL has an SQL-like syntactic sugar called
UnQL (Unstructured Query Language) [[R]. Bidirectional ex-
ecution of graph transformation in UnQL is achieved by desug-
aring the transformation into UnCAL and then bidirectionally
interpreting it [[CA]. This section explains the graph data model
we use, the UnCAL and UnQL languages as well as an ex-
tension of UnCAL forward transformation.

A. UnCAL

Our graphs are multi-rooted and edge-labeled with all infor-
mation stored in edge labels ranging over Label U{c}(Label.),
the node labels being arbitrary. There is no order between
outgoing edges of nodes. The notion of graph equivalence is
based on bisimulation, so equivalence between the graphs is
efficiently determined [[¥], and we can always normalize [[[H]
up to isomorphism.

Fig. M shows examples of our graphs.

We represent a graph by a quadruple (V, E,I,0). V is the
set of nodes, E the set of edges ranging over the set Edge,,
where an edge is represented by a triple of source node, label
and destination node. [is the function identifying the root or
input nodes of the graph by the input markers denoted like &x
that range over the set Marker. A special marker & is called
the default marker.

Apart from the roots as “entry points” of graphs, a graph
may have “exit points” as represented by O which is a relation
V x Marker and (v, &m) € O implies the node v is associated
with output marker &m. Such nodes are called output nodes.

ex={}|{l:e}|eVUe|sx:=e|say]|()
| e@el|le@e|cycle(e) { constructor }
| $g { graph variable }
| ifl=Itheneelsec { conditional }
| let$g=cine|llet$/=17ine { variable binding }
| rec(A(81,8¢).€)(e) { structural recursion application }
{ label (a € Label) and label variable }

Fig. 2. Core UnCAL Language

For example, the graph in Fig. M (a) is represented
by (V,E,I,O), where V = {1,2,3,4,5,6}, E =

{(1,2,2),(1,b,3),(1,b,4),(2,2,5),(3,2,5),(5,4d,6), (6, ¢, 3)}.

I = {& — 1}, and O = {}. This graph has no output node.
Each component of the quadruple is denoted by the
syntax, such as ¢g.V for graph g. The type of the graphs is
represented by DB§, where X is the set of input markers or
domain of I and) is the set of output markers. The graph in
the above example has type DB%‘. The superscript is omitted,
if the set is {&}, and the subscript likewise, if the set is empty.
The type of the example graph is simply denoted by DB, and

the (static) type of UnCAL expression e by e :: DB§.

In UnCAL, we have nine graph constructors (Fig. B) whose
semantics is illustrated in Fig. B.

We use hooked arrows (—) stacked with the constructor to
denote the computation by the constructors where the left-hand
side is the operand(s) and the right-hand side is the result.
There are three nullary constructors. () constructs a graph
without any nodes or edges, so F[()] € DB’. The constructor
{} constructs a graph with a node with default input marker (&)
and no edges, so F[{}] € DB. &y constructs a graph similar
to {} with additional output marker &y associated with the
node, i.e., Flsay] € DB{&U}.

The edge constructor {_: _} takes a label [and a graph
g € DBy, constructs a new root with the default input marker
and extends an edge labeled [from the new root to g.I(&),
thus {l: g} € DBy. For the union g; U go of graphs g; €
DB§1 and g2 € DBS‘;2 with identical set of input markers
X = {am,..., &%, }, m new input nodes for each &z; € X
are constructed, and from each of these nodes, two e-edges are
extended to g1.1(&z;) and go.I(&x;). Here, c-edges are similar
to e-transitions in automata and used to connect components
during the graph construction. Clearly, g; U g2 € DBﬁlqu.

The input node renaming operator := takes a marker &z and
a graph g € DB% with YV = {&v1,..., &Ym }, and returns a
graph whose input markers are prepended by &z, thus (&z :=
g) € DB%"Y where the dot “ concatenates markers and
forms a monoid with & , i.e., & & = &x.& = &x for any
marker &z € Marker, and s&x.) = {&z.&Y1,. .., &2.&Yy, } for
Y = {sy1,...,&Ym}. In particular, when) = {s&}, the :=
operator just assigns a new name to the root of the operand,
ie. (sz:= g) € DBY for g € DBy.

The disjoint union g; ¢ g of two graphs ¢ € DBfg, and
gs € DB%, with X N Y = (, the resultant graph inherits
all the markers, edges and nodes from the operands, thus

TRk

g1 D g2 € DB%&JL%;,.

The remaining two constructors connect output and input
nodes with matching markers by e-edges. g1 @ go appends
g1 € DBY. 5 and gy € DBfUZ, by connecting the output
and input nodes with a matching subset of markers X”’, and
discards the rest of the markers, thus g, Qgy € DB§. An idiom
&x’'Qgo projects (selects) one input marker &z’ and rename it
to default (&), while discarding the rest of the input markers
(making them unreachable). cycle(g) for g € DBﬁuy with
X NY = 0 works similarly to @ but in an intra-graph instead
of inter-graph manner, by connecting output and input nodes
of g with matching markers X', and constructs copies of input
nodes of g, each connected with the original input node by an
e-edge. The output markers in) are left as is.

It is worth noting that any graph in the data model can be
expressed by using these UnCAL constructors (up to bisim-
ilarity). Here, the notion of bisimilarity is extended to cope
with e-edges.

The semantics of conditionals is standard, but the condition
is restricted to label equivalence comparison. There are two
kinds of variables: label variables and graph variables. Label
variables, denoted $/,$/; etc., bind labels while graph vari-
ables denoted $¢,$g; etc., bind graphs. They are introduced
by structural recursion operator rec.

We take a look at the following concrete transformation in
UnCAL that replaces every label a by d and removes edges
labeled c.

rec(\($1,89). if $/ = a then {d : &'}?
else if $/ = c then {e: &*}*
else {81 : &2}6)($db)7

If the graph variable $db is bound to the graph in Fig. 0 (a), the
result of the transformation will be the one in Fig. [(b). We
call the first operand of rec the body expression and the second
operand the argument expression. In the above transformation,
the body is an if conditional, while the argument is the variable
reference $db. We use $db as a special global variable to
represent the input of the graph transformation.

For the sake of bidirectionalization (and also used in our
tracing in this paper), we superscribe UnCAL expressions with
their code position p € Pos where Pos is the set of position
numbers. For instance, in the example above, the numbers 1
and 2 in {d: &1}2 denote the code positions of the graph
constructors & and {d : &}, respectively.

Fig. B shows the bulk semantics of rec for the example. It
is “bulk” because the body of rec can be evaluated in parallel
for each edge and the subgraph reachable from the target node
of the edge (which are correspondingly bound to variables $/
and $¢ in the body).

In the bulk semantics, the node identifier carries some in-
formation which has the following structure TracelD:

TracelD ::= SrcID
| Code Pos Marker
| RecN Pos TracelD Marker
| RecE Pos TracelD Edge,

& & &, &z, &y,... &y, &z, &z, &y... &y,
«{_}) ° ‘g% z{ ;(l @, &x;.&;xm ol o m gl gV ® 1 L2y &Y
y o, e, FEN o, > Lo o)
Ly &y, Ladey,.. & ky,, c cle .' &ay . &l &yl &yl &l &l &yl &yl
A A A A 1 H :
Lz | 9 | S| 9 T S S dn &, b Lo,
&z ... &z, &z ... &z, 9 g
1
/ !
ll & Tz &a, .&:c...&z &2 &z ale ~ -
& v & &z &z & g’;\:'éag ° b ° ¥ ¥
{3 /\ <o flm_ o K &)...&a)) &2 &z, = -
&yl‘..&y,,, &91‘..&§Um &?/1“'&?/7”,'&?/1'- &y/”’ &yl-.-&y,,,f&y’i.. &y,”, &yl &y” &yl) &y”
Fig. 3. Graph Constructors of UnCAL
(template) T = {L:T,...,L:T} | TUT
| 8¢ | if BCthenT elseT
I | select T where B,...,B
! | letrec sfun fname(L : $G)
I = ...in fname(T)
(binding) B = Gp in $G | BC
. (condition) BC := notBC | BCandBC
G e | BCorBC | L=1L
IRE7(C2) 225)[RE7(C2Ba5)|: IRE7(C4) 603 (label) L =8l | a
I dl f R ; P (label pattern) Lp == $1 | Rp
IRE7(C1)2a5) I[RET(C N Ba5)| ™ IRE7(C3) 63|} (graph pattern) Gp == $G | {Lp:Gp,...,Lp: Gp}
f—m = "‘—r-:,\—..w*',=====——;t.l._f,::.:--'————~-' (regular path pat) Rp == a | _ | Rp.Rp | (Rp|Rp)
n78-+RETCE)) | Rp? | Rpx | Rp+
|

I
L[RE 7(C5) (5,d,6)}HRN 76}

Fig. 4. Bulk semantics by example

where the base case (SrcID) represents the node identifier in
the input graph, Code p &x denotes the nodes constructed by
{}. {_:_}, &y, U and cycle where &z is the marker of the
corresponding input node of the operand(s) of the constructor.
Except for U, the marker is always default and thus omitted.
RecN p v &z denotes the node created by rec at position p for
node v of the graph resulting from evaluating the argument ex-
pression. For example, in Fig. B, the node , originating
from node 1, is created by rec at position 7 (RecN is abbrevi-
ated to RN in the figure for simplicity, and similarly Code to C
and RecE to RE). We have six such nodes, one for each in the
input graph. Then we evaluate the body expression for each
binding of $/ and $g. For the edge (1, a, 2), the result will be
({(C 2), (C 1)}, {(C 2,d,C 1)}, {5 > C 2},{(C 2,8)}). with
the nodes C 2 and C 1 constructed by {_: _} and &, respec-
tively. For the shortcut edges, an e-edge is generated similarly.
Then each node v of such results for edge ¢ is wrapped with
the trace information RE like RE p v { for rec at position
p. These results are surrounded by round squares drawn with
dashed lines in Fig. B. They are then connected together ac-
cording to the original shape of the graph as depicted in Fig. B.
For example, the input node LRE 7(C2)(1,a, 2)] is connected

Fig. 5. Syntax of UnQL

with . After removing the c-edges and flattening the
node IDs, we obtain the result graph in Fig. 0 (b).

The variable binders let and llet having standard meanings
are our extensions used for optimization by rewriting [24].

In the backward evaluation of rec, e-elimination process is
reversed to restore the shape of Fig. B, and then the graph is
decomposed with the help of the structures of trace IDs, and
then the decomposed graph is used for the backward evaluation
of each body expression. The backward evaluation produces
the updated variable bindings (in this body expression we get
the bindings for $/, $¢g and $db and merge them to get the
final binding of $db). For example, the update of the edge label
of (1,b,3) in the view to x is propagated via the backward
evaluation of the body {$!: &}, which produces the binding
of $/ updated with x and is reflected to the source graph with
edge (1,Db,3), replaced by (1, x, 3).

B. UnQL as a Textual Surface Syntax of Bidirectional Graph
Transformation

We use the surface language UnQL [[8] (Fig. B) for bidi-
rectional graph transformation. An UnQL expression can be
translated into UnCAL, a process referred to as desugaring. We
highlight the essential part of the translation in the following.
Please refer to [IR, D3, Pd] for details.

The template (directly after the select clause) appears in the

innermost body of the nested rec in the translated UnCAL.
The edge constructor expression is directly passed through,
while the graph variable pattern in the where clause and
corresponding references are translated into combinations of
graph variable bindings in nested recs as well as references
to them in the body of recs. The following example translates
an UnQL expression into an equivalent UnCAL one.
rec(A\($1,89). if $1 = a
then rec(\($!',$9). if $/' = b
then {res:$db}
else {})($db)
else {})($db).

select {res:$db}
where {a:$¢} in $db, =
{b:$g} in $db

C. Forward Semantics with Traceable View And Intermediate
Results

In the extended forward evaluation of UnCAL we addition-
ally track every intermediate result of the operands. These
results are represented by the subscripts on the left of ex-
pressions, and denoted by €, ranging over the set Eval. The
subscripts and/or the overline are only used when necessary.
For example, for the expression {e; : e}, we have

Fl{er:etlp = clei:e}
where G ={L:Go}

(ze1, goe) = (Flalp, Flelp)-

The special cases are the conditional (if) and rec. The
former, denoted by if 3ép €, only keeps the branch taken,
where b : Bool records the condition (true if the then branch
was taken), and € is the taken branch. The latter, denoted
by Tec(\($1,3¢9).M)(es), keeps the map M from the edge,
which is the source of both the bindings of label and graph
variable, to the result of the extended forward evaluation for
these bindings.

III. MOTIVATING EXAMPLE

An example should clarify our motivation by illustrating
how a bidirectional transformation can be difficult to compre-
hend and predict and by showing how we propose to improve
this situation. We use the transformation shown below and the
source graph in Fig. B to produce the view graph in Fig. [
Basically, the transformation shows the countries in Europe
along with their languages and ethnic groups in the view graph.

select {result: {ethnic: $e, language: $lang, located: $cont} }
where {country:
{name:$g, people: {ethnicGroup: $e},
language: $lang, continent: $cont}} in $db,
{$1:$Any} in $cont,
$! = Europe

Listing 1. Transformation in UnQL

In the view graph (Fig. O), three edges have identical
labels “German” (3,German,1), (4,German,2) and
(12, German, 11), but have different origins in the source graph
and are produced by different parts in the transformation.
The user may want to comprehend how one of the edges,
say ¢ = (3,German, 1), is related to the source graph and

the transformation. Analyzing the transformation, { is the
language of Germany and is a copy of the edge (1, German, 0)
of the source graph (Fig. B). On the other hand, ¢ has nothing
to do with the edge (11,German,10) of the source graph
despite identical labels. This later edge denotes the ethnic
group instead. In addition, ¢ is copied by the graph variable
$lang in the select part of the transformation. Other graph
variables and edge constructors do not participate in creating
¢. It would be tedious and difficult to track those kinds of
correspondence in a highly complex transformation with
numerous shared edges and duplicate labels. We believe that
bidirectional transformation systems should visually highlight
corresponding elements between source graph, view graph
and transformation to increase comprehensibility.

In this example, the non-leaf edges of the view graph (“re-
sult”, “located”, “language” and “ethnic”) are constant edges
in the sense that they cannot be modified by the user. The
user may not know this and try to rename, say, “located” to
“location”, only to find that such modification produces an er-
ror. Ideally, the system should make such such constant edges
easily recognizable in order to prevent accidental modification
in the first place.

In another scenario, the user decides that the language of
Germany should better be called “German (Germany)” and
the language of Austria be called “Austrian German” and thus
rename the view edges (3,German, 1) and (4,German,2)
to (3,German (Germany),1) and (4, Austrian German, 2)
accordingly. However, the backward transformation fails. The
reason is that the language “German” is stored in a single
edge in the source graph, but appears twice in the view
graph. We get a binding conflict for the edge in the source
graph, since both edits try to override the shared language
name edge. The user will probably not realize this until the
backward transformation fails. Ideally, the system would
highlight groups of edges that cannot be renamed without
causing inconsistencies and errors. Furthermore, the system
would prohibit the triggering of the backward transformation
in that case.

Finally, we want to take a look at the case, when one
of the edges labeled “Europe” in the view graph is edited
to some other value like “Eurasia”. Since the transformation
depends on the value of this edge, changing it would lead to the
selection of another conditional path in the transformation in
a subsequent forward transformation. In particular, renaming
“Europe” to “Eurasia” will cause an empty view after a round-
trip of backward and forward transformation. To prevent this,
branch-changing edits are not permitted at all in our system.
Changes in branch behavior are very difficult or impossible
to predict, if the transformation is too complex. We can assist
the user in predicting possible changes in branching behavior
in case the label of a view edge should be changed, by high-
lighting the conditional branches involved. We can even make
all branch-changing edits impossible.

IV. TRACING MECHANISMS

Fig. 6. Example source graph

Query

N

View

In this section, we will elaborate
on mechanisms that allow us to tell
the correspondence between elements
of the source graph, code positions of the transformation query
and elements of the view graph in all feasible combinations
(see to the right).

Even though the tracing mechanisms introduced here are de-
fined for UnCAL, they also work straightforwardly for UnQL,
based on the following observation: When an UnQL query
is translated into UnCAL, all edge constructors and graph
variables in the UnQL query creating edges in the view graph
are preserved in the UnCAL query. For instance, the edge
constructor {language : $lang} and the graph variable $lang
of the UnQL query in Listing [are transferred to the generated
UnCAL query in Listing O.

Source

rec(\ ($L,$fv1). if $L = country
then rec(\ ($L,89). if $L = name
then rec(\ ($L,$fv2). if $L = people
then rec(\ ($L,%e). if $L = ethnicGroup
then rec(\ ($L,%lang). if $L = language
then rec(\ ($L,$cont). if $L = continent
then rec(\ ($1,$Any). if $1 = Europe
then {result: {ethnic: $e,
language: $lang,
located: $cont}}
else {})($cont)
else {}(S$fvl)
else {}H(S$fvl)
else {H($fv2)
else {}H($fvl)
else {}($fvl)
else {})($db)

Listing 2. UnCAL expression of UnQL query in Listing 0

One limitation is: in our system, the bidirectional interpreter
of UnCAL optionally rewrites expressions for efficiency. How-
ever, due to excessive reorganization of expressions during the
rewriting, we currently support neither tracing UnCAL nor
tracing UnQL if the rewriting is activated.

In GRoundTram, when a view edge is selected, the corre-
sponding source edge or query code position is highlighted,
and vice versa.

Fig. 7. View graph generated by transformation
of the graph in Fig. B

A. Definition of Applied Edge and Origin Edge

In this section, we introduce two definitions that are later
used when discussing the tracing mechanisms: applied edge
and origin edge. As can be derived from Section [I=A, a view
edge (¢ from the source graph must have a trace ID of the
form (ni,a,ns), where ny and ny are SrcIDs. If the edge
is created inside the body of a structural recursion at code
position p, it will have the form (RecEp u (', a,RecEp v {').
We call ¢’ an applied edge in the sense that it is applied by
the structural recursion. Also recall that nested rec- constructs
produce nested RecE traceable view wrapping around (.

For a view edge ¢ = (u,a,v) with a # €, we define the
sequence of applied edges of (as the sequence of edges that
were successively applied by nested structural recursions to
create (. Moreover, the edge wrapped in the innermost RecE
is called the origin edge of (. The origin edge of a view (can
be understood as the origin, from which (comes from (hence
the name).

Formally, the following function, when applied to a view
edge (, returns a pair whose first and second components are
the sequence of applied edges and origin edge of (, respec-
tively.

tr_eval : Edge — ([Edge], Edge)
tr_eval(((RecEp u ('), a, (RecEp v ¢'))) =

let (aes, oe) = tr_eval((u,a,v)) in (¢’
tr_eval(¢) = ([], ¢) otherwise

: aes, oe)

where ¢’ : aes prepends (' to aes. Additionally, we denote
tr_applEdgs = 7 o tr_eval and tr_originEdg = 75 o tr_eval
the functions that return the sequence of applied edges and the
origin edge of a given view edge (. Here, m; is a projection
function on the ¢-th component of a tuple.

B. Tracing Between Source And View

Given a view edge ¢, if ¢/ = tr_originEdg(¢) has the form
(n1,a,n9) where ny and ny are SrcID, then (is a copy of
¢’ in the source graph. In that case, we denote such source
edge ¢’ of ¢ as tr_srcEdg(¢) = tr_originEdg(({). Otherwise,
tr_srcEdg(() fails.

After a corresponding source edge has been found for each
view edge that has one, this relationship can be easily reversed
to allow tracing from the source to the view:

tr_viewEdg((s) = {¢: | & € Ev, (s = tr_srcEdg((:)},

where Ey is the set of view edges. For example, the applica-
tion of tr_originEdg to the view edge (4, German,2) in Fig.
0 results in the origin edge (1, German,0) in Fig. B which is
then the source edge of that view edge. In GRoundTram, we
highlight this correspondence.

C. Tracing Between View And Query

1) Tracing Between View And Edge Constructor: If
a view edge (is constructed by an edge constructor at
the code position p in the query, tr_originEdg(¢) has
the form (Code p m,_,). In that case, we denote
tr_edgCons({) = tr_originEdg(¢). Otherwise, tr_edgCons(()
fails.

In GRoundTram, when a view edge created by an edge
constructor is selected, we highlight the latter. For example, if
the user clicks on the view edge (14, language,4) in Fig. 0,
the edge constructor {1lang : $e} of the select part in Listing
[is highlighted because this constructor creates the view edge.
No edge in the source graph (Fig. B) is highlighted because
the view edge is not a copy of any edge in the source graph.

2) Tracing Between View And Graph Variable: 1f a view
edge (is a copy of a source edge (as discussed in Section
V=H), it must have been copied by a graph variable. Since
graph variables do not leave tracing information on the edges,
we need to track the execution path leading to the creation of
¢ in the intermediate results produced during forward transfor-
mation (Section [M=00). Moreover, since expressions in a query
may contain multiple input marker types, identification of the
input marker is required for correct identification of the graph
variable reference responsible for (.

The set of input markers &m of ¢ can be identified by
traversing the view graph from ¢ backwards to a RecN p &m
or Code p &m and collecting the input markers in those nodes.
If no such node exists, the input marker defaults to & The
algorithm for tracing graph variables is then as follows:

First, following the sequence of applied edges tr_applEdgs(¢),
we can trace to the structural recursion body that created (.

Formally, let € be the result of the forward semantics to
the input query and (a view edge. Additionally, let Z =
tr_applEdgs(¢) and (s = tr_originEdg(¢) be the sequence of

applied edges of ¢ and the origin edge of (, respectively.
The body of the structural recursion in which (is created
is defined as

tr_brec : Eval — [Edge] — Eval

tr_brec(rec(\($1,$g). M) (e2)) (¢ : ¢s') = tr_brec(M(') (s’
tr_brec(e)[] =€

Recall that M maps the applied edge to the corresponding
(extended) body expression, so M (' denotes such an expres-
sion.

tgv : {Marker} — {Marker} x {Pos}

i) oS¢ = ({h{p}) ifCs € GE
({},{}) otherwise
tgv {s} {} ={h{)
tgv {&} {_:¢} =tgv{s} e
tgv {&m} e Ues =let (21, P;) = tgv{am} €1 in
(ZQ, Pg) = tgv {&m} €5 in
(Z1UZ5, PLUDP,)
tgv {s} &z = ({s2},{})
tgv {&m} (e1@Qe3) =let (21, P)=tgv{am} ey in
let (ZQ7P2) :tngl 6111
(25, PLU P)
tgv{sm} cycle(e) =let (Z,P)=tgv{sm}ein
(Z\ X, P) where e::DB§
tgv {s} () ={h{)
tgv {sx.em} (sx:=€) =tgv{am}e
tgv {&m} (e1dez) =tgv{am}er
if e1::DBS Aam € X
tgv {&m} ez otherwise
tgv{sz.s2} Tec(ey)(en) = tgv{az} e
where e,::DB A ep::DBZ
tgv Z ifvoe =tgvZe
tgv (XYUY)e =let (Z1,P;) =tgvX €in
(ZQ,PQ) =tgv) ein
(21U 2, P, U Py)
tgv{sm} € = ({},{}) ifexDBy Asm ¢ X

Fig. 8. Marker-oriented Tracing of Graph Variables

Then, we identify the corresponding variable reference by
traversing the corresponding marker component in the UnCAL
expression €, resulting from applying tr_brec to Z, using the
function tgv (Fig. B) and 75 o tgv returns the set of positions
of the graph variables, while 7 o tgv is used to trace be-
yond @ and cycle expressions that operate on markers. We
assume that the type of the expression is annotated for every
subexpression using type inference proposed in our previous
work [E4]. In the definition in Fig. B, the first case is the most
important one since it checks whether the origin edge is in the
evaluation result of the graph variable $¢. In GRoundTram, we
can then highlight the found code positions of graph variables.

For example, applying tgv to the view (3,German,1) in
Fig. @ will return ({},{p}) where p is the code position of
the graph variable $lang of the select part in Listing 0. This
graph variable copies the source edge (1, German,0) to the
view graph.

V. DETERMINING EDITABILITY

We introduce the notion of equivalence classes, with two
view edges in the same equivalence class if backward trans-
formation causes edits to them to propagate to the same source
edge. There is one such equivalence class for each source edge
that the changes can be propagated back to. Additionally, there
are edges created with a constant label value defined in the
UnCAL query: edits to those edges are not allowed at all.

We want to create a mapping may : Fdge — Edge | that V ¢{} n = fy
maps each view edge to its equivalence class or a L symbol in V () n=fy
case the edge is constant. Each equivalence class corresponds V ¢{.$!: ¢, €} n=

to exactly one source edge (where the changes to view edges
of this class are propagated back to), hence it is feasible to
use source edge identifiers as equivalence class identifiers.
To calculate ma;; we need to do a dynamic evaluation
based on the intermediate results of forward transformation

V ae M{(G.I(s),L,G1.1(s)) — nu($1)}
V c{a: g, e} (a € Label) n=

V a.e N{(G.I(s),a,G1.1(&)) — L}
V clc,e1Uag,e2) n=WVaeanUVaen)
Vclc, @1 @ c,e2) n=Wage nUVqg.ean)

as defined in Section I=0. First, a given query is evaluated V g(&m := ¢, €) n=YVgen

with forward transformation. The intermediate results are then) ¢&m n= fo

used as an input for the algorithm to calculate may. For this V (¢, €1 @ ¢,€2) n=VgernUVaeezn)
dynamic evaluation, we carry along a variable environment)} gcycle(g,€) n=Vgen

n : env which is composed of a label variable environment) o(if b ¢, €) n=Vagen

ML : vary, — Edge, and a graph variable environment 7g :) ¢3¢ n = nc(3g)

varg — (Edge — FEdge,). In UnCAL, a label variable
might contain a label taken from an edge of the source graph,
or it can be assigned to a constant value; our label variable
environment thus maps each label to either its source edge or
1, in case it is constant, whereas graph variables are mapped

Va(let$g =g e1ing,ez) n=Va,ea1n

with " = (., nc{8g — Ve, & n})
Ve(lletsl=ainge) n=Vege (m{Sl— L},n)
y G(llet $/=9%!1in Glé) n=Yg,e€ (nL{$l — 7]L($l/)},77(})
V grec(A($1,89).M)(c,€) n =

to equivalence class mappings of the same type as may in the
graph variable environment.

We define V as the dynamic evaluation of the query which
takes an intermediate result of forward transformation and an
env as an input and returns a mapping like m 1. When applied
to the intermediate results of the whole query, V returns may.

V : Eval — env — (Edge — Edge |)

V does a structural recursion on the query constructs, as
seen in Fig. B. This definition makes use of several notational
conventions and functions which are defined as follows:

e Let fy : Edge — FEdge | be the partial function with an

empty domain.

o Define f{z — y} as

yifa==x

Hr—y}(a) = {f(a) if a # x and f defined for a

o Further define a partial function f; U fo for two partial
functions f; and f; as

f1(z) if f1(z) defined

(frU fa)(z) = {fg(x) if fo(x) defined but not fi(x)

o The function aux(m, () uses reachable to calculate the
edges reachable from the destination of the edge ((it
may include (itself because of cycles). The definition of
aux is:

aux(m,¢) = {(¢' — eq) € m | {’ € reachable(¢)}

where eq denotes the equivalence class for edge (’.

o The wrap function wraps each node ID in the key of the
Edge — Edge | mapping with the RecE trace informa-
tion in order to make the result of V consistent with the
view graph.

In the evaluation of V), new variables are created in the rec-

construct. For each iteration of Tec(A($,$¢9).M)(¢,€a), we
configure a new variable environment 772 which binds $! to the

letm =Y g, e nin U
(¢—gyen)eM

with 7. = (nu{$1 — m(()}, na{3g — aux(m, ()})

Fig. 9. The algorithm for calculating the equivalence class mappings.

wrap(V ¢, e ;)

equivalence class of the key of M which we look up in the
equivalence mapping m of the argument graph G;. We also
bind $g to the graph reachable from (. The evaluation results
of each iteration of rec are then unified to produce a map for
all edges created by the rec construct (not counting e-edges).

The llet-construct introduces a new label variable that is
either a constant or copies the equivalence class from the right-
hand side label variable. For graphs, the let-construct assigns
the right-hand side graph’s equivalence class mapping to the
left-hand side variable.

Edges are created by graph variables $¢g or by edge con-
structors. In case of graph variables, the equivalence class
mapping has been precomputed at the time of the declaration
of the variable and only has to be looked up in the variable
environment. In case of an edge constructor, a label variable
or constant can be used as the label. In case of a constant
we assign the edge to the class L, otherwise we look up the
variable’s equivalence class in the label variable environment.
In any case, the edge created by the constructor has to be
extracted from the intermediate graph results by getting its
source and target node with the & input marker.

When Y is then applied to the query as a whole and an initial
environment which maps $db to a mapping of each source
edge to itself, the output is a mapping of all view edges to their
equivalence class. For those equivalence classes with more
than one member, there is then a possibility for inconsistent
edits. For an equivalence class eq;, backward transformation
will fail if there are two edges that are part of the equivalence
class, both have been updated by the edit operation to the view,
but the resulting edge labels are different. Notably, backward
transformation does not fail in case some edges have been

updated and others have not, just as long as the updates all
have the same new label. The GUI editor for the view graph
can be modified to take these equivalence classes into account.

Consider the example in Listing 0 with the source graph
of Figure B and view graph of Figure [. In order to apply
V, the UnQL query needs to be desugared to UnCAL,
as seen in Listing . When applying) to our example,
we get four equivalence classes, one each for the source
edges (1,German,0), (3,Europe,2), (5,Austrian,4) and
(11, German, 10), as well as the L class. Both view edges
(3,German, 1) and (4,German,2) are in the equivalence
class of edge (1,German,0), so inconsistent edits can be
prevented. Additionally, edges like (0, result, 14) are in the
equivalence class 1 and marked as constant.

VI. OUR GROUNDTRAM SYSTEM

We have integrated the tracing mechanisms in the form of
highlighting and editability support described above into our
GRoundTram system. We plan to publish the implementa-
tion on our project website at fftp://Www.prg.nii.ac.jp/projects]
gtcontrib/cmpbxj. In the following, we summarize the new
features available to the users. Fig. [shows a screenshot of
GRoundTram.

View edges have their origins highlighted when they are
selected, be it a single view edge in the selection or a whole
collection of edges. Direct copies from the source graph will
have their corresponding source edge highlighted, as well as
the graph variable in the query that produced them. Other view
edges have the relevant edge constructor highlighted in the
query instead. In Fig. [, an edge constructor with a constant
label as well as a graph variable are highlighted (in different
colors for the benefit of the user). In addition, several source
edges are identified as the origins of direct copies that are part
of the view selection.

Highlighting also works in reverse to find the copies of
source edges in the view as well as the corresponding view
edges for a given graph constructor or graph variable in the
query.

Constant edges are marked with dashed lines and editing
their label is prohibited. When a view edge is selected, cor-
responding view edges within the same equivalence class are
highlighted in a green color (also seen in Fig [M). The system
prevents inconsistent edits from happening.

VII. RELATED WORK

Tracing mechanism. Van Amstel et al. proposed
a visualization framework for chains of ATL model
transformations [I]. Systematic augmentation of the trace-
generating capability with model transformations is achieved
by higher-order model transformations [Z4]. Although they
also trace between source, transformation and target, they
deal with wnidirectional transformations. Our own previous
work [[[A] introduced the trace generation mechanism, but the
main objective was the bidirectionalization itself. The notion
of traces has been extensively studied in a more general

context of computations, like provenance traces [IH] for the
nested relational calculus.

Lifting traces from the core language to its surface language
(syntactic sugar), like UnCAL to UnQL in our work, is not
easy in general due to the generally big gap between the two
languages. Pombrio and Krishnamurthi [E9] tackle with this
gap by automatically reproducing an evaluation sequence of
the core language in the surface language, which may provide
a partial solution for us to cope with higher level sugar like
replace in our previous work [3, Id].

Triple Graph Grammars (TGG) [B] and frameworks based
on them are studied extensively and are applied to model-
driven engineering [B, BA]. They are based on graph rewrit-
ing rules consisting of triples of source and target graph pat-
tern, and the correspondence graph in-between which explic-
itly contains the trace information.

Our tracing is designed to work in compositional setting
where arbitrary intermediate graph can be produced in the
transformation.

Editability Analysis. Another well-studied bidirectional
transformation framework called semantic bidirectional-
ization [3] generates a table of correspondence between
elements in the source and those in the target to guide
the reflection of updates over polymorphic transformations,
and does not have to inspect the forward transformation
code at all (thus called semantic). The entries in the target
side of the table can be considered as equivalence classes
to detect inconsistent updates on multiple target elements
corresponding identical source element. Although UnCAL
transformations are not polymorphic in general because of
the label comparison in the if conditionals with constant
labels, prohibiting the semantic bidirectionalization approach,
Matsuda and Wang [I] relaxed this limitation by run-time
recording of the branching behaviors and checking the
change of the behavior to reject updates causing such change.
They also cope with data constructed during transformation
(corresponding to constant edges in our transformation).
So our framework is close to theirs, though we utilize
the syntax of transformation and reserve opportunities to
recommend variety of possible consistent changes to edges in
a equivalence class for more complex branching conditions.

VIII. CONCLUSION

Bidirectional transformations sometimes receive a reputa-
tion that the result of backward transformation is difficult to
understand or predict. This applies to frameworks like our
GRoundTram system in which the backward semantics of the
given forward transformation is completely provided, rather
than (partially) left to the users, so the logic of backward
transformation is rather fixed and hidden by the semantics.
Once the transformation gets more complex, the prediction is
even more difficult.

In this paper, we propose, within a compositional bidirec-
tional graph transformation framework based on structural re-
cursion, a comprehensive externalization of tracing between
source graphs, transformation and view graphs in our system

http://www.prg.nii.ac.jp/projects/gtcontrib/cmpbx/
http://www.prg.nii.ac.jp/projects/gtcontrib/cmpbx/

File Edit View Tool Help

[— | N =

[5 4 o e

1’ ThreePanel |

EHEL =00 S E[

result | schema |
HE L= QEER

=
=1

[«]

4] I i [D

®

/reault “result
- s
rfocatedpnguag\ethnic }’ocatenguage e&:hnic
Furcpe erman (erman KFurope @erman Austrian

select {result : {ethnic: $e, language: $lang, located :

$cont} }

where {country :

ne

4]

cycle((& := &z0, (), &z0 := {}))

Fig. 10. Screenshot of the GRoundTram system showing traces

GRoundTram. In GRoundTram, the correspondence between
edges in the view graph, edges in the source graph and graph
constructors as well as graph variables in the transformation
is visually highlighted. We leverage the trace information re-
quired by bidirectionalization to achieve this tracing and high-
lighting.

We also classify every edge in the target graph. Users can
identify edges where editing is prohibited. They can also see
groups of edges that cannot be inconsistently updated. Since
the language we deal with allows arbitrary variable references
that causes copies, identification of copies in the view has not
been that trivial. Nonetheless, our proposal is simple because
it just maintains the mapping from source edge to the view
edge per variables and updates the mappings for each variable
binding construct.

For better comprehension and prediction of bidirectional
transformations, our GRoundTram system has been extended
with the features introduced in this paper. The system is avail-
able for download on our project website.

As our future work, we have found a potential in the clas-
sification framework for tracing the occurrence positions of
graph variables as well as edge constructors by extending the
entry of the table maintained by the classifier to store the code
positions. We would like to investigate this direction towards
unifying tracing with classification. We also plan to overcome
the limitations of tracing UnQL with optimization activated
by defining rules of how to pass position information of edge
constructors and graph variables in an UnCAL expression to
the corresponding elements in the optimized expression. Our
foray in this direction shows promising results.

We have not discussed the performance aspect in the paper.

10

between source graph, UnQL transformation and view graph

The trace based on algebraic data constructors increases the
size of the trace dramatically as the composition of structural
recursion increases. It prohibits the execution of even middle-
scale examples to work. We plan to compress the trace infor-
mation to restore scalability.

We would like to investigate the possibility of accom-
modating update operations other than edge renaming,
like insertion of subgraphs, using the same backward
transformation semantics, because we currently handle
insertions using a separate general inversion strategy which
is costly. We currently have limited support, however we do
not have bidirectional properties for complex expressions.
One obvious case we can support is subgraph extraction
like select {a:$g} where {a:3$g} in $db, in which
we could insert an arbitrary subgraph below the top level
edge labeled a. Because the subgraph is not “observed” in
the transformation, an update will never interfere with the
branching behavior. Even though that part is “observed”
by the bulk semantics, that part is left unreachable, so the
update does not affect the computation of the reachable part.
If we extend the classifier function to indicate which edge
is involved in the branching behavior, inspired by [Z2], we
could safely determine the part that accepts the insertion or
deletion of that part reusing the in-place update semantics,
thus achieving “cheap backward transformation”.

ACKNOWLEDGMENT

The authors would like to thank Zhenjiang Hu and Hi-
royuki Kato for their valuable comments, Kazutaka Matsuda
for discussing the branching behavior change detection as well
as Jonas Winkler, Martin Beckmann und Kerstin Hartig for

reviewing the paper. The project was supported by the Inter-
national Internship Program of the National Institute of Infor-
matics.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

K. Czarnecki, J. N. Foster, Z. Hu, R. Lammel, A. Schiirr,
and J. F. Terwilliger, “Bidirectional transformations: A
cross-discipline perspective,” in International Conference
on Model Transformation (ICMT), ser. Lecture Notes in
Computer Science, R. F. Paige, Ed., vol. 5563. Springer,
2009, pp. 260-283.

F. Bancilhon and N. Spyratos, “Update semantics of
relational views,” ACM Trans. Database Syst., vol. 6,
no. 4, pp. 557-575, 1981.

U. Dayal and P. A. Bernstein, “On the correct translation
of update operations on relational views,” ACM Trans.
Database Syst., vol. 7, no. 3, pp. 381-416, 1982.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt, “Combinators for bidirectional
tree transformations: A linguistic approach to the view-
update problem,” ACM Trans. Program. Lang. Syst.,
vol. 29, no. 3, 2007.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz,
and A. Schmitt, “Boomerang: Resourceful lenses for
string data,” in POPL 08, 2008, pp. 407—419.

P. Stevens, “Bidirectional model transformations in QVT:
semantic issues and open questions,” Software and Sys-
tem Modeling, vol. 9, no. 1, pp. 7-20, 2010.

H. Giese and R. Wagner, “Incremental model synchro-
nization with triple graph grammars,” in MoDELS 2006:
Proceedings of the 9th nternational Conference on Model
Driven Engineering Languages and Systems. Springer
Verlag, 2006, pp. 543-557.

M. Antkiewicz and K. Czarnecki, ‘“Design space of
heterogeneous synchronization,” in GTTSE ’'07: Pro-
ceedings of the 2nd Summer School on Generative and
Transformational Techniques in Software Engineering,
2007.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and
H. Mei, “Towards automatic model synchronization from
model transformations,” in 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE 2007). ACM Press, Nov. 2007, pp. 164-173.

M. Antkiewicz and K. Czarnecki, “Framework-specific
modeling languages with round-trip engineering,” in
MoDELS 2006: Proceedings of the 9th International
Conference on Model Driven Engineering Languages
and Systems. Springer-Verlag, 2006, pp. 692-706.

J. Grundy, J. Hosking, and W. B. Mugridge, “Inconsis-
tency management for multiple-view software develop-
ment environments,” IEEE Trans. Softw. Eng., vol. 24,
no. 11, pp. 960-981, 1998.

M. Garcia, “Bidirectional synchronization of multiple
views of software models,” in Proceedings of DSML-
2008, ser. CEUR-WS, vol. 324, 2008, pp. 7-19.

Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and

11

[14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

L. Montrieux, “blinkit: Maintaining Invariant Traceabil-
ity through Bidirectional Transformations,” in ICSE’12,
Zurich, Switzerland, Jun. 2012, pp. 540-550.

S. Hidaka and J. F. Terwilliger, “Preface to the third
international workshop on bidirectional transformations,”
in Proceedings of the Workshops of the EDBT/ICDT
2014 Joint Conference (EDBT/ICDT 2014), ser. CEUR
Workshop Proceedings, K. S. Candan, S. Amer-Yahia,
N. Schweikardt, V. Christophides, and V. Leroy, Eds.,
no. 1133, Aachen, 2014, pp. 61-62. [Online]. Available:
nttp://ceur-ws.org/Vol-1133#paper-UY

S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano,
“GRoundTram: An integrated framework for developing
well-behaved bidirectional model transformations (short
paper),” in 26th IEEE/ACM International Conference On
Automated Software Engineering. IEEE, 2011, pp. 480—
483.

——, “GRoundTram: An Integrated Framework
for Developing Well-Behaved Bidirectional Model
Transformations,” Progress in Informatics, no. 10, pp.
131-148, March 2013, journal version of [[3]. [Online].
Available: hitp:/7/dx.do1.org/T0.220T/NuiP1.2013-T0.7

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano, “Bidirectionalizing graph transformations,”
in ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), 2010, pp. 205-216.

P. Buneman, M. Fernandez, and D. Suciu, “UnQL: a
query language and algebra for semistructured data based
on structural recursion,” The VLDB Journal, vol. 9, no. 1,
pp. 76-110, 2000.

Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann,
and F. Orejas, “From state- to delta-based bidirectional
model transformations: The symmetric case,” in Model
Driven Engineering Languages and Systems, ser. Lecture
Notes in Computer Science, J. Whittle, T. Clark, and
T. Kiihne, Eds. Springer Berlin Heidelberg, 2011, vol.
6981, pp. 304-318.

S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “A compo-
sitional approach to bidirectional model transformation,”
in ICSE New Ideas and Emerging Results track, ICSE
Companion. 1EEE, 2009, pp. 235-238.

M. F. van Amstel, M. G. J. van den Brand, and
A. Serebrenik, “Traceability visualization in model
transformations with tracevis,” in Proceedings of
the 5th International Conference on Theory and
Practice of Model Transformations, ser. ICMT’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 152-
159. [Online]. Available: hitp://dx.dot.org/T0.1007]
ETR=3=2730476-7_11

K. Matsuda and M. Wang, “Bidirectionalization for free
with runtime recording: Or, a light-weight approach
to the view-update problem,” in Proceedings of
the 15th Symposium on Principles and Practice of
Declarative Programming, ser. PPDP *13. New York,
NY, USA: ACM, 2013, pp. 297-308. [Online]. Available:
hitp://dot.acm.org/TO-1T4572505879.2505389

http://ceur-ws.org/Vol-1133#paper-09
http://dx.doi.org/10.2201/NiiPi.2013.10.7
http://dx.doi.org/10.1007/978-3-642-30476-7_10
http://dx.doi.org/10.1007/978-3-642-30476-7_10
http://doi.acm.org/10.1145/2505879.2505888

[23]

[24]

[25]

[26]

[27]

J. Voigtlander, “Bidirectionalization for free! (pearl),”
in Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, ser. POPL 09. New York, NY, USA:
ACM, 2009, pp. 165-176. [Online]. Available: hitp]
[7doi.acm.org/T0.1T45/T48083 1. 1480904

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda,
K. Nakano, and I. Sasano, “Marker-directed optimization
of UnCAL graph transformations,” in Logic-Based Pro-
gram Synthesis and Transformation, 21st International
Symposium, LOPSTR 2011, Odense, Denmark, Revised
Selected Papers, Lecture Notes in Computer Science, vol.
7225, Jul. 2012, pp. 123-138.

S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “Towards
a compositional approach to model transformation for
software development,” in SAC’09: Proceedings of the
2009 ACM symposium on Applied Computing. New
York, NY, USA: ACM, 2009, pp. 468-475.

, “Towards compostional approach to model trans-
formations for software development,” GRACE Center,
National Institute of Informatics, Tech. Rep. GRACE-
TRO8-01, Aug. 2008.

M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin,
“On the use of higher-order model transformations,” in
Proceedings of the 5th European Conference on Model

12

(28]

[29]

(30]

(31]

(32]

Driven Architecture - Foundations and Applications, ser.
ECMDA-FA °09. Springer-Verlag, 2009, pp. 18-33.

J. Cheney, U. A. Acar, and A. Ahmed, “Provenance
traces,” CoRR, vol. abs/0812.0564, 2008.

J. Pombrio and S. Krishnamurthi, “Resugaring: Lifting
evaluation sequences through syntactic sugar,” in
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
ser. PLDI ’14. New York, NY, USA: ACM, 2014,
pp. 361-371. [Online]. Available: hftp://doi.acm.org/10]
[T43/7394791 7394319

A. Schiirr, “Specification of graph translators with triple
graph grammars,” in Graph-Theoretic Concepts in Com-
puter Science, 20th International Workshop, WG 94,
Herrsching, Germany, ser. Lecture Notes in Computer
Science, E. W. Mayr, G. Schmidt, and G. Tinhofer, Eds.,
vol. 903. Springer, Jun. 1995, pp. 151-163.

C. Amelunxen, F. Klar, A. Konigs, T. Rotschke, and
A. Schiirr, “Metamodel-based tool integration with
moflon,” in ICSE '08. ACM, 2008, pp. 807-810.

H. Giese and R. Wagner, “From model transformation to
incremental bidirectional model synchronization,” Soft-
ware & Systems Modeling, vol. 8, no. 1, pp. 21-43, 2008.

http://doi.acm.org/10.1145/1480881.1480904
http://doi.acm.org/10.1145/1480881.1480904
http://doi.acm.org/10.1145/2594291.2594319
http://doi.acm.org/10.1145/2594291.2594319

