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Graph Transformation as Graph Reduction

FUnCAL: A Functional Reformulation of Graph-Transformation Language UnCAL

Kazutaka Matsuda

The University of Tokyo
kztkQis.s.u-tokyo.ac.jp

Abstract

A large amount of graph-structured data are widely used, includ-
ing biological database, XML with IDREFs, WWW, and UML di-
agrams in software engineering. UnCAL, proposed by Buneman et
al. from the database community, is a language designed for graph
transformations, i.e., extracting a subpart of a graph data and con-
verting it to a suitable form, which often also has a graph structure.
A distinguished feature of UnCAL is its semantics that respects
bisimulation on graphs; this enables us to reason about UnCAL
graph transformations as recursive functions, which is useful for
verification as well as optimization.

However, despite of this similarity of UnCAL to functional
languages, there is still a gap to apply the program-manipulation
techniques studied in the programming language literature directly
to UnCAL programs, due to some special features in UnCAL,
especially markers.

In this paper, first, we give a translation from UnCAL pro-
grams to functional ones by emulating markers by tuples and \-
abstractions, so that we can reason about UnCAL programs through
functional ones. Thanks to the translation, we can import several
verification results designed for functional programs to the UnCAL
transformations. Second, to optimize UnCAL graph transforma-
tions as functional programs, we give a memoized lazy semantics
and a type system so that a well-typed functional program termi-
nates and results in a finite graph, under the semantics; that is, well-
typed functional programs are graph transformations. Thanks to the
semantics and the type system, we can optimize a translated func-
tional program freely as long as the optimization keeps typability,
and execute it as a graph transformation.

Keywords Graph Transformation, Functional Languages, Lazy
Evaluation, Bisimulation, Regular Trees, Termination, Memoiza-
tion

1. Introduction

A large amount of graph-structured data are widely used, includ-
ing biological information, XML with IDREFs, WWW, UML di-
agrams in software engineering [18], and Object Exchange Model
(OEM) for exchanging arbitrary database structures [37]. In such
circumstances, several languages, such as UnQL/UnCAL [8],
Lorel [1], GraphLog [9], have been proposed mainly from the
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database community for graph transformation or querying over
such graph-structured data—extracting a subpart of a graph and
converting it to some suitable form—similarly to what XQuery
does for XMLs. For example, we want to extract the orders by
“Tanaka” from the graph in Figure 1 containing information of
customers and their orders to obtain the graph in Figure 2.

UnCAL is a prominent language designed for graph transforma-
tions [8]. Among its other nice features such as termination guar-
antee and efficient execution by e-edges [8], the most characteristic
feature of UnCAL is its semantics that respects bisimulation, under
which a graph and the infinite tree obtained by unfolding sharings
and cycles are equivalent. Thanks to the bisimulation-respecting
semantics, UnCAL supports functional-programming-style reason-
ing: one can reason about UnCAL graph transformations as recur-
sive functions that generate infinite trees, which is useful for verifi-
cation [24] as well as optimization [8, 21].

However, despite of this similarity of UnCAL to functional
languages, there is still a gap between UnCAL programs and func-
tional ones, which will be explained in more detail in Section 1.1.
Due to the gap, it is hard to apply program-manipulation tech-
niques studied in the programming language literature directly
to UnCAL programs. This is unfortunate to both communities;
the database community cannot enjoy well-studied programming-
language techniques, and the programming-language community
loses chances to contribute to the other community. Actually, sev-
eral methods have been proposed for UnCAL while there already
have been similar methods in the programming language literature.
For example, the key technique in the optimization in [8, 21] is
quite similar to the classic fold-fusion [32].

The purpose of this paper is to fill the gap between UnCAL and
usual functional languages so that we can directly apply program-
manipulation techniques studied in the programming-language
community to the graph transformation problem. Specifically, in
this paper, we give a translation from UnCAL programs to func-
tional ones so that we can reason about, manipulate and execute
UnCAL programs as functional ones.

1.1 Problem and Observation

The gap between UnCAL and usual functional languages, or what
prevent us from directly importing techniques studied in the pro-
gramming language community, is markers used to connect two
graphs and to construct cycles. We have to cope with markers to
seamlessly import functional results.

There are two usages of markers: input and output. Roughly
speaking, input markers are names for multiple-roots and output
markers are names for holes. UnCAL also has expressions that
connect nodes indicated by input markers (input nodes) and those
indicated by output markers (output nodes) of the same names.

Let us review how markers are used in UnCAL. First, we ex-
plain UnCAL expressions that do not use any markers. Without
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customer

‘'tanaka@biglab" \"Tanaka"

Figure 1. A graph data containing order information in customer-oriented representation.

Figure 2. A graph data obtained from Figure 1 by extracting orders
by “Tanaka” in order-oriented representation.

markers, graphs in UnCAL are similar to records, as below.
{name : Alice,email : alice}

Markers are used as an interface for connecting other graphs. In the
following graph, we can connect something to output node &x.

{name : Alice,friend : &z}

A graph to be substituted to the output node must have the corre-
sponding input maker, which can be assigned by > as below.

&z > {name : Bob, friend : &y}
Then, we can connect the two graphs by @; for example, by writing

{name : Alice, friend : &z}
@ (&z > {name : Bob, friend : &y})

we get the following graph.
{name : Alice,friend : {name : Bob, friend : &y}}

Cyclic graphs can be constructed by cycle(g) that connects input
nodes and output nodes in g, as follows.

te [ &u s {name : Alice,friend: &x}
cyele\wy @ (&z > {name : Bob, friend : &y})

Then, we obtain a cyclic graph that represents Alice and Bob are
friends of each other.

Graph transformations are written by using srec, a structural
recursion on graphs. Thanks to the bisimulation-respecting seman-
tics, srec can be understood as if it were defined recursively as:

srec(e)({a1: G1,...,an : Gn}) =
(e(a1,G1) @ srec(e)(G1)) U...U (e(an, Gn) @ srec(e)(Gyr))

Here, U is the record concatenation; actually {x:s,y:t} in
UnCAL is a shorthand notation for {x : s} U {y : t}. For exam-
ple, the following UnCAL expression returns people named Bob
in db where db is a variable that stores a record of the form of

{person : pi1,...,person: p,}.

srec(A(_,p).
srec(A(l,n).&r >
if | = name then
srec(\(I, _).if '=Bob then {person : p} else {})(n) U &r
else

&r)(p))(db)

The output node &r represents the result of the recursive call of the
second-outermost srec.

One might notice that these behaviors of input/output markers,
@, and cycle can be emulated by A-abstractions and letrec. For
example, the UnCAL expression above that constructs the cyclic
graph can be written as below.

letrec y = (A\z. {name : Alice,friend : z})
{name : Both, friend : y} iny

Also, one might notice that the behavior of srec can be expressed
by a paramorphism [31] para that behaves like:

para f {ai1 : G1,...,an : Gp}
= (fa1 Gi(para f G1))U... U (f an Gn (para f Gr))

It would seem that reasoning and execution of UnCAL programs
as functional ones would look straightforward.

However, the straightforward translation is not enough because
the translation can map terminating UnCAL expressions to nonter-
minating ones. This is problematic if we apply optimization tech-
niques such as fusion [32] to UnCAL programs because we may
not execute optimized translated programs, although the translation
still is useful in reasoning of UnCAL programs. For example, the
translation converts cycle(&z > &x), which results in a singleton
graph in UnCAL, to letrec = x in x, which leads to an infinite
loop in usual languages. Although the expression cycle(&x > &x)
itself is rarely seen in practice, a similar problem arises when we
write graph transformations by srec. For example, let us consider
the following UnCAL expression that eliminates all the edges from
db and thus returns a singleton graph for any db.

srec(A(_,_).&r > &r)(db)

The transformation can be seen as a simplified version of the above
transformation that searches Bob, in the sense that it models the
behavior of the second-outermost srec of the transformation when
it is applied to a graph with no names. Here comes a problem.
The behavior of the transformation differs after the translation if
we apply it to a cyclic graph like that obtained by cycle(&z >
{a: &z}). The UnCAL expression

srec(A(_,_).&r>&r)(cycle(&z > {a: &z}))

terminates and returns a singleton graph while the corresponding
functional program

para (A_A_Ar.r) (letrec x = {a: z} in x)
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goes into an infinite loop.

Another but related issue is that we want to obtain finite graphs
as evaluation results, instead of infinite trees, because our goal is
“graph” transformation.

In summary, we have to deal with these problems in order to
apply the program-manipulation techniques studied in the program-
ming language community to the graph transformation problem.

1.2 Contributions

In this paper, first, after a brief review of UnCAL (Section 3), we
formalize a translation from UnCAL programs—which manipu-
late finite graphs—to functional programs that manipulate infinite
trees (Section 4). The translation just follows the idea shown in
Section 1.1. The purpose of Section 4 is to clarify the relation-
ship between UnCAL programs and usual functional programs.
This translation is useful also to reason about UnCAL programs
as functional ones, and then is useful to import verification tech-
niques (Section 2.1).

Second, to optimize UnCAL programs as functional ones, we
give a semantics (Section 5) and a type system (Section 6) for
the target language of the translation; a well-typed functional pro-
gram under the type system can be executed as a finite-graph trans-
formation under the semantics with termination guarantee (Sec-
tion 7). We also show that the translated functional programs are
well-typed, and that semantics in Section 4 and that in Section 5
“coincide”. Thanks to the type system, users can freely optimize
translated programs and finally run them as graph transformations,
as long as the optimization keeps typability (Section 2.2). Note that
our semantics itself is not new and nothing special; it is just the lazy
semantics [34] with the black hole [2, 3, 34] and memoization. This
helps us to implement the semantics easily, which runs faster than
the existing implementation of UnCAL [23] (Section 2.3). Also,
this enables us to bidirectionalize [29, 30] of UnCAL transforma-
tions (Section 2.4).

The main contributions of this paper are summarized as below:

e We formalize the transformation from UnCAL to functional
ones to support reasoning of UnCAL programs as functional
ones (Section 4).

e We give the semantics and the type system so that we can
optimize the translated functional programs and execute them
as graph transformations (Sections 5, 6 and 7).

e We show some applications of the proposed translation, seman-
tics, and type system (Section 2).

2. Benefits

We start the paper with showing the benefits of our results, i.e.,
the translation from UnCAL to functional programs so that we
can reason about UnCAL programs as functional ones, and the
semantics and type system to support optimization and execution
of UnCAL programs via functional ones. Also, our result enables
us to import bidirectionalization techniques [29, 30, 41] studied for
functional programs.

2.1 Verification

A verification problem of graph transformation is, given sets A
and B and a transformation f, to check if Va € A.f(a) € B
holds or not. For XML transformations, these sets A and B are
usually described in DTD, XML Schema, or RELAX NG. For
model transformations seen in software engineering, they are often
described in KM3 [26].

A few but interesting results are known for the verification prob-
lem on UnCAL. Buneman et al. [7] represent graph schemata (A
and B above) again in graphs so that they can directly compute

the image f(A) by simply applying f to (a graph of) A. Inaba
et al. [24] reduce the problem to the validity checking of monadic
second-order logic (MSO) formulae when A and B are also given
in MSO (fragments that respect bisimilarity), with some type anno-
tations to a program f by users.

Our translation from UnCAL programs to functional ones en-
ables us to access alternative methods, because the translation also
reduces the verification problem for UnCAL programs to that for
functional ones, which manipulates infinite trees instead of graphs.
For example, thanks to our translation, we can use a verification
method by Unno et al. [40] for graph transformations; it is orig-
inally designed for tree transformations written in (higher-order)
functional programs where the trees can be infinite.

Although Inaba et al. [24]’s method is well tailored to UnCAL/UnQL

and thus the benefits are rather small for the “current” UnCAL/UnQL,
the advantage of our translation becomes clearer when we extend
UnCAL/UnQL. For example, if we extend UnCAL/UnCAL to in-
clude higher-order functions to improve the programmability as
in [22], then Inaba et al. [24]’s method becomes no longer appli-
cable due to the higher-order constructs. In contract, the method
by Unno et al. [40] is applicable for such extensions because it
originally targets higher-order functional programs.

2.2 Optimization

Optimization is an important issue also in graph transformation.
There have been a few approaches for optimization of UnCAL pro-
grams [8, 21]. The basic idea of these approaches is to elaborate the
fact that UnCAL transformations respect bisimilarity and to rewrite
srec as if it were defined as a recursive function on infinite trees
as mentioned in Section 1.1. In addition to this basic idea, Hidaka
et al. [21] also focus on manipulations of markers; for example, for
€ @ (&x>e'), their transformation statically computes the plugging-
in operation by substituting &z in e by €', and sometimes replaces
the expression to e statically or dynamically if e does not contain
the output marker &z.

The relationship between these UnCAL-specific techniques and
usual optimization techniques for functional programs becomes
clearer by our translation. Since our translation maps srec to fold
on graphs as will be shown in Section 4, we can reinterpret the ba-
sic idea of their optimization as a special case of the classical fold-
fusion [32]. Since the expression e@ (&z>¢’) is converted to expres-
sion (Az.e) e’ by our translation, we can regard Hidaka et al. [21]’s
optimization as simplification by -reduction. Both techniques are
well understood in the programming language community.

In addition, our translation enables us to access heavier or
lighter alternatives. To the translated programs from UnCAL, we
can apply optimization methods safely, as long as the optimization
preserves typability with respect to the type system in Section 6.
For example, on the one hand, when the execution time will be
more significant the compilation/optimization, we can use heavy
but effective optimization methods such as supercompilation [38].
On the other hand, when the compilation time is as important
as execution time, which is also typical in DB-querying, lighter-
weight approaches such as short-cut fusion [17] and lightweight
fusion [36] are preferable.

2.3 Implementation

Another benefit of our translation is that we can execute UnCAL
programs as functional ones according to the lazy semantics in Sec-
tion 5. Here, we report our experimental results, which show that
UnCAL programs are executed significantly faster by our transla-
tion, for small graphs that can be loaded into a memory.
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V] |E] | Ours GRoundTram | Speed Up
Class2RDB 55 73 1 0.041 0.16 39
PIM2PSM 46 58 | 0.005 0.032 6.4
C20_Sel 25 45 | 0.003 0.014 4.7
a2d_xc S30k | 30000 29999 | 0.86 3.7 43
a2d_xc M200 | 40000 80000 3.7 5.5 1.5
a2d_xc €200 201 40200 1.5 2.0 1.3

Table 1. Experimental results (running time is in CPU seconds).

We implemented our semantics in Section 5 as an embedded
DSL on Haskell.! Although we cannot use GHC’s lazy evaluation
mechanism directly mainly due to the memoization we use (Sec-
tion 5), we can explicitly represent memoized computation by us-
ing a monad. It is expected that the overhead of graph operations in
a naive implementation, i.e., the overhead of directly handling sets
of nodes and edges, or more precisely (V, E, I, O) quadruples as
will be shown in Section 3, disappears in the implementation.

We measured execution time of a few transformations and
compared the execution time with GRoundTram [20, 21, 2312,
an UnCAL implementation using OCaml. GRoundTram is im-
plemented basically according to the semantics that will be shown
in Section 3, with some optimizations [8, 21]. The experiments
were held on MacOSX 10.8.3 over MacBook Air 11-inch with
1.4 GHz Intel Core 2 Duo CPU and 4 GB memory. We used GHC
7.6.3 (with LLVM 3.3) for Haskell and ocaml 4.00.1 for OCaml.
The purpose of the experiments is to measure how the seman-
tics in Section 5 is useful to implement UnCAL graph opera-
tions. Thus, we did not compile the tested programs and graphs;
we used runhaskell instead while we compiled our embedded
library providing the primitive graph operations. The examined
programs were: Class2RDB is a benchmarking model transfor-
mation [5], PIM2PSM (from [21]) converts a platform independent
model to a platform specific model, and C20_Sel (from [21]) con-
verts a customer-order database from a customer-oriented repre-
sentation to a order-oriented representation with some extraction,
and a2d_xc (from [20]) renames a to d and contracts c. The pro-
gram codes of Class2RDB, PIM2PSM and C20_Sel are mechan-
ically generated; they are originally written in UnQL* [23] and
converted to UnCAL. For a2d_xc, we used the three graphs as
input: S30k is a 30000-long sequence of “o4oA ... 4o, M200 is
a lattice-like graph of 40000 nodes in which the ¢-th node connects
to the (¢ + 1)-th and (¢ + 200)-th nodes modulo 40000 by A, and
€200 is a graph of 201 nodes in which every node connects to the
other nodes by A.

Table 1 shows the experimental results. In all the examined
cases, our implementation ran significantly faster than GRound-
Tram. The main source of the speed-up would be that there is no
overhead of manipulating nodes and edges, which are stored in
Sets in ocaml, in our implementation. Since GRoundTram already
equips lazy-like evaluation for some special cases [21], the laziness
of the translated program would not contribute to the speed-up so
much. However, the speed-up is more significant in Class2RDB,
PIM2PSM and C20_Sel, which contain 114, 74 and 28 applications
of srecs, respectively.

2.4 Bidirectionalization

A Dbidirectional transformation is a pair of a usual transforma-
tion of type S — V and a “backward” transformation of type
S — V — S that maps changes on the transformed data to the
original data [15, 16, 20, 29, 30, 41]. A classic instance of bidirec-

! The implementation is available from https://bitbucket .org/kztk/
funcal

Zhttp://www.biglab.org/download.html

tional transformation is the “view updating problem” studied in the
database community [4, 11], where a view is a result of a query (i.e.,
a transformation). Recently, bidirectional model transformation has
been studied in the software engineering community to synchronize
high-level model and low-level implementation [42, 43]. Bidirec-
tional semantics of UnCAL [20] has been studied for this applica-
tion because usually those models are represented by graphs.

Our translation enables us to access bidirectionalization meth-
ods [29, 30, 41] studied for functional programs. In [29, 30], if a
function f has polymorphic type

YaVu.PackM cap=Ta — u (T )

where T and T" are type constructors for container-like datatypes,
namely instances of Traversable, and PackM c oy is a type class
with the methods below®

new :: ¢ — o
LiftO = Eqr = (c—r1) > a—pur
liftO2 :: Eqr = (c—>c—r1) D> a—a—pur

then we can derive a backward transformation of type 7' ¢ —
T ¢ — T c corresponding to fo.; :: T ¢ — I (T ¢) where «
and p are instantiated by c and the identity monad [ respectively.
It is rather straightforward to write an interpreter according to
the semantics discussed in Section 5 that has the following type.

eval :: PackM Loy = Exp — Env o — p (Graph o)

Here, Exp is a type for translated expressions, and Env and Graph
respectively are types for environments and graphs polymorphic in
graph labels. The idea to write such an interpreter is that (1) instead
of using label constant a directly we use new a, and (2) instead of
direct label comparison I = a or I = I’, we use lifted comparisons
LiftO (= a) lor lift02 (=) 11'.

There already exists a bidirectional semantics [20] of UnCAL.
Although their method can handle insertions and deletions of edges
in addition to label updates, it is very complex even for label
updates while our approach is much simpler. Also, their method
is not robust for language extension. For example, if we extend
UnCAL/UnCAL to include higher-order functions, then Hidaka
et al. [20]’s method becomes no longer applicable due to the higher-
order constructs. In contrast, Matsuda and Wang [29, 30]’s method
is still applicable because its only requirement is the polymorphic
type above and thus it allows us to use higher-order functions in a
forward transformation.

3. Brief Overview of UnCAL

In this section, we briefly overview UnCAL [8], a first-order func-
tional programming language that manipulates graphs. UnCAL is
an internal language of UnQL [8] and its extension UnQL ™" [23], in
which users can write query like SQL; for example, the query that
extracts a person named Bob shown in Section 1.1 can be written
as follows.

select $p where
$p in $db, {name: $n, friend: $£f} in $p,
{$namel.: {}} in $n, $namel = Bob

Once a query is written in UnQL/UnQL™, it is converted to an
UnCAL program and then is executed. This means, our translation
is also beneficial to UnQL/UnQL™. It is remarkable that, recently,
UnCAL is applied to bidirectional model-driven software develop-
ment [20, 23, 43], where a structure of a software is modeled as a
graph in different levels of abstractions and their relationships are
described by graph transformations.

3 In the original paper, PackM has a method to lift n-ary functions instead
of those special for unary or binary ones.

2015/2/17



3.1 Graphs in UnCAL

UnCAL deals with multi-rooted, directed, and edge-labeled graphs
with no order on outgoing edges. The characteristic points of the
UnCAL graphs are: (1) the UnCAL graphs can have markers that
indicate roots and holes, (2) the UnCAL graphs can have c-edges
that have similar behaviors to e-transitions in automata, and (3) the
equivalence of the UnCAL graphs are defined by bisimulation.

As mentioned in Section 1.1, markers are used in the two ways:
input and output. Input markers are names for multiple roots, and
output markers are names for holes. Nodes may be marked with
input and output markers (input nodes and output nodes), and they
can be connected to produce other graphs; e.g., one can construct
cycles by connecting nodes with input markers to that of output
markers of the same names in the same graph.

UnCAL graphs can contain e-edges representing “short-cuts”,
similarly to the e-transitions in automata. For example, if a node v
is connected to a node u by an e-edge, it means that the edges of
v are also edges of v (the converse is not necessarily true because
v can have other edges than this e-edge). UnCAL uses e-edge to
delay some graph operations for efficiency [8].

We define the UnCAL graphs formally. Let M be a set of
markers and L be a certain set of labels. An UnCAL graph G
is a quadruple (V, E,I,0), where V is a set of nodes, E C
V x (LU{e}) x Visasetof edges, I C M x V is a set of pairs of
input markers and the corresponding input nodes, and O C V' x M
is a set of pairs of output nodes and associated output markers. In
addition, we require that, for each marker &x € M, there is at most
one node v such that (&x,v) € I. In other words, I is a partial
function from markers to nodes and is sometimes denoted as such.
For a singly-rooted graph, the default marker & is often used to
indicate the root. We call the markers in the sets {&z | (&z,_) € I}
and {&z | (_,&=z) € O} input and output markers, respectively.
Throughout this paper, we fix the (denumerable) set of labels L.

The equivalence between UnCAL graphs is defined by bisim-
ulation extended with e-edges. Intuitively, two UnCAL graphs are
equivalent if the infinite trees obtained by unfolding sharings and
cycles are identical, after short-cutting all the e-edges. Let us de-
fine the bisimilarity between graphs formally. We write v —! v if
there is an edge (v,l,u) € FE between nodes v,u € V in a graph
G = (V,E, I,0), and write -  for the reflexive transitive closure
of —°. A bisimulation X between a graph G1 = (V1, E1,11,01)
and G2 = (Va2, B, I2,0-) is a relation satisfying the following
conditions: (1) if (v1,v2) € X, for any path satisfying v; ¢
wy; —* wy there is a path satisfying va —¢ wy —* up and
(u1,u2) € X, and for any path uo satisfying v 58 we — U
there is a path satisfying vi ¢ w; —* ug and (u1, u2) € X; (2)
if (v1,v2) € X, for any path vq 2y¢ 41 such that (u1,&z) € O,
there is a path v2 —»¢ wuy such that (uz, &z) € O, and conversely,
for any path va —>° uy such that (us,&z) € O, there is a path
v1 =% wuy such that (u1,&z) € O; and (3) dom(I1) = dom(I2)
and (I1(&x), I>(&z)) € X for any & € dom([1) = dom([l2).
Two graphs G'1 and G are called bisimilar, denoted by G1 ~ Ga,
if there is a bisimulation between G and Gb.

Note that the graph bisimulation is different from weak bisim-
ulation [33] or the equivalence of the languages of automata. The
following examples illustrate the difference.

N

iy Pk

The bisimilarity of the first two examples shows the difference from
weak bisimulation; recall that e-edges represent shortcuts. The non-
bisimilarity of the last two examples shows the difference from the
equivalence of the trace sets, or the equivalence of automata.

g:={3{l:g} [a1Ug
|&z>g &y [ ()| 91D g2
| 91 @ g2 | cycle(g)

| srec(A(l,t).91)(g2) (structural recursion)

| ¢ (graph variable)

=1

Figure 3. The syntax of the positive subset of UnCAL

(graph constructors)

l:

&Xm

¥ . &Xx

@ 2 ML
GIUG: {a:G} &y &x>G 0
&X1 ... &Xk
Gi
&X1 ... &Xk &X' .. &X' &Yl ... &ym 64 84
Py e 5 &XL . &Xm
v &; i H
&1 ... &Ym H
Gi G2 G ; G
2 i 3
&1 ... &0 &1 ... &0 e sz, &Xl &xm &1 ... &Yn
GiDG: G1@G, cyce (G)

Figure 4. Graph Constructors

The bisimilarity-based semantics of the UnCAL graphs sup-
ports usual equational reasoning of recursive functions on graphs [8,
21]. The purpose of this paper is to further investigate this direc-
tion and show a closer relationship between UnCAL programs and
functional ones.

3.2 Syntax and Semantics

Figure 3 shows the positive [8] subset of UnCAL that we mainly
target in this paper. The subset of UnCAL consists of the nine graph
constructors and srec for a structural recursion. Compared with
full UnCAL [8], the subset does not contain if-expressions and the
isEmpty operator that checks if a graph has at least one non-e-
edge accessible from the roots or not. The former restriction is just
for simplicity; we can extend our discussions straightforwardly to
if-expressions.

In contrast, we have to be more careful with isEmpty. As
we will discuss in the end of Section 4, there is no computable
counterpart of iSEmpty in general functional programs, and it
must be converted to an oracle. However, unlike the discussion
in Section 4, the discussions in Sections 5, 6 and 7 can be easily
extended to isEmpty because isEmpty becomes computable
for the class of functional programs restricted by the type system in
Section 6.

3.2.1 Graph Constructors

UnCAL has the nine graph constructors, {}, {_:_}, U, &z >
&y, (), @, @, and cycle. Some of them are already men-
tioned in Section 1.1. A record notation shown in Section 1.1
such as {name : Alice,email : alice} is a syntax sugar for
{name : {Alice: {}}} U {email : {alice : {}}}. Figure 4 illus-
trates their intuitive behaviors. In what follows, we introduce the
formal definitions of these nine constructors each by each.

Singleton Graph The expression {} constructs a (single) root-only
graph, of which semantics [{}] is defined by:

[{] = ({v},0,{&— v},0)
Here v is a fresh node.

Edge Extension The expression {a: g} constructs a graph by
adding an edge with label a pointing to the root of the graph

2015/2/17



[g]; formally, its semantics is defined by:

[{a:g}] = (VUu{u}, EU{(u,a,0)},{&—u},0)
where (V, E,{& — v},0) = [4]

Here, u is a fresh node.

Edge-set Union The expression g; U g2 adds two e-edges from
the new root to the roots of G; and G2, where G and G>
are evaluation results of g1 and g2, respectively. Formally, its
semantics is defined by:*

[g1 Ug2] = (V, E, {&+— v},01 UO2)
where (Vi, E1,11,01) = [g1]
(Va, B2, I2,02) = [g2]
V =ViuVaU{v}
E=FE UEU{(v,e, (&), (v,e, (%))}

Here, v is a fresh node, and V; and V> are assumed to be
disjoint.
Named Hole The expression &y constructs a graph with a single

node marked with an output marker &y, of which semantics is
defined by:

[&y] = ({v},0,{&— v}, {(v.&y)})
Here v is a fresh node.

Naming Root The expression &z > g names the root of [¢] by &z,
of which semantics is defined by:

[&z > ¢] = (V, E, {&x — v}, 0)
where (V, E,{& — v},0) = [g]

Unlike the original definition [8], we restrict that the input
markers of g must be the singleton {&} for simplicity.

Root-set Union The expression g1 @ g2 combines two graphs [g1]
and [g2] with different sets of input markers, of which seman-
tics is defined by:

[91 ® go] = (Vi U Va2, Ex U Es, [1 U 13,01 U O2)
where (Vi, E1,11,01) = [g1]
(‘/2>E2712a02) = [[92]]

Here, we assume that V; and V5 are disjoint, and require that
dom(I1) and dom(I2) are disjoint.

Empty Graph The expression () represents a graph with no nodes
or edges, i.e.,

[0] = (9,0,0,0)

Plugging In The expression g1 @ g2 replaces holes in [¢1] with
roots of [g2] that share the same names, of which semantics is
defined by:

[[gl @92]] = (VanllvOQ)
where (V1,E1,[1701) = [[g1ﬂ
(Va, B2, I3, O2) = [g2]
V=ViuW,
E =E1UE,U{(v,e, 2(&x)) | (v,&z) € O1}

Here, we assume that Vi and V, are disjoint, and require
ran(O1) C dom(Iy).

Cycle The expression cycle(g) constructs cycles by replacing
holes with roots in [¢] that share the same names, of which

“1In the definition, we restrict that g; (i = 1, 2) has only one root while the
original definition allows g1 and g2 to have multiple roots. This is handy
when we convert UnCAL to functional programs. This restriction does not
lose the expressive power; for g1 and g2 with input markers &z1, . .., &zn,
the original g1 U g2 can be rewritten as (&z1 > ((&x1@g1)U(&x1@g2))) B
B (&zn > ((&2n@g1 )U(&2rn@g2))), in which U satisfies this restriction.

semantics is defined by:

[eycleg] = (V, E',I,{(v,&x) € O | &z & dom(I)})
where (V, E,1,0) = [g]
E' =EuU{(v,e,1(&)) | (v,&x) € O}

Some examples have been shown already in Section 1. The fol-
lowing is an alternative way to define the cyclic graph in Section 1.

&a @ cycle((&a > ({name : {Alice : {}}} U {friend: &b}))
@ (&> ({name : {Bob: {}}} U {friend : &a})))

Structural Recursion The expression srec(A(l,t).g)(_) repre-
sents a structural recursion in the sense that a function f(z) =
srec(A(l,t).g)(x) satisfies the following laws [8].

f{}) ={t (SR1)
f{a:G}) =gla/l,G/t] @ f(G) (SR2)
Ff(GLUG2) = f(G1) U f(G2) (SR3)

Thanks to srec, UnCAL can express many graph transformations
in an efficient way, with guarantee of termination [8, 23].
Formally, its semantics is defined by:

[srec(A(l,1).9)(9)] = (V' UUcep Ve, B UUcep Ec.
{&x = Upg 40 | &z € Z},0)
where
(V,E,{& = vo},0) = [g']
(VC7EC7IC7OC) = [[g[a/lv(MEv{& = U},@)/t]]]

¢=(2av))
V' = {upes |vEV, 82 € Z}
E = {(U/,e,uv,&z) | Ja,u. (v, &x) € O(u,aﬂ,)}
U {(uvv&z, g,v") | Ja,u. Iy o) (&x) = v

Here, V' are fresh nodes, and Z = dom(I;) and ran(O¢) C Z
for each ( € E. We assume that dom(I¢) = dom(I./) for all
¢,¢' € E, and V; and V/ are disjoint for different ¢,(’ € E.
Intuitively, the semantics computes g[a/l, G/t] for each edge in
[¢'], and connects them by e-edges which corresponds to (SR2)
and (SR3). Unlike the original definition [8], we require the graph
[¢'] to have only one root named & and no holes. The former
restriction is just for simplicity. For typed UnCAL [8], we can
convert UnCAL programs to ones that satisfy the condition. In
contrast, the latter restriction reduces the expressive power to some
extent. However, UnCAL programs that violate the latter restriction
are rare in practice. For example, UnCAL programs obtained from
the surface languages UnQL and UnQL™ satisfy the restriction.

3.3 Types

One would notice that there are some conditions on markers to
perform some graph constructions such as U. To guarantee these
conditions, UnCAL has a type system concerning markers [6, 21],
in which a graph type is of the form DBs;. A type DB+ represents
a set of the graphs whose input markers are exactly X, and whose
output markers are contained in Y. For example, expression &y
can have type DBy where X = {&} and Y D {&y}. Recall that
& is the marker to refer roots obtained from {}, {_: _} and &y. We
shall omit the typing rules, because it is straightforward and one
can extract the typing rules from the conversion rules from UnCAL
to functional programs, which will be shown in the next section.

4. UnCAL Programs to Functional Programs

In this section, we formalize a translation from UnCAL programs
to functional ones, whose idea has been roughly mentioned in Sec-
tion 1.1. The translation enables us to reason about UnCAL pro-
grams as functional ones and thus to import verification techniques
for functional programs to the graph transformation problem, as
discussed in Section 2.

2015/2/17



ex=x|Ar.e|ere (A-terms)
| 7ie|(er,...,en) (projections and tuples)
| a (labels)
| e1:ea|erUea|®  (graph constructors)
| fixge (first-order fixed-point operator)
| foldne (structural recursion for graphs)

Figure 5. The syntax of FUnCAL, the target language of the trans-
lation.

As mentioned in Section 1.1, we convert an UnCAL program
that manipulates graphs to a functional one that manipulates in-
finite trees, by emulating the UnCAL specific features, markers
and their manipulation, by standard notions in functional program-
ming languages. Specifically, we emulate input markers—names
for roots—Dby tuples, and output markers—names for holes—by \-
abstractions.

It is true that a translated functional program can be nontermi-
nating; for example, an UnCAL expression cycle(&) satisfying

[eycle(®)] =* <) ~[{}]

is converted to fixg (Az.z) that diverges. However, this is rather
natural and not problematic in the bisimulation-based reasoning,
which will be shown in Section 4.2. Recall that, in process calculi,
(strong or weak) bisimilarity cannot distinguish a terminating pro-
cess from a nonterminating process if each of them does not interact
other processes. How to execute the translated programs as graph
transformations will be discussed in Sections 5, 6 and 7.

Recall that g of srec(...)(g) is restricted not to contain out-
put markers. This is a key to regarding output markers as holes.
For example, in the original UnCAL without the restriction,

srec(\(l,t).g')(&y) = &y holds for g’ with type DBEQ. This
behavior is different from that of holes; if the output markers are

holes, a graph substituted to a hole must be traversed by the srec.

4.1 Translation

The syntax of the target language of our translation is given in Fig-
ure 5. We call the language FUnCAL. The target language contains
A-expressions, tuples (where 7;" is the projection of the ith element
from an n tuple), (infinite) tree constructors, and the (first-order)
fixed-point operator fixg, and structural recursions fold,, f. Tree
constructors consist of a leaf e, edge extension (:), and branch con-
struction U. For simplicity, we shall write a : b for {a : b} hence-
forth. We use fixg instead of letrec that appeared in Section 1.1,
since it is handy to discuss reductions. The structural recursion
fold,, f is “fold” for the tree constructors defined recursively as:

fold,, f e = (o,...,0) (Foldl)
foldy, f (z :y) = fx (foldy fy) (Fold2)
fold,, f (zUy) = (fold,, f z) U (fold,, fy) (Fold3)

Note that fold,, returns an n-tuple of trees rather than a tree;
in the right-hand side of (Fold3), we overload U to tuples as
(1, yzn) U (y1,--.yyn) = (x1 Uyr,...,Zn Uyn). Unlike
general “fold”, the operations for e and U are fixed in the definition.

As we have mentioned earlier, in our translation, we emulate
input markers by tuples and output markers by A-abstractions.
Thus, an UnCAL expression g :: DB is translated to

e GVl GI¥l
where G is the (coinductive) datatype defined by:
dataG=e|L:G|GUG

In this section, we assume that FUnCAL has the standard simple
type system with the datatype G and the label type L; we later refine
it to guarantee termination (Section 6). For example, an expression
Af.fold, f has type (L - G™ — G") — G — G™.

We introduce several notations. We sometimes shall write 7;
instead of ;' if n is clear from the context. We assume that
markers are totally ordered, and write X for a tuple (z1,...,2s)
where {&z1,...,&x,} = X and &z; < &z; (¢ < j). Some-
times, we use a syntax sugar AX .e for At.e[(m;t)/%;]1<i<n Where
(x1,...,2n) = X. For example, assuming 1 < x2, we write
)\(431, Ltz).lj for )\t.mt.

Our translation is defined according to the typing derivation of
UnCAL. A translation judgment I' - g :: DBy ~+ e reads that
an expression g of type DB under a typing environment T in
UnCAL is converted to an expression e, where the type of g and
types in I are converted from DBS}S,/ to Gl G, Figure 6
shows the translation rules for the UnCAL graph constructors. If
we ignore the ~» e part of T' F g :: DB ~» e, the judgment and
rules coincide to the typing judgment and rules of UnCAL [6, 21].

The conversion rule for srec is a bit involved and thus is written
separately as follows.

Tt DBQ{)&} Fog DB% ~e TI'kFgy: DB;()&} ~ e

T F srec(\(l,t).91)(g2) :: DBY ~
Ay.para ;| (ALAE.(At.e1) (A().t)) (e2 ()

Here, para, e, representing a “paramorphism™ [31], where an ex-
pression Af.para,, f has type (L - G - G" — G") - G — G",
is a syntax sugar defined by:

para,ey =p (foldn+1 ()\z./\aj.q (ez(p'z) (pa)) (2: p'w)) y)

where p :: G"™ - G",p' :: G" —» Gand g :: G* — G — G"*!
are functions to rearrange tuples defined as px = (miz, ..., The),
p 'z = mppax, and g vy = (mix,..., ™o, y). This definition
of para,, is similar to how a paramorphism is represented by a
catamorphism (fold) via tupling [31]. The rule C-REC becomes a
bit complicated due to explicit conversion between G and () — G.
Since the argument of para,, must be of type G instead of () — G,
we apply () to e2. In addition, since the conversion assumes that ¢
in e1 has type () — G, we construct such a function by A().t.

For example, cycle({a : &}) of type DBQ{,&} is converted to
Ay.fixg(Az.a : z) of type () — G after some simplification
based on the standard 8 and 7 conversions. An UnCAL expression

C-REC

srec(A(l, g).&)(cycle({b : &})) is converted to Ay.fold; (Al.Ar.7) (fixg (Az.b :

after some simplification.
It is not difficult to show the translated programs are well-typed.

4.2 Correctness

Although the translation is rather simple, some extra effort is re-
quired to state its correctness; we have to be careful with the follow-
ing difference between UnCAL and FUnCAL: An UnCAL graph
of type DB3S, which can contain output markers in Y, is translated
to a tree-to-tree function G'¥'! — G!X! in FUNCAL rather than an
expression that generates a (tuple of) tree. To leap the gap, we first
define a relation between output-marker-free UnCAL graphs and
FUnCAL tree expressions, and then we extend the relation to one
that between general UnCAL graphs and FUnCAL functions.

First, we define a graph obtained from an expression as a labeled
transition system [33].

Definition 1. A reduction graph Ge,,x of a (possibly-open)
FUnCAL expression eg of type G™ and markers X = {&x1,...,&zn}

3 Precisely, paramorphism is a notion for inductive datatypes. We borrow
the name just because the computation patterns are similar.
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[ - {} :: DB . o C-SINGLE

FI—g::DB;&}we

. C-EDGE
TH{l:g}: DB s Myl: (ey)
'tk g :: DBY ~o ey}
{ Y }171,2 C-UNI

I'Fg1Ugs:: DBY ~ Ay.(e1y) U (e2y)
I'+g:=DBM ¢
'F&zpg:: DB;{/&J} ~ e
&y = &y; of (&y1,...,&yn) =Y
&y DBé&} ~ N2 2 C-HoLE
C-EmpP

C-RooT

L' ()= DBY ~ Ay.()
{T'kg:: DBifi ~eiticie p=AX1.0X2.X1 U X
Tk g1 @ g2 DBYM™ s Ayp (e1 y) (e2y)
I'tgy :DBE ~»e; Tk gy DBY ~~es
'k g1 @ gz :: DBY ~ Ay.eq (e2y)
I'g:DBXyy ~e
' F cycle(g) :: DBy ~ AY .fixg(X.e X UY)

C-RU

C-SUBST

C-Cyc

- = C-VAR
FkyaD(y) ~y
I'g:DBf ~e YCVY

e ———C-SUB
'k g:DBy ~ AYeY

Figure 6. Conversion rules of UnCAL graph-constructors.

with &z; < &z; (i < j) is an (possibly-infinite) UnCAL
graph (V, E,I,0) where V is the set of FUnCAL expressions,
E = {(e,a,e') |e="a:€e'},and I = {&x1 — mieo,...,
&z, — Tneo}. Here, the relation (=) is defined by:

erUes = e1 e1Ues = es e=cife—eé

where, — is the call-by-name reduction. O

Note that, in each reduction by =, only (U) occurring at the top
is interpreted as nondeterministic choice. We write G for G, x if
X is clear from the context or not relevant in the context. We abuse
the notation to write G ~ eand e ~ €’ for G ~ G and G ~ G/,
respectively. Note that G such that G ~ e for some e must not have
output markers. By definition, if e and ¢’ are equivalent as infinite
constructor trees (i.e., U is frozen), then e ~ ¢’.

Then, we define a correspondence (=) between an UnCAL
graph G :: DBS and an expression e :: GI¥'l — GXlby: G ~ e
iff(Ge(Gid...® G|y|)) ~ (e (e1,... ,€|y|)) for any Gy, e;
(1 <j < [|Y]) such that G; :: DBY and G ~ e;.

Now, we have the following theorem.

Theorem 1 (Correctness). IfF g :: DBY ~ e, [g] = e holds.
Proof. See Appendix A. O

4.3 Translation of isEmpty

The full-set of UnCAL contains isEmpty as we have mentioned
before. Although many transformation can be described without
isEmpty [8] as those obtained from UnQL, there are still useful
transformations that require isEmpty; for example, some UnCAL
programs converted from UnQL™, such as Class2RDB in Sec-
tion 2.3, contain isEmpty [23].

Since a graph is translated to an infinite tree, it is natural that
isEmpty is translated to the productivity test that checks whether

e satisfies e =* a : €’ for some a and €', which is generally
undecidable. In other words, isEmpty is translated to an oracle
instead of a computable function according to our translation. This
is the reason why we consider the positive subset of UnCAL. For
the positive subset of UnCAL, we can reason about the UnCAL
programs through translated functional programs. For the full-set
of UnCAL, additional reasoning effort is needed to handle the
productivity-test oracle, although special treatment of markers are
not necessary in reasoning of the translated programs.

However, isEmpty does not pose any problems when we
execute UnCAL programs as functional ones (Sections 5, 6, and
7). Roughly speaking, the type system in Section 6 ensures that the
productivity test is decidable for the well-typed programs.

5. [Evaluating Functional Programs as
Finite-Graph Transformations

The translation in Section 4 enables us to reason about UnCAL pro-
grams as functional ones; for example, we can apply verification
techniques studied for functional programs to UnCAL ones (Sec-
tion 2.1). However, the translated programs are not graph transfor-
mations; i.e., according to the usual semantics, they may result in
infinite trees rather than finite graphs.

In this section, we give a semantics based on Nakata and
Hasegawa [34]’s lazy semantics, which extends Launchbury [28]’s
natural semantics with the black hole [2, 3, 34] (“apparent un-
definedness”), so that a FUnCAL program runs as a finite-graph
transformation. This section focuses on the formal description of
the semantics. Formal discussions about termination will be post-
poned to Sections 6 and 7.

The basic idea is to exploit a pointer-structure in a heap under
the lazy evaluation. For example, the heap obtained after eval-
vation of fixg (Az.a: x) in the usual lazy evaluation is cyclic
and has a similar structure to a corresponding UnCAL graph
[cycle({a : &})]. However, an extra effort is required to handle
fixa (Az.z) and fold (Aa.Ar.7)(e) for example, which are nonter-
minating in usual semantics.

The lazy semantics with the black hole [34] plays an impor-
tant role to resolve the problem. Since fixg(Az.z) evaluates to
the black hole without running infinitely in the lazy semantics,
we identify the black hole with a singleton graph, and obtain a
singleton graph as the evaluation result of fixg(Az.z). Still, the
semantics is not sufficient for terminating evaluation of recur-
sions such as fold(Aa.Ar.r)(e). To make the evaluation of re-
cursions terminating, we adopt memoization. Roughly speaking,
since e of fold(Aa.Ar.r)(e) represents a graph, the recursive call
of fold (Aa.Ar.r) must take the same argument twice in the evalua-
tion. Memoization is used to detect the situation, and make the call
result in the black hole.

5.1 Modified Syntax with Memos

As mentioned above, we adopt memoization for structural recur-
sions. Accordingly, the syntax of FUnCAL is changed as

en=---|fold"e

where fold,.e is replaced with fold™ e in which M represents a
memo. The memos M are all ) initially, and entries are added
through evaluation. Although tuples and projections are important
in previous sections, we shall ignore them henceforth because they
are not relevant in our technical development in the following sec-
tions; our discussions can be extended to them straightforwardly.
This is the reason why fold™ e above does not have the subscript.

In what follows, we shall use a metavariable C for binary con-
structors “:” and “U”.
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Cey e |y = (E[Cx1xa]|z1 = e1,z2 = ez, )
(21, x2: fresh)
(Effixge] | p) = (Ew]|w=ew,u) (w: fresh)
(Effold™ ¢ o] | ) — (E[s] |2 ,
(Elfold™ev] | ) — (E[w]|w = e z1 (fold™ e x2), 1)
(M' = Mv + w], w: fresh)
ifv=m1:xz2,v & dom(M)
(E[fold™ e v] | ) — (E[w] | w = fold™ e 21 U fold™ e 2, 1)
(M' = Mv + w], w: fresh)
ifv=x1Uzz,v ¢ dom(M)
(Bffold™ e o] | ) — (E[w]| )
ifM(v) =w

Figure 7. Reduction rules of our lazy abstract machine: we assume
that (Az.e) is a-renamed so that the variables introduced in the
right-hand sides are fresh.

5.2 Semantics

Now, we describe our lazy semantics to execute FUnCAL programs
as graph transformations.
A value v, or weak head normal form, is defined by:

vi=a|Cxy x| Az.e | fold”e | o.

That is, a value is either of a label, an expression guarded by a
constructor C where x1 and x2 refer some expressions via a heap
introduced later, a function, a memoized recursion, or the black
hole. An evaluation context E is defined by:

Ex:=0|Ee| (fold"e)E |z:=E

An evaluation context x := O is characteristic in lazy evaluation,
which represents heap-update after the expression referred by x
becomes a value. We write E[e] for an expression obtained from
E by replacing O with e. Note that (fold™ e) E above means that
fold™ e is strict. A heap is a mapping from variables to expressions.
A configuration is a pair (x| u) where x is a variable to hold
an expression to be evaluated in p and p is a heap. We assume
that configurations are closed; (z|u) is closed if x and every
variable occurring in the right-hand sides of y also occur in a left-
hand side of u. One can think that (x| z1 = e1,...,Tn = €n) as
letrec 1 = e; and ... and z, = e, In xz, but we use
different notation to avoid confusion with our restricted forms of
recursive definitions such as fixg and fold. We sometimes write
(e | py for (x | x = e, u) where we do not care . We assume that
expressions are appropriately a-renamed to avoid capturing; more
explicit treatment of variable renaming can be found in [34].

The reduction relation (x |p) — {(x|p') is defined by the
rules in Figure 7. The rules except the ones for fold™e are just
straightforward extensions of [34] with constructors.

The black hole e represents the apparent undefinedness yielded
when the value of z is required by the evaluation of x itself [34]. A
typical example is fixg (Az.x), which will be evaluated as:

(fixg (A\z.z) |0) —» (w]w= (Az.z)w)
- (w:=(Azx)w|w =)

In contrast, fixg (Az.a : z) does not lead to e because of the lazy
semantics; recall that the values are weak head normal forms.

(fixg (A\z.a: x)|0)

= (w|w=(Az.a:z)w)

= (w:=((Az.a:z)w)|w=e)
s (w:=a:z|lz=w,w=e)
—(w:=ad:2'|d =a,2 =z, =w,w=9)
—{d 2 |d =a,2 =z, z=w,w=a":2)

The reduction rules for fold™e are keys in this semantics. It
basically works as fold;e in Section 4.1; indeed, the first, the sec-
ond and the third rules correspond to (Fold1), (Fold2) and (Fold3),
respectively. The first rule also says that e can be seen as an ex-
ception. The second and the third rules update the memo, and the
fourth rule of fold™ e looks up the memo if there is corresponding
entry in the memo.

Thanks to memoization, fold® (Az.Ar.r) (fixg (Az.a : z)), the
problematic example shown in Section 1, evaluates to e without
major changes to the original semantics [34]. For an illustration,
see Example 1 below.

Example 1 (Eliminate All Edges). Let us consider the expression
fold’(Az.Ar.r) (fixa (A\z.a : )

Here, fold® (Az.\r.r) eliminates all the edges, and thus we expect
that the expression results in e (a singleton graph). Let us write
el for fold™ (Az.Ar.r), then the above expression is evaluated as
follows.

u:=ul|u=ue,...) {hit}

Here, we underlined the configurations where elj; inspected the
memo M. Memoization plays an important role to achieve the
intuitive result. At the first-underlined reduction of elas, the entry
(@' : 2') — wis added to M. At the second-underlined reduction
of elnr, since M(a' : ') = wu holds, the call is reduced to the
variable u. Note that, in the evaluation of u after the first-underlined
reduction of el s, the referred value was replaced with e. Thus, we
got e as the final result. O

(elp (fixa(Az.a: x))|0)

—*lelp(a' :2')|d =a, 2’ =z, 2 =w,w=a":2',...)
= (ulu= Az rr)d (el s )ysu} ), )

= (u:= el aysuy T |u=9,...

—* <u = el{(a/;x/)._m} (a' : I/) \u =e,.. >

- (u:

—

An important property on memos is that, if looking-up succeeds,
then the looked-up object must be a value, which will be used in
Section 7.

Lemma 1 (Look-up). Suppose that {e|0) —* (E[fold™ e v] | 1)
where M (v) = x. Then, p(x) is a value. O

5.3 Extracting Graphs

As mentioned early in this section, we obtain a graph from an
evaluation result as the “graph” structure of a heap. For example,
for a configuration (x |z = a : z,a = a), we obtain a graph G =
(V,E,I,O) with V = {z}, E = {(z,a,2)}, I = {&+— z}
and O = (). In general, since a heap may contain unevaluated
expressions, we have to evaluate them to extract a graph from the
heap. Here, we formally describe how to extract a graph from a
heap. In this subsection and in Section 7, we shall omit (U) for
simplicity.

If a heap contains unevaluated expressions as {z = (Ay.y)(a: z)},

we cannot extract a graph directly from the heap. To extract a graph
from a configuration (z | 1), we have to ensure that u(y) is a value
for all y accessible from the root x. Formally, we say that a variable
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x is accessible from y in p when (z,y) in the reflexive transitive
closure of the {(z,w) | w € fv(u(z))}.

For a configuration (x | u), this deep evaluation is easily done
by evaluating (elimg 2 | 1) where elim s = fold™ (Aa.Ar.if a = a
then r else r). An application elimg = eliminates all the edges
from z, and thus it results in e if terminates. If (elimg = | p) —*
(o] '), then (x| p) and (z | p') are “bisimilar”, and (z | u’) satis-
fies the required condition above.

Now, let us define how to extract a graph from a heap. Let
eo be a closed expression of type G, and suppose that we have
(elimg zo | zo = e0) —* (@] p). Then, from the discussions
above, u(z) is a value for every x accessible from xo. We can
easily construct a graph from such a heap by graphify(xo, eo) de-
fined as follows.

graphif}/(xm 60) = (V7 E, {& = $0} ) 0)
where V = accessible variables from z in p
E : Uz:(zl;zQ)eu,zeV* {(l‘, :U’(xl)v $2)}
(elimg zo |0 = e0) =" (8| 1)

Note that 14(z1) above is a value, more concretely a label literal.
Thus, the termination under the context elimy O means that an
expression corresponds to a finite graph.

Treatment of (U). 1f we have (U), it suffices to use a context
isEmpty@ (elimyO) instead of elimg O, where isEmpty™ is a mem-
oized FUnCAL version of isEmpty. If we only allow isEm ptyw to
appear the outermost context, only an extra effort to prove the ter-
mination is one more case analysis added to the proof of Lemma 9.
With (U), the definition of graphify(zo,eo) is changed accord-
ingly; specifically, the definition of F is changed to £ = --- U
Uz:(zlugw)e,,t,zev {(l‘, &, 1?1), (JS, & xQ)}

The next theorem states that the two semantics (the call-by-
name and the lazy abstract machine) coincide.

Theorem 2. [f graphify(z,e) = G, G. and G are bisimilar.

Proof (Sketch). We extend the notation of the reduction graph to
the configurations, and show that reductions of the abstract ma-
chine preserves the reduction graphs (up to bisimilarity). For (z | 1)
where 1(y) is a value for any y accessible from z, it is easy to prove
that the reduction graph and the result of graphify are bisimilar. [J

Remark. This construction of a graph from a configuration runs
in time linear to the heap size. This efficient construction is
achieved by e-edges that postpone U-operation. To obtain e-free
graphs, we have to pay a similar cost to e-elimination in automata,
i.e., cubic time to the number of nodes (= the size of the heap).

Together with Lemma 1, the following lemma says that growth
of memo M of elim,; does not change the termination, which will
be used in Section 7.

Lemma 2 (Memo and Termination). If (elimg e | u) terminates,
then (elimys e | ) also terminates for any M such that (M (v))
is a value for all v € dom(M). O

6. Type System

In this section, we describe the type system that guarantees termi-
nation of — under the context elimg0; that is, well-typed expres-
sions are finite-graph transformations. We shall only show the type
system in this section; termination will be discussed in Section 7.

6.1 Idea

In advance to the formal definition of our type system, we discuss a
problematic example we want to exclude to explain the underlying

idea of the type system. Consider the expression alnB bs where

bs = fixa (Az.b: 7)
alnB = fold(Az.Ar.z : insAr)
insA = fold(Az.Ara:z:r).

(Here, we ignore memos for a while.) One might notice that insA
is applied to a variable r that holds the result of the recursive call
of aInB. The expression evaluates to a nonregular tree as

alnB bs =" b : insA (alnB bs)
—"Db:insA (b : insA (aInB bs))
—*b:a:b:insA? (aIlnB bs)
—*Db:a:b:a:a:a:b:insA® (alnB bs)
—*b:a:b:a:a:a:b:---:msA" (alnB bs)

and thus must not correspond to a finite graph. Here, one can find
that the number of nested applications of insA increases in the eval-
uation, which leads to this nonregularity and thus nontermination
of elimg (aInB bs). In contrast, such nonregularity does not arise
for functions insA itself and el in Example 1. For example, if we
apply them to bs above, we have

el bs —* el bs insA bs =" a:b: insA bs

Thanks to this looping structure, elimy (el bs) and elimy (insA bs)
terminate with memoization.

To exclude such a problematic case, we use a modal type system
with modality O that represents “already constructed (and thus
regular)”, and restrict that the argument of fold f to be a tree that
is already constructed and regular. For an expression e of type OG,
since we know that e is evaluate to a regular tree, the application
of fold f to e terminates, as insA bs where we know the regularity
of bs beforehand the application. However, for an expression e of
type G, application of fold f is not always terminating because its
results can be referred in the e by some outer-contexts, as insA bs
and its simpler version fixg (Az.b : insA x). Here we cannot know
the regularity of the argument because the tree is being constructed.

6.2 Modal Types
A type T is defined as follows.

Tu=G | =1L

G:=G|0g

Types consist of graph types with modality (G), function types
(—) and the label type (L). As explained above, the modality O
represents “already constructed”. For example, the argument of
fold must has type OG to produce a graph of type G. It is natural
to have a subtyping relation OG < G, which means that a graph
constructed in some period is still available after the period. The
structural subtyping rules for < are standard ones and we shall omit
them.

Figure 8 shows the typing rules. The typing rules for variables
and \s are standard ones. The rules T-CONS, T-CHOICE and T-F1x
says that graph constructors construct a graph in a period from
graphs in the same period. The rule T-BH says that e is something
similar to an exception. The rule T-CATA is special in our type
system. The rule requires that the argument of fold must be a
graph that is constructed beforehand; for such a tree, we can use its
finiteness and guarantee the termination of the application. In the
premise of T-CATA, since the memo maps arguments of fold e to
their return values, v must be of type OG and M (v) must be of type
g.

Our type system can be easily extended to configurations, and
we can easily prove that the preservation and the progress property.

An important property for our purpose is that functional pro-
grams translated from UnCAL as in Section 4 are well-typed.

Theorem 3. If g :: DBY ~ e, then - e == (O"G)Yl —
©"G)X! for some n.
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Figure 8. Typing rules for termination.
Proof. See Appendix B. O

We state that the typed expressions respect bisimulation; in
other words, a typed expression cannot distinguish bisimilar ex-
pressions (in the sense of Section 4.2).

Theorem 4. Suppose - f :: G — G'. For any e1 and ez such that
Fei:G(i=1,2), ifer ~ eq then fe1 ~ fea.

Proof. See Appendix C. O

One might think that it would suffice to have only two graph
types OG and G instead of having many graph types O"G would
suffice because O represents capability to be an argument of fold,
and have a type rule fold :: (L - G - G) - OG — G.
However, this prohibits the composition of fold, which means that
we cannot express what the original UnCAL can express. One then
might think that we could use the rule fold :: (L - G — G) —
OG — OG instead. However, this violates the type safety; note that
we have \z.fold(Aa.Ar.z) (Dummy : ®) :: G — OG.

7. Soundness of the Type System

In this section, we prove that every expression e of type G rep-
resents a finite graph; i.e., the evaluation of elimg e terminates and
thus graphify succeeds. To simplify our discussion, as wrote in Sec-
tion 5.3, we ignore (U) in this section.

Formally, we prove the following property:

*

Theorem 5 (Soundness). Ift e :: G, then (elimg z |z =€) —
(o] p).
We will prove the theorem by using logical relation [39].

7.1 Modification to Type System

Recall that we have said that our type system can be extended
to heaps and configurations; a solution would be defining that
w is well-typed under I' if Vz. I' + p(x) :: T'(z). However,
typing derivations could be cyclic via p in this naive approach.
This prevents us from using the logical-relation based termination
proof as in the simply-typed A-calculus [39]. In other words, a
configuration (z | 1) is essentially cyclic [2].

To overcome the problem, we parameterize a type system by a
heap. In analogy with the lazy evaluation strategy in which every
variable is evaluated at most once, every variable is dereferenced at

most once in typing. This idea is realized by splitting T-VAR into
the following two rules.
I'(z)=r71
koo
Here, we assume that dom(u) and dom(T") are disjoint, which
means that there is no nondeterminism to apply T- VAR or T-VARREC.
The other rules remain unchanged.
The following fact says that an expression and a heap that

are typable in the original type system are also typable in the
parameterized type system.

Lemma 3. Ifwe have ', At e::Tand T, A+ p(zx) :: A(z) for
any x in dom(A), then T' -, e :: T holds. O

I'Fpez=eenT
——— T-VARREC

T-VAR
I'Fue=ez T

We define a substitution o as a mapping from variables to ex-
pressions of which domain is finite. We write to for the application
of the substitution o to an expression/heap t.

The following lemma says that an evaluation of an expression of
type G cannot “observe” graphs of type G because of the modality
restriction; recall that fold is the only language construct that can
observe graphs.

Lemma 4. Let Z = {z1,...,2k}. Suppose z1 = G,... 2z =
G tu e 2 G. Then, if (elimys eo | po) terminates for some o :

Z — Vu, then (elimys eo’ | po') terminates for all o' =2 Z —
Vi where Vi = dom(M) U {e}.

Proof. See Appendix D. O

7.2 Logical Relation
Then, we define a logical relation R.

Definition 2 (Relation R). The unary relation R on configura-
tions is defined as follows.

(e|p) € RLiff (e| ) =" (v|u') for some v and p'.

(e|p) € Rq iff (elimg e| ) —* (8| ') for some p'.

(e 1) € Rog iff (e| 1) € Rg.

(i) € Rryory iff (f|p) = (v]| ') for some v and p’,
and (fe|pUn) € Ry, forany (e|n) € R, .

For heaps p and p’, we write 1 U p’ for the union of p and
', assuming that p(x) = p'(x) for any x € dom(u) N dom(p’).
Intuitively, R(7) defines pairs of expressions and heaps that are
“meaningful” as finite-graph transformations. Especially, (e | p) €
R¢ means that (e|u) corresponds to a finite graph. Note that,
thanks to elimg in the definition, we have alnB bs € Rg for bs =
fixa (Az.b : ) while the evaluation of aInB bs itself terminates.
Also note that we have Rg = Rog because -, e :: G if and only
if F,, e :: OG; the modality is used only to prove Lemma 4.

In the later proof, we will use the following properties on R.
Lemma 5 says that “garbage cells” in the heap does not affect
termination. Lemma 6 says that one-step reduction does not change
the termination property, which is rather obvious.

Lemma 5. {(e|u) € R, implies (e|pUp') € Rr. O

Lemma 6 (Preservation under Reduction). Suppose -, Ele] :: 7
and (Ele] | u) — (E'[e']| ') Then, (Ele]| u) € R+ if and only
if (B[] | 1) € R 0

7.3 Lemmas for Recursive Definitions

In advance to the proof of the termination, we prove some lemmas
stating R is preserved in our recursive definitions.

The following lemma intuitively says that typed fixg e expres-
sions corresponds to a finite graph if e preserves finiteness.

Lemma 7 (fixg). Supposet-, e0:: G — Gand (eoe' |pUp') €
Rg for any (€' | i) € Rg. Then, we have (fixa eo | 1) € Rg.

2015/2/17



Proof. Tt suffices to show that (elimy w | w = eo w, ) terminates.
Consider a configuration cg = (elimgw|w =epu,u = o, p)
which means fixg is unfolded only once. We prove the statement
by showing that dg = (elimp w|w = ep w, ) terminates if co
terminates. Then, since we have the termination of co by applying
the premise of this lemma twice, we conclude the termination of
do.

It is easy to prove that, for any e that is not u, (Ele] | n.) —
(E'[¢'] ) if and only if (Ele]fw/u] |n) — (E'[¢'][w/u]|n).
Here, 7. is the heap (w = e[w/u],u = e,n’) for a heap n =
(w = e,n’). Thus, to compare the evaluation sequences from cg
and do, we focus on how u are evaluated in the sequence from co.

Let us consider the reduction sequence from cq. There are two
possibilities about the sequence in whether u is evaluated. If u is
not evaluated, the reductions from co and do are clearly bisimilar,
and thus do terminates. If u is evaluated, the reduction sequences
may differ from when u is evaluated for the first time.

Let us consider a reduction sequence from cp in which u is
evaluated. It must have the form of:

co =" {elima (Elu]) [n+) = ...
Accordingly, we must have the following sequence.
do —" {elimys (Elw/u][w])|n) ...
On the one hand, since 7. (u) = @ by the definition, we have
(elimas (Efu]) [0.) =" (elimas (E[o]) |11.).

On the other hand, we have n(w) = v for some v because w has
been evaluated beforehand. Thus, we must have

(elimas (BElw/ul[w]) | n) —* (elima (Elw/u][v]) | ).
Since e,v € dom(M), from Lemma 4, the reductions from
(elimas (E[o]) | n«) and (elimas (Efw/u][v]) |n) terminate if ei-

ther one terminates. That is, co terminates if and only if do termi-
nates. Since ¢g terminates, dp also terminates. O

The following lemma states that every typed fold™ e results in

a finite graph if it is applied to an expression that results in a finite
graph. Note that, we use the finiteness of the argument in this proof.

Lemma 8 (fold). Suppose we have -, foldMe :: OG — G and we
have (e | 1) € Ri_g—¢. Then, (fold™e| 1) € Rog_g.

Proof (Sketch). We prove that (fold™e e’ | 1 U p’) € Rg holds for
any (€' ') € Rog.
The statement will be proved in three steps:

1. We prove the termination of fold e, where the number of ap-
plications is limited by & and the memoization is not exploited.

2. We prove the termination of fold%)e, where the number of
applications is limited by k, but memoization is exploited.

3. We prove the termination of fold e.

For Step 1, we introduce a new language construct fold e to
limit the number of recursions. Concretely, for £ > 0, its evaluation
rules are similar to those of fold™, except that fold™’s in the RHSs
are replaced with fold(;_1) and fold ) does not use memoization.
For k = 0, its evaluation rule is as follows.

(Effoldoye v] | ) — (E[o] | 1)

By the induction on k, we can prove that (foldyee' |pUp') €
Rg for any k. The types, or more precisely the modality O, are
not relevant in this proof; even elimy (alnB bs) terminates if we
replace fold? with fold () in the definition of aInB.

For Step 2, similar to Step 1, we introduce a new language
construct foldfv,ée which has the similar semantics to fold e

but it looks up memo as fold™ e does. A key observation is that

for any configuration (E[foldf%e o] | p), if M(v) = =z, then
u(z) is a value from Lemma 1. Thus, from Lemma 4, we can
prove that (elimg (fold(fyee’) | U /) terminates if and only
if (elimg (fold(xyee’) | U p') terminates. Note that, since the
modality information is used here to apply Lemma 4, the same
discussion cannot be applied to alnB.

For Step 3, we show that there exists some ko such that
(elimg (fold{}ye €') | 1 U p') terminates for some k > ko if and
only if (elimy (fold™ee’) | U ') terminates. Since we have
(e'| 1) € Rog, we have that (elimge’ | i) terminates. Then, we
can show that v” that occurs as (elimg (fold{jyee’) | pU p') —*

(E[foldff;)e v']| _) also occurs as (elimare’ | ') —* (elimyr v’ | _).
From the termination of (elimg e’ | 1), we can say that the num-
ber of arguments of fold?j)e is at most finite. Thus, thanks to
the memoization, let ko be the number of such v’s, we have that

(elimg (fold{}ye €') | 1 U p') terminates if and only if (elimg (fold e €) | U p')

terminates, for all k& > ko. Thus, we have (fold*

e’ |pup) e
Rg. O

7.4 Proof of Termination

Now we are ready to prove the main theorem in this section. To
prove the main theorem, we prove the following more general

property.

Lemma 9. Suppose (e, |p') € Ry for any x € dom(T'). If
Lhpen then(e|pUp U{z = e}, chomr)) € Rr

Proof. We prove the statement by using the induction on the typing
derivation. Letnbe pU p' U{z = €2} yedom(ry- We only show the
proofs for non-trivial cases.
Case T-VARREC. In this case, we have e = x € dom(u). From
the induction hypothesis, we have (u(z) | 4,z = o) € R,. From
Lemma 6, we have (x| u) € R.. Then, from Lemma 5 we have
(x| n) € R..
Cases T-CONS. In this case, we have e = e; : ez and 7 = G.

The reduction sequence starting from (elimg (e1 : e2) | ) must
has the form of

(elimg (e1 : e2) [n)

—* (elimg (z1 : x2) |z1 = €1, 22 = e2,7)

—*(Ela]|a = z1,r = elimyz2, 21 = 1,22 = €2,7)
where Efa] = if a = a then r else r. Since we have (e; [n) €
‘R from the induction hypothesis, we have that the evaluation of
a above terminates from Lemmas 5 and 6. Thus, the reduction
continues as

(Ela]|a = z1,7 = elimypze, x1 = e1,x2 = e2,7)
—* {elimprzs |21 = 2,72 = €2,7)

Since we have (e2|n) € Rg from the induction hypothesis,
we have that (elimy; 22 |21 = e1, T2 = e2,n’) terminates from
Lemmas 1, 2, 5 and 6. Thus, the reduction sequence terminates and
(e1: ez |m) € Ro.

Case T-BH. By induction of 7. Note that, if we apply e of type
T1 — T2 to any value, then we obtain a value e of type 2.

Case T-Fix. By Lemma 7

Case T-CATA. By Lemma 8. O

As a consequence, we have obtained Theorem 5, which says
that every expression of type G corresponds to a finite graph, in the
sense that — terminates under the observation elimg O.
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8. Related Work

We discuss graph transformations on graphs up to bisimilarity, as
UnCAL [8]. So far, many frameworks have been studied for manip-
ulation of graphs up to equality/isomorphism from the functional
programming community [10, 12-14, 19, 25, 27] and from the
database community [1, 9]. Since these frameworks and UnCAL
handle the different kinds of data structures, their results are incom-
parable with those of UnCAL and ours. Using the fact that graphs
up to bisimilarity are actually infinite trees, we have shown that
we can enjoy functional-style program-manipulation techniques for
UnCAL graph transformations (Section 2). Since graph-theoretic
properties of a graph are usually do not respect the bisimilarity,
any graph-transformation language that respects bisimilarity, such
as UnCAL, cannot compute them.

In the listed above, the frameworks [10, 14, 19] focus on cyclic
trees instead of general graphs, by using u-terms (e.g., ux.1
x represents an infinite list of 1) in some abstract syntax repre-
sentations. One might think that we also can use abstract syntax
(i.e., frozen pu-terms) instead of expressions with explicit heaps
in our technical development. However, the discussion does not
scale to tuples: We want to identify m px.(mox, m12) with the
black hole for example, but it is not easy to define reduction rules
that can reduce 1 px.(w2x, m1x) to the black hole. In contrast, a
straightforward extension to tuples works well with [34] and ours:
71 (fixe (Az.(m2z, m12)) successfully evaluates to e. In addition,
even with p-terms, we have to exclude problematic examples such
as ux.b : insA x.

Hidaka et al. [22] extend UnCAL to ordered graphs. Although
we discussed unordered graphs, we believe that our discussion
would be applicable to the ordered graphs with some modifications.

Our semantics of FUnCAL is based on Nakata and Hasegawa
[34]’s lazy semantics. In the context of term graph rewriting, in
which they discuss rewriting of (possibly) infinite terms in (z | ut)
format, more general reduction strategies in addition to the lazy one
have been studied [2, 3]. It is important to discuss whether or not
our discussion can be lifted to these reduction strategies such as
parallel call-by-value ones [8, 35].

9. Conclusion

We have formalized the translation from UnCAL programs to func-
tional ones so that we can reason about UnCAL programs as func-
tional ones. We also have designed the semantics and the type sys-
tem of the target language FUnCAL to run the translated func-
tional programs as finite-graph transformations with termination
guarantee. We have shown that our result enables us to apply sev-
eral program-manipulation techniques such as verification and op-
timization to the graph transformation problem.

We believe that our discussions in this paper would be useful not
only for extending UnQL/UnCAL but also for designing a graph
transformation language that respects bisimilarity. In this direction,
it is interesting to extend the type system toward a language with
general recursions. This also enables us to apply more optimiza-
tions or other program transformations to the translated programs.
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Proofs

The supplemnetary material contains the proofs of Theorems 1, 3
and 4, and Lemma 4 in this order.

A. Proof of Theorem 1

We will use the type system defined in Section 6 to prove the
theorem. By using the type system, we can have the following
lemma.

Lemma 10. Suppose A,z :: G F e :: G. Then, if e =™ E[z] for
some call-by-name evaluation context E (i.e, E == 0 | Ee |
(fold n e) E), E must be the hole.

Proof. 1t is easy to see the type system has the preservation prop-
erty, and thus A - E[z] :: G. Only the typable context is O. O

To prove Theorem 1, we prove the following more general
property; Theorem 1 is the special case where g below is a closed
UnCAL expression.

Theorem 6. Suppose I'F g :: DBY ~» e. Let A be a typing
environment satisfying that A - e :: G Yl g X1 holds and that,
for any z, T'(z) = DBY, implies A(z) = (G")Y'| — (g)IX'I.
Let 0 and m be substitutions that have the same domain and satisfy
that, for any x in the domain, [0(z)] =~ n(z), - 0(x) :: I'(z) and
F n(x) :: A(x) hold. Then, we have [g0] = en.

Here, we write gf/en for the UnCAL/functional expression ob-
tained from g/e by replacing each variable x with 6(z)/n(x).

We prove the theorem by the induction on the derivation tree
of a conversion judgment I' - g :: DB ~+ e. We only show the
nontrivial cases: C-SUBST, C-CYC and C-REC. For simplicity, we
restrict ourselves to the case where X = {&}; the proof for the
general case can be obtained straightforwardly from the discussion
below. In the discussion below, we abuse the notation to apply
graph constructors directly to UnCAL graphs, or (V, E, I, O)-
tuples, according to the semantics shown in Section 3.

Case: C-SUBST We will prove

[(91 @ g2)0] = \y.e1(e2y)n

where I' - g1 :: DBY ~ ey and I' - go :: DBY ~- ea. Let €] and
e5 be e1m and ean. To prove this, it suffices to prove
[(91 @ g2)0] @ G5 ~ (€] (e3 e3))
for any G3 and e3 satisfying G ~ es.
Let G, G1, and G2 be graphs [(g1 @ g2)0] @ G3, [¢16], and
[g26], respectively. Then, G can be written as G = (G1 @ G2) @
G3. Since @ is associative, we can rewrite itto G = G1 @ (G2 @

G'3). From the induction hypothesis, we have G2 @ G5 ~ (€5 e3)
and thus G1 @ (Gz @ Gg) ~ 6’1 (6’2 63).

Case: C-Cyc We will prove
[cycle(g)d] =~ \Y .fixa(AX.e X UY)n

where 0 F g :: DBX .y ~» e. As wrote above, we only consider
the case where X = {&}. To prove this, it suffices to show

[cycle(g)f] @ G2
~ fixg (Az.e {z} U Y [riea/y1,. .., mme2/ym])N)
for any (G2, e2) such that G2 ~ ea. Here x is the variable cor-
responds to the marker & We write e’ for en, and €}, ..., e, for
€11, ..., enmn.
Let G be ([cycle(g)0] @ G2), and G1 be [¢0]. Then, G and
(G1 @ (2 only differ in the nodes that have the output marker &z.

That is, a node that has the output marker &z in G; @ G2 has an e-
edge to the node indicated by the input marker &z in G, assuming
that we have used the same set of nodes V' for G and G1 @ G.
We write Az.Coz] for Az.e’ ({x} UY [meh/y1,. .., Tmeh/ym])-
Then, we have G1 @ G2 ~ Ax.Cy[z] from the induction hypothesis.

Let H be a graph that consists only of one edge with special
label 0 that does not occur in any other places, and vz be its root.
It is easy to show that H ~ 0 : €2 where 2 is a free variable. Then,
we discuss the evaluation of fixg (Az.Co[z]) and Cy[0 : ©]. Since
we have G1 @ G2 @ H ~ ([0 : Q] from G1 @ G2 = Az.Co[z], we
have a bisimulation X’ to prove this ~. Let G’ be (G1 @ G2 @ H),
and eg be fixg (Az.Co[z]). We define X’ as

(v,Cleo)) € X" if (v,C[0:Q]) e X,v eV
(vo,e0) € X' if vg is the root of G

and will show that X" is a bisimulation between G and eo.

Suppose that we have (v,e”) € X' and v —° --- == v/
There are two cases: (1) all edges are also in G’, (2) some edges
are not in G’. For Case (1), from the definition of X", there are two
possibilities: (1-i)) v = vo and " = eg, and (1-ii) €’ = C|eo]
where (v, C[0 : Q]) € X. We can safely ignore Case (1-i) because
we have eg —* Cleo] and (vo,C[0 : Q]) € X; the proof is
covered by the second case. For Case (1-ii), where e/ = C/eg] with
(v,C[0: Q)) € X, there is some C” such that (v',C’'[0: Q]) € X
and C[0 : Q] =* a : C'[0 : Q] from Lemma 10 (note that
we have z = G F CJ[z] G, which can be shown by the
preservation property and z :: G F Co[z] :: G). Then, we have
Cleo] =* a : C'[eo] and, by definition, (v',C’[eg]) € X. For
Case (2), it is suffice to consider the case where there is one edge
u —° ' that is not in G’. Then, v’ must be vy from the evaluation
of cycle and v —° vy in G'. Thus, there must be the reduction
Clo: Q] =*C'o: Q =*0: Q from the bisimilarity
between v and e” with respect to X'. Then, we must have the
sequence Cleg] =* C’[eg] =" eo. We have (vo,eq) € X and
eo —* Coleo]. Since the node o is also the root of the graph G’,
we have (vo, Co[0 : Q]) € X and thus (vo, Coleo]) € X'. The rest
of the proof is similar to Case (1).

Suppose that we have (v,e”) € X’ and ¢’ =* a : €. Simi-
larly, there are three cases: (1) there is a corresponding evaluation
sequence C1[0 : Q] = C2[0: Q] = ... = a : Cp0 : Q]
such that ¢” = Cileg] and ¢ = Cyleo], (2) v = wvo and
e’ = eo, and (3) €’ = Cleo] but there is no corresponding
evaluation sequence as Case (1). The discussion for Case (1) is
a counterpart of Case (1) in the previous paragraph, so we omit
the discussion. Case (2) can be proved similarly to Case (1) be-
cause eo has the reduction that e —* Coleo] (recall that — is
the call-by-name reduction) and we have (vo, Coleo]) € X’ from
(vo, Col0 : ]) € X. For Case (3), since Cleg] and C[0 : Q]
must have the corresponding reduction unless C' = 0O, which is
obtained from Lemma 10, the evaluation sequence must has the
form of €’ =* eg =* Cleg] =" a : €', while the correspond-
ing evaluation sequence is C[0 : ] = 0 : Q. Then, we have
v =% .- =% vy =% v in G'. Note that v is the only the node
having an 0-labeled edge. According to the semantics of UnCAL,
we can say that if there is a e-path from v to vy in G’, there also is
an e-path from v to vg in G. Thus, we have an e-path from v to vo.
Since we have (v, Cleg]) € X, the rest of the proof can be done
by iterating this discussion and Case (1) because the evaluation se-

quence ¢’ =" a : e is finite.

Case: C-REC  We will prove

[srec(A(l,t).g1)(g2)0]
~ Ag.para | Z] (NLAL.(M.e1) (A_8) (es ()1

where I', [ :: L, ¢ :: DB(g&} F g1 ::DBZ ~» e;andT F go DB% ~
ez2. For simplicity, we assume that Z = {&z}; The general-case
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proof is a straightforward extension of this case. Let g}, g5, e} and
€5 be expressions g1, g20, e1n and ean, respectively. It suffices to
show

[srec(A(L,£).g1)(g5)] ~ para 1 (NLAE..(At.}) (A()) (€5 )

to prove the above. For simplicity, we directly handle para instead

of fold. We write P for the expression paral(ALAE .(At.e]) (A().t))).

Let Go and G» be graphs [srec(A(l,t).g1)(g5)] and [ga],
respectively. From the induction hypothesis, we have G2 ~ e ();
we write X for the corresponding bisimulation. For each edge ¢
in G2, let H¢ be the graph that consists only of one edge with the
special label O¢, and ¢ be its root. From the induction hypothesis,
we have [g1]a/l,G/t]] @ (& > H;) ~ el[a/l,e/t] (¢ : Q) for
any G, e with G = e, where a is the label of the edge ¢ and 2 is a
free variable. We write X, g, for the corresponding bisimulation
relation. We write G¢ = (V¢, E¢,_, ) for the subgraph in Go
obtained from an edge ¢ in G2, and u,, for the node in G obtained
from the node v in (G2, according to the semantics of srec in
Section 3.

We define a relation X’ as:

e (v,C[Pey]) € X'ifv € V¢, (v,C[0¢
(u,eb) € Xo where (_, _,u) = (.
e (v,Pe) € X' ifv=mu, and (v',e) € X

1 Q]) € X ¢,e and

Then, we will prove that the X’ is a bisimulation to prove Gy ~
P (e2 ().

Suppose that we have (v,e) € X' and v —° -+ =52 0.
We have the two possibilities according to the two branches in the
definition of X’. We only consider the former case because, for the
latter case, we have v”’ and e’ such that we have v —° v”’ in the
sequence and e —* ¢”, satisfying the former condition. The proof
is straightforward if the path from v to v’ contains only the nodes
in V¢ for some ¢. Otherwise, there must be the node v", Uy, ,v" in
the sequence such that v —° -+ =% v" —° u,, —° v/” —c .
and v" € Vi and v € VC/ It suffices to consider the case
where there is one such nodes because other cases can be obtained
by the induction on the length of the path. In such a case, since
e has the form C[P €3] where (v,C[0¢ : Q]) € X . for
some G’ and €. Since v” —% r, there is a reduction sequence
Clo¢ : ] =" 0¢ : Q. Thus, there must also be a reduction
sequence C[P e5] =* P ej. Since ¢ = (_,_,v2) from the
semantics of srec and (v, €5 ) € Xa, we have (u,,, Pe”’) € X'.
Then, the rest of the discussion is the similar to the latter case.

We omit the converse direction because the idea of the proof is
similar to that for C-CyC. O

B. Proof of Theorem 3

The basic idea is to assign a natural number to an expression
so that an expression that occurs as an argument of srec has a
greater number than outer expressions. Formally, we prove the
theorem by extending I' - DB :: g ~~ e to the 6-ary relation
I'-DBY g ~ e :: 7,A that reads an UnCAL expression ¢
that has type DB3 under a typing environment I" is converted to an
expression e that has type 7 under a typing environment A in the
type system in Section 6.

Figure 9 shows the conversion rules. Here, A1 LI Ay is defined
as:

iU (z€ A1 Az € Ay)

_ Tl(w) (J?GAl/\:E%Ag)

(A1 U Az)(x) = T2(z) (xd A1 Az € A)
L otherwise

Here, 71 L2 denotes the least upper bound of 71 and 72 with respect
to the subtyping relation <. We assume that I" only contains graph

variables of type DBE; accordingly, A maps a variable x to type
() — O™G for some n. Note that this property is closed under LI.
The rules for graph constructors basically do not touch O. The only
rule that uses O is C-REC. The rule C-REC says that the argument
of srec(A(l, t).g1) must be more traversal than its return type and
t. It is worth noting that every 7 of I' - DB :: g ~» e == 7, A'in
Figure 9 has the form of (0"G)!Y! — (0"G)!4! for some n.

Unlike the type system shown in Section 6, we consider tu-
ples here. Accordingly, we extend the type to include (first-order)
product-types 7" as

Tu=-|TL X X Ty
and extend the typing rules for fixg and fold. to return tuples of
graphs as below.
Phe: (G X - xGn) = (G1 XX Gy)
Ikfixg e (Gi X -+ X Gy)

PhFeazL—= (Gt X+ XGn)—=(G1 X - XGp)
I'tfoldpe :: O(G1 U ---UGn) = (G1 X -+ X Gp)
We omit the type rules for the tuple construction and projections
because they are standard ones. The typing rule T-CATA says that
the argument must has more traversability than any component
of return value. Thus, the derived operator para,,e must obey the
following typing rule.
T'rezLlL—=G—(Gi X - XxXGn) = (G1 X - XGp)
'k para,e : O(GUGI U --UGn) = (G1 X -+ X Gyp)
Now, we can prove Theorem 3 by showing the following two
properties:
e Suppose ' - g :: DB ~> e 7, A then A e:: T

e Suppose I' - g :: DB ~» e, thenT'F g :: DBy ~ e : 7, A
holds for some 7 and A.

T-F1x

T-CATA

The former property is proved straightforwardly by the induction
on the derivation tree. To prove the latter property, the point is to
guarantee that the premise of the extended conversion rule for srec
holds if the corresponding premise of the original conversion rule
for srec holds. This is done by proving the following more general
property.

Lemma 11. Suppose I' - g :: DB ~~ e, then, for any natural
number n, there is A\ such that T F g :: DBy ~» e :: (O"G)IY —
(O"G) X!, A holds. O
Unlike the original property, the induction hypothesis used in the

inductive proof of this lemma becomes strong enough to prove the
T-CATA-case.

C. Proof of Theorem 4
First, we define the logical relation B as follows.

Definition 3. The binary relation on expressions B is defined as
follows.

e (e1,e2) €BLiffer —»* aand e; —* a for some a,
L] (61,62) EBg iff Gel ~ Ge2,
® (f1, f2) €Br —ry iff (fie1, foe2) €B,, forany (e1,e2) €Br,

Intuitively, B, extends the graph bisimilarity ~ to higher-order
expressions.

Then, we prove the following lemma, which is a generalization
of Theorem 4.

Lemma 12. Suppose I' - e :: 7. We have (b1, e02) €8, where
61 and 62 are substitutions satisfying (61(x),02(x)) €Br(s) for
all z € dom(T).
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I'E{}: DB;&} ~ e () > 0O"G,0
'kg:: DBi,&} w e (0mG)YI = onG, A

C-SINGLE

F-{l:g}: DB;&} ~ Ayl :e) :z (0"G)Y —» onG, A
{F F g; :: DBY ~s g s (OG)Y — O"’G,Ai}

C-EDGE

=12 C-UnN1

Tk g1 Ugs :: DBY ~ (Ay.(e1y) U (e2y)) - (O"G)Y = O"G, A U A,
I'kg:: DB;&} ~ e (O"G)YT 5 oG, A

C-RooT

I'+az:=g: DB e (0mG)Y! 5 0mG, A

y=yiof (yi,...,yn) =Y

I+ &y DB w Aymy = (0"G)Y = 0"G,0

C-HOLE

TH ()= DBY ~ \y.() = (0"G)! = (),0
{F [ gi DB})EL ~r €L (OnG)‘Y‘ — (OnG)‘Xil,Ai}i:Lz = )\Y]AYQXl UX2

C-Emp

Fl—glz:DBff(wel::

I'kgi ®go DB;{WX2 ~ Ay.p(e1y) (e2y) = (O”G)‘Y‘ — (O“G)‘Xluxﬂ7 A1 L As
©"G)YI = (0"G)XI A} Tk go :: DBY ~ g :: (O"G)/Zl — (0G)!Y], Ay

C-RU

'kFgi@gs: DB% ~ Ay.e1 (e2 y)(O”G)‘Z‘ N (o”G)\XIAI U Ay
I'kg:DBXyy e (O”G)|X@Y\ N (O”G)‘X|’A

C-SUBST

-Cyc

— — C
I'F cycle(g) :: DB ~ Y .fixg(X.e X UY) :: (0"G)YI - (0"G)X! A

FFy:T(y) ~y: ()= O"G,{y::0"G}
Ikg:DBY we: (0"G)Y - ©"6)¥ A vCy’

C-VAR

I'kg:DBY, ~ AY.eY : (0"G)Y'| = (onG)XI, A

L0 Lt DB kg1 DBZ ~ 61 (0"G)/Zl — (0"G)?I A1 As(t) = () — (O™G)
Tkgs:: DBé&} ~eg () — (Oma"{m’"}"'lG)7 Ao

C-SuB

C-REC

I+ srec(A(l,1).91)(g2) - DBE ~ Ay.para ; (ALA.(At.e1) (A().t)) (e2 () == () — (O"G)!?, Ay LA,

Figure 9. Conversion rules of UnCAL expressions

Proof. We prove the statement by induction on the typing deriva-
tion. We shall only show the nontrivial cases, T-F1X and T-CATA.
Note that we ignore memos in this section because we consider
call-by-name reduction instead of the abstract machine in Sec-
tion 5.

Case: T-F1x. We will prove fixg ef1 ~ fixg efs. Let us write eq
for ef; and ez for efz. Then we have (e1,e2) €Bg_g from the
induction hypothesis. Thus, we have (e1 Q) ~ (e2 ) where Q is a
fresh free variable. Let us write X’ for the bisimulation relation to
prove (e1 Q) ~ (e2 ).

Then, we define X as follows.

(fixg e1,fixg e2) € X
(Cl [fiXG 61}, Co [fiXG 62}) cXx if (Cl [Q], Cs [QD S X’

We will prove that X is the bisimulation relation between fixg e1
and fixg es.

Assume that fixg e1 =* a : €. Let us focus on how fixg e1
is reduced. There are only the following two possibilities from
Lemma 10.

o fixger = ei(fixg e1) =" Cilfixg e1] =* a : Clffixg e1]
where e1Q =* C1[Q] =" a: C1[Q), or

o fixge1 = ei(fixger) =" Ci[fixg e1] =" fixg e1 where
el =" C1[Q] =" Q.

Then, ¢’ must be the form of C[fixg e1] from the above discus-
sion. Then, there must be a corresponding sequence from fixg e2
such that fixgez = es(fixge2) =" Chffixgez] =" a :
Cj[fixg e2] from the induction hypothesis. As a result, from the
definition, we obtain (C1 [fixg e1], C3[fixg e2]) € X.

Assume that C [fixg e1] =* a : € where (C1[Q], C2[Q)]) €
X’. Let us consider how C; [fixg e1] is evaluated. There are only
the two possibilities from Lemma 10:

o Ci[fixg e1] =* a : Cf[fixg e1] where C1[Q] =* a : C1[Q],
or
o (4 [ﬁXG 61] =% fiXG e1 where C; [Q} =*Q.

For the former case, there must be a corresponding sequence
from Ca[fixg e2] such that Chlfixge] =" a : Chlfixg e2]
where C2[Q2] =" a : C3[Q]. From the definition, we have
(C1[fixe e1], Chlfixa e2]) € X. For the latter case, we repeat
the discussion in the previous paragraph.

Case: T-CATA. We will prove fold(f61) e1 ~ fold(f62) ex for
any e; and ez such that e; ~ es. Let us write fi; and fo for
f601 and f0s, respectively. From the induction hypothesis, we have
f1aQ ~ fza(forany a where €Q is a fresh free variable. Let us
write X, is the bisimulation relation to prove f1 aQ ~ f2 a2, and
X" is that to prove e; ~ ex.
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Then, we construct X" as follows.

(fold f1 €}, fold fae5) € X if (e}, en) € X"
(Cl [fOldf1 6/1}, 02[f0|df2 6/2]) cX
if (C1]9Q],C2[]) € X, and (e}, e3) € X" for some a

We will prove that X is the bisimulation relation between fold f1e;
and fold f2ez.

Assume that fold f1 €] =" a : ¢’’. Let us consider how fold f; e}
is reduced. From Lemma 10, there are only the two possibilities:

e foldfy ey =" foldfi (c : ef) =* fi a (foldfief) ="
Ci[fold fief] =* b : Ci[foldfie]] where e] = a : ef and
fiaQ="Ci[Q] =" b: C1[Q], or

o foldfi ef =* foldfi (c : €f) =* fi a (foldfief) =*
Ci[fold fie]] = fold fie] whereej = a:ef and foaQ =*
A

In either case, fold fo e5 has the corresponding reduction from
the induction hypothesis. Thus, it must be the case that e’ =
Ci[fold f1ef] and foldf2 e5 has the corresponding reduction
fold f2 e5 =" Ca[fold fie5 satisfying (e, e5) € X" and (C1[€],
C>2[Q]) € Xj for some d. Then, from the definition, we obtain
(Cl [foldf16/1/], Cs [f0|d flelgl]) cX.

Assume that C [fold f1 1] =™ a : €”. From Lemma 10, there
are only two possibilities about how C [fold f1 €] is reduced:

e C4[fold fief] =* b : Ci[fold fie]] where ¢] = a : e and
Ci[Q] =* b : CL[Q, or

e (4 [fold fie!] =* fold fie! where e} = a: ef and C1[Q] =
Q.

*

In either case, C2[fold fzeg] has the corresponding reduction se-
quence from the induction hypothesis. For the former case, the
proof is trivial. For the latter case, we repeat the discussion in the
previous paragraph. O

D. Proof of Lemma 4

Let c be a configuration (elimas e | ). We prove it by showing that,
for any substitution o1 and o2, coy is simulated by coz. Then, if
one sequence terminate, the all the others also terminate.

Let us consider the evaluation of co; = (elimys eo1 | po1) and
coz = {elimys eoa | po2). From the type, we can easy to see that
the evaluation sequences from the two configurations may differ
only from the place where the configurations (elim;s z;o1 | 'o1)
and (elimyss 2,02 | p'o2) are evaluated. Here, M’ is an extension
of M, i.e., M(v) = z implies M'(v) = x. However, for the both
cases the evaluation terminates because either z;0; € dom(M’) or
z;o; = e holds for j = 1, 2.
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