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Abstract—A Shortest Regular Category-Path (SRCP) query
is a variant of constrained shortest path queries, in which a
candidate path of minimum total length has to visit a number of
typed locations in a specific way according to a regular expression
over the types (categories) of locations. The SRCP query is
general and important, covering many interesting path queries
such as trip planning queries, optimal sequenced route queries,
optimal route queries with arbitrary order constraints. In this
paper, we show that a wide class of the SRCP queries can be
reduced to a series of single source shortest path searches on the
input graph by using a dynamic programming formulation. As
a result, we can freely exploit existing speedup techniques for
single source shortest path searches to speedup the SRCP query
computation. After that, we progressively engineer an efficient
implementation for answering the SRCP query by using two
forward and backward optimizations. Our experiments of queries
on the full American road network (with over 20 million nodes
and nearly 60 million edges) show that our solution is practical
and scalable for large, real-world road networks.

I. INTRODUCTION

Consider a tourist who will have a free day to travel Tokyo.
A friend of hers will pick her up at her hotel, and they will
enjoy a Tokyo tour ending with a dinner at the friend’s home.
Their tour is being planned like this: Having a breakfast at
a cafeteria (F), then visiting two places, a museum (M) and
a zoo (Z) in any order, then having lunch at a traditional
Japanese restaurant (R), and then in the afternoon doing one
of the following options; visiting a shopping mall (S) and then
an electronics store (E) followed by a temple (T), or visiting
a temple (T) and then a shopping mall (S) followed by an
electronics store (E). In such a tour planning, they want to
find a path such that (1) it visits locations of interest in a
preferred order and (2) it must be the shortest path in terms
of its length. This kind of query is very useful and common
in practice.

A bunch of work has recently been devoted to solving
various kinds of shortest path queries, where a solution path of
minimum total cost must satisfy a certain constraint in terms
of node categories. Li et al. [1] introduced a trip planning
query to find the shortest path going from a starting location,
passing through at least one location from each category in a
user-specified set of categories and ending at a destination

location. Rice et al. [2] proposed an exact solution for a
similar problem and called it a generalized traveling salesman
path problem. Sharifzadeh et al. [3] addressed a query called
optimal sequenced route query in which a total order over all
categories is specified, and the destination is a certain location
in the last category. Li et al. [4] discussed a query that allows
arbitrary (partial, total or between the two) order constraints
between different categories e.g., a gas station must be visited
before a restaurant but other locations can be visited in an
arbitrary order. Rice et al. [5] considered a generalized shortest
path query that is similar to the optimal sequenced route query
but with a specified destination location.

While each specific class of queries is interesting, none of
existing queries can directly deal with queries having multiple
options as the one in the first paragraph. Constraints for
locations in the morning do not require any order, so we can
use a trip planning query [1]. A restaurant must be visited
after a museum or a zoo, which is a query with arbitrary order
constraints [4]. Two options in the afternoon are two queries
with total order constraints [3], but they cannot be expressed
by a query with arbitrary order constraints [4] because these
options expose the contraint “a temple (T) is prohibited only
in between a shopping mall (S) and an electronics store (E)”
that cannot be expressed by any partial order.

To remedy such above queries, we propose a more general
class of queries, called shortest regular category-path (SRCP)
queries, where path constraints on the node categories are
described by a regular category-path expression. The SRCP
queries are powerful, covering all the existing queries dis-
cussed above as well as their combinations. Recall the tour
example above, we can describe it as an SRCP query as a
triple:

〈h,o,F(MZ |ZM)R(SET |TSE)〉

where the first component specifies the source (the hotel), the
second component specifies the target (the home), and the third
component is a regular category-path expression describing the
constraints on paths. Suppose that, in the late afternoon, we
could walk around some libraries (L) or cafeterias (F) before
going home. Then we can describe it with the following naive



query:
〈h,o,F(MZ |ZM)R(SET |TSE)(L|F)+〉

Now, the challenge is how to solve the SRCP queries
efficiently. One direct idea is to utilize the existing solution
proposed by Barret et al. [6] on formal-language-constrained
shortest path query, in which shortest paths are constrained
by a formal language (including regular expressions) for
describing requirements on labels associated with nodes/edges
of an input graph. Barret’s algorithm computes a product graph
of the input graph and a nondeterministic finite automaton
constructed from the regular expression, and reduces the
query computation to a point-to-point shortest path search
on the product graph. However, two problems remain in this
approach. First, the product graph could be very huge, and the
algorithm would require searching many (or even all) nodes in
the product graph. Second, it would be impractical to utilize
existing effective preprocessing techniques (e.g., Contraction
Hierarchies [7], Precomputed Cluster Distance [8], etc.) for
improving the point-to-point shortest path searches, because
we have to generate a product graph for each query and thus
the preprocessed product graph cannot be used for another
query.

In this paper, we show that a wide practical class of the
SRCP queries can be reduced to a series of single source
shortest path searches on the input graph by using a dy-
namic programming formulation; thus, we can exploit existing
speedup techniques for single source shortest path searches
freely to obtain efficient implementations for answering the
SRCP queries.

Our main contributions are summarized as follows.
• We propose a general mechanism (SRCP queries) for

description of various complex kinds of shortest path
queries with path constraints on node categories. It covers
the existing queries such as trip planning queries, optimal
sequenced route queries, optimal route queries with ar-
bitrary order constraints, generalized traveling salesman
path problem, and generalized shortest path queries.

• We show that a wide practical class of SRCP queries
can be efficiently computed, by reducing an SRCP query
to a series of single source shortest path searches, and
establishing a dynamic programming formulation for
the SRCP query computation. In addition, our approach
enables utilization of any fast single source shortest path
search (sequential or parallel search) to gain the best
performance.

• We progressively engineer an efficient implementation for
answering the SRCP queries by using two forward and
backward optimizations. Our experiments of queries on
the full American road network (with over 20 million
nodes and nearly 60 million edges) show that our solu-
tion is practical and scalable for large, real-world road
networks.

The rest of this paper is organized as follows. Section II
gives a formal definition of the Shortest Regular Category-
Path query, and discusses its expressiveness. We first introduce

a basic solution based on dynamic programming for answering
the SRCP queries in Sect. III and then we engineer it to get
an efficient algorithm in Sect. IV. A set of experiments with
large data sets is showed in Sect. V. Section VI discusses some
related works and Sect. VII concludes the paper.

II. SHORTEST REGULAR CATEGORY-PATH QUERIES

In this section, we formally define the shortest regular
category-path (SRCP) queries and the related SRCP problem,
and demonstrate the expressiveness of SRCP queries through
several typical examples.

A. SRCP Queries

The SRCP query is a special case of the known shortest
path query.

Definition II.1. (Graph and Shortest Path) Let G = (V,E,w)
be a weighted digraph, where V is the set of nodes in G,
E ⊆ V × V is the set of edges in G, and w : E → R+ is
a function mapping each edge in G to a positive, real-valued
weight.

Let Ps,t = 〈v1, v2, . . . , vq〉 be any path in G from node
s = v1 ∈ V to node t = vq ∈ V , such that, for 1 ≤ i <
q, (vi, vi+1) ∈ E. Let cost(Ps,t) =

∑
1≤i<q w(vi, vi+1) be

the cost of Ps,t. A path P ′s,t is called a shortest path from s to
t if ∀Ps,t ∈ G, we have cost(P ′s,t) ≤ cost(Ps,t). The shortest
path cost, cost(P ′s,t), is denoted by d(s, t).

The SRCP query is defined over node categories.

Definition II.2. (Category) Given a weighted digraph G =
(V,E,w). A category C is a set of nodes in G, or C ⊆ V .

Definition II.3. (Regular Expression on Category) The syntax
for regular expression on Category is:

R ::= Ĉ | RR | R “|” R | R“∗”

Here Ĉ is to recognize a category C, i.e., a terminal symbol,
R1R2 denotes the concatenation, R1 |R2 denotes the alterna-
tion, and R∗ denotes closure (Kleene star). As usual, we may
write R+ for RR∗.

Definition II.4. (Path Satisfaction) A path Ps,t =
〈v1, v2, . . . , vk〉 from s to t is said to satisfy a regular
expression R over a set of categories if the concatenation of
categories of these nodes spells out R. Such a path is denoted
by Ps,R,t.

Definition II.5. (Shortest Regular Category-Path (SRCP) /
SRCP Query) Given a weighted digraph G = (V,E,w), let
{Ci ⊆ V | 1 ≤ i ≤ k} be a set of categories of nodes in G,
and R be a regular expression over Cis. An SRCP query is
represented as a triple

〈s, t, R〉

where s and t denote the starting and ending nodes respec-
tively.



A path Pmin
s,R,t is called an SRCP if it satisfies R, and for

every path Ps,R,t in G satisfying R, we have:

cost(Pmin
s,R,t) ≤ cost(Ps,R,t).

We refer cost(Pmin
s,R,t) as dR(s, t).

Definition II.6. (SRCP problem) An SRCP problem is to find
an SRCP for a given SRCP query.

B. Simplification of SRCP Queries
In general, SRCP queries are more difficult to solve than

existing category-constrained shortest path queries. The diffi-
culty comes from two constructors in the SRCP queries, one
is the closure and the other is the alternation. To provide an
efficient and practical algorithm to solve SRCP queries, we
simplify them by restricting the use of the closure.

Given an SRCP query

〈s, t, R〉

where R is a regular expression, we show that we can simplify
the SRCP problem a lot by localizing the global closure. This
is based on the following two observations. First, it is usually
more practical to consider a path passing a node of category
C (i.e., ∗ Ĉ ∗, where denotes an arbitrary category) rather
than a path just containing an exactly single node of category
(i.e., Ĉ). This would suggest us to treat ∗ Ĉ ∗ as a primitive.
Second, concatenation of ∗ Ĉ ∗ with a closure will cancel
the effect of the closure. This means that the following two
SRCP queries,

〈s, t, ∗ Ĉ ∗R∗〉
〈s, t, R ∗ ∗ Ĉ ∗〉

will have the same effect as the query

〈s, t, ∗ Ĉ ∗〉

It is because the shortest path obtained from the last query
should be the shortest path from the first two queries.

Given the above, we will simplify regular expressions to
make the closure appear only in the form of ∗ Ĉ ∗.

Definition II.7. (Simplified Regular Expression (SRE)) The
syntax for SREs is:

R ::= ∗Ĉ ∗ | RR | R “|” R

For simplicity, we use “C” as an abbreviation of “ ∗Ĉ ∗”.

In the rest of this paper, we will focus on SRCP queries
where simplified regular expressions are considered.

Figure 1 shows an example SRCP query and paths satis-
fying the query 〈s, t,O (GY |B)V〉. The input graph has five
categories O, G, B, V, and Y. Nodes in the same category
have the same shape and color. Because of alternations in
the query, it is possible to have many optimal paths Pmin

s,R,t

that have the same optimal cost dR(s, t). Also note that there
is no requirement that two nodes in two different categories
must be directly connected. For example, the optimal path
〈s, o1, g2, y0, . . . , v0, . . . , t〉 spells out the constraint “OGYV”,
however the node y0 in Y connects to the node v0 in V via two
other nodes, although Y and V are contiguous in the constraint.

O
G
B
V
Y

v1 b0

t

g0

v0

y1

y2

g1

o0

y0

s

g2

o1

Fig. 1: An SRCP query example 〈s, t,O (GY |B)V〉. All edges
have the same weight of 1. Two of the SRCPs are shaded in
grey and pink. dR(s, t) = 9

C. Expressiveness

We show that SRCP queries are powerful enough to express
many interesting category-constrained shortest path queries
including those with partial or total order constraints.

1) Generalized Shortest Path (GSP) Queries: This query is
to find the shortest path from a starting point to a destination
point, passing at least one point from each of a set of specified
categories in a specified order [5]. A GSP is expressed in our
SRCP query as follows.

〈s, t,C1C2 . . .Ck〉

where s and t are the starting point and destination point,
respectively.

2) Optimal Sequenced Route (OSR) Queries: An OSR
query is to find the shortest path starting from a given point
and passing through a number of categories in a particular
order [3]. This query is different from the GSP query in
the sense that the destination is not a point but a category.
To express this query in our SRCP query, we create an
artificial destination node t′ in the input graph, and add edges
with weight 0 from nodes in the last category of the order
constraints to t′. The SRCP query is then as follows.

〈s, t′,C1C2 . . .Ck〉

3) Trip Planning Queries/Generalized Traveling Sales-
man Path Problem Queries (TPQ/GTSPP): A trip planning
query [1] or generalized traveling salesman path problem
query [2] is to find the shortest path from a starting point
to a destination point that passes through at least one point
from each of a set of categories (there is no specific order
specified in the query). A TPQ/GTSPP query with a set of k
categories is written in our SRCP query as follows.

〈s, t, R1 |R2 | . . . |Rk!〉

where Ris (i = 1 . . . k!) are permutations of the set
{C1,C2, . . . ,Ck}. For example, R1 is C1C2 . . .Ck, R2 is
C2C1 . . .Ck, and so on.

4) Optimal Route Queries (ORQ) with Arbitrary Order
Constraints: This query is to find the shortest path that
starts from a starting point and covers a user-specified set of
categories (e.g. {gas station, museum, park, restaurant}) [4].



Regular-Expression-Constrained Shortest Path Queries [6]

General SRCP Queries (this paper)

SRCP Queries with SREs (this paper)

ORQ with Arbitrary Order Constraints [4]

No Order Total Order

(TPQ [1], GTSPP [2]) (OSR [3], GSP [5])

Fig. 2: The relationship between SRCP queries and existing
queries

However, here users can specify partial order constraints
between some specific categories of the set, e.g. a gas station
must be visited before a restaurant, while other categories can
be visited in an arbitrary order. Such order constraints are
expressed in a visit order graph, in which each node is a
category, an edge from a category Ci to a category Cj denotes
that Ci must be visited before Cj .

To express the optimal route queries with arbitrary order
constraints in our SRCP query, there are two things needed to
be done. First, we need generate total order constraints from
the visit order graph, then put them together in the form of
SRCP queries by using alternation operators. A simple way
to generate the total order constraints is first enumerating all
permutations of the set of categories, and then filtering out
permutations that do not satisfy constraints in the visit order
graph. Second, we need create an artificial destination node
t′ for the SRCP query, which is done by adding edges with
weight 0 from nodes in all categories in the set of categories
to t′. The SRCP query is finally as follows.

〈s, t′, R1 |R2 | . . . |Rl〉

where Ris (i = 1 . . . l) are total order constraints satisfying
the visit order graph.

In summary, Figure 2 shows the relationships between our
SRCP queries and other queries. The general SRCP query
is a subset of the regular-expression-constrained shortest path
query [6] in which its regular expression is defined over node
labels. A practical subset of the general SRCP queries, whose
constraints are simplified regular expressions, is considered
in this paper. Although it is limited but covers all existing
important problems such as queries with arbitrary order, total
order, or no order constraints.

III. SRCP QUERY ALGORITHM

A naive approach for answering the SRCP query (s, t, R) is
considering it as a combination of existing queries with total
order constraints. To do that, we first generate all total order
constraints Ri of the input SRE R. For example, consider
an SRE “B(C |S)”, we generate two equivalent constraints
R1 = “BC” and R2 = “BS”. Then we evaluate sub-queries
〈s, t, Ri〉, e.g. 〈s, t,BS〉, 〈s, t,BC〉, independently by efficient
algorithms for total order constraints (e.g. algorithms for
optimal sequenced route [3] or generalized shortest path [5]).

Finally we take the minimum cost from results of each sub-
queries. This approach is straightforward but inefficient due to
many redundant computations between the evaluations of sub-
queries, e.g. two sub-queries in the above example would share
a computation for paths from s to the category B. Moreover,
computations from the category B to the category C and S can
be overlapped in terms of visited edges/nodes.

In this section, we propose a dynamic programming solution
to solve the SRCP problem in a more efficient way, in which
we reduce the SRCP problem to a series of single source
shortest path searches.

A. SREs as Directed Acyclic Graphs

It is well known that a regular expression can be expressed
by a nondeterministic finite state automaton with ε-transitions
(NFA-ε) [9]. However, the use of ε-transitions is not necessary
due to the absence of closures in SREs of SRCP queries.
Hence, we directly transform an SRE to an NFA without ε-
transitions. This NFA is a directed acyclic graph (DAG) GR

that represents the structure of SREs in SRCP queries. Nodes
of GR are object identifiers (OIDs) that are integers uniquely
identifying a node, and edges of GR are labeled by categories
in R.

The graph GR is simply constructed by a recursive function
on the structures of SREs. Algorithm 1 is to generate a DAG
graph for an given SRE. Given an SRE R, the recursive
function ParseSRE computes a triple 〈sc,GR, sk〉 where
sc and sk are the source and sink node in the graph GR,
respectively. For the terminal case R = C (see Alg. 1, lines 2-
6), we create a singleton graph GC containing only one edge
d labeled by the category C. The source and sink node of GC

are respectively the source and target node of d (see Fig. 3a for
an illustration of GC ). For the concatenation case R = R1R2

(see Alg. 1, lines 7-13), the graph GR is constructed from
two graphs GR1 of R1 and GR2 of R2 by merging the sink
node of GR1

with the source node of GR2
(see Fig. 3b for an

example). For the alternation case R = R1 |R2 (see Alg. 1,
lines 14-22), we create the graph GR from GR1

and GR2

by merging the source node of GR1 with the source node of
GR2 , and the sink node of GR1 with the sink node of GR2

(see Fig. 3c for an example). The generated graph GR is a
DAG with one source node and one sink node.

To present the semantics of the whole query Q = 〈s, t, R〉,
we introduce a query graph GQ = (VQ, EQ) that is con-
structed from the graph GR by attaching an in-coming edge
labeled by {s} to the source node of GR, and an out-going
edge labeled by {t} to the sink node of GR. Figure 4 shows
a query graph of the query 〈s, t,O (GY |B)V〉, in which two
sets {s} and {t} are called dummy categories (superscripts of
edge labels will be explained later in the Sect. III-B).

B. Dynamic Programming Formulation

Next, we formalize a dynamic programming formulation
for the SRCP problem by using the query graph. Given an
SRCP query Q = 〈s, t, R〉, we establish a DP table X in
order to store values during computation. Each row in the



Algorithm 1: ParseSRE(R)
input : A simplified regular expression R
output : A triple 〈sc,GR, sk〉

1: switch R do
2: case C
3: u← new Vertex ();
4: v ← new Vertex ();
5: GC ← new DAG({u, v}, {(u,C , v)});
6: return 〈u,GC , v〉
7: case R1R2

8: 〈sc1, GR1
, sk1〉 ← ParseSRE (R1);

9: 〈sc2, GR2
, sk2〉 ← ParseSRE (R2);

10: w ← new Vertex ();
11: replace sk1 ∈ GR1

and sr2 ∈ GR2
by w;

/* merge two graphs */
12: GR ← new DAG(V (GR1) ∪ V (GR2), E(GR1) ∪

E(GR2
));

13: return 〈sc1, GR, sk2〉
14: case R1 |R2

15: 〈sc1, GR1
, sk1〉 ← ParseSRE (R1);

16: 〈sc2, GR2 , sk2〉 ← ParseSRE (R2);
17: sc12 ← new Vertex ();
18: sk12 ← new Vertex ();
19: replace sc1 ∈ GR1

and sc2 ∈ GR2
by sc12;

20: replace sk1 ∈ GR1
and sk2 ∈ GR2

by sk12;
/* merge two graphs */

21: GR ← new DAG(V (GR1) ∪ V (GR2), E(GR1) ∪
E(GR2

));
22: return 〈sc12, GR, sk12〉
23: endsw

table corresponds to a category on an edge of the graph
GQ. Therefore, the table X has |EQ| rows, and g columns
where g is the maximum size of categories in the query Q.
“X[i, j]” is the value for the j-th node in the category at
the row i. For simplicity, we add superscripts to categories
in the query to denote their row indices in the table. For
example, with the user-defined query 〈s, t,O (GY |B)V〉, we
have 〈s0, t6,O1 (G2Y3 |B4)V5〉.

The DP table X is computed according to a topological
sort of the query graph GQ as follows. For each node u in the
topological sort, we generate a computation step, inu → outu,
where

inu = {r|(v, u) ∈ EQ, C
r ← l(v, u)}

outu = {r|(u,w) ∈ EQ, C
r ← l(u,w)},

computing values of the rows in the list outu by using values
in the rows in the list inu, in which l(u, v) is a function to
get a label of an edge (u, v) in GQ. Computation steps form
a dynamic programing formulation for the SRCP problem.
Following is the computing formulation of the computation
step inu → outu.

u vGC :
C

(a) Singleton graph GC

u1 v1

u2 v2

C1

C2

u1 w v2

C1 C2

GR1
:

GR2
:

GR :

(b) Concatenation case: R = R1R2 (e.g. R1 = C1, R2 = C2)

u1 v1

u2 v2

C1

C2

w1 w2

C1

C2

GR1 :

GR2
:

GR :

(c) Alternation case: R = R1 |R2 (e.g. R1 = C1, R2 = C2)

Fig. 3: Query graph constructors

0 1 2

3

4 5 6
{s}0 O1

G2

B4

Y3

V5 {t}6

Fig. 4: A query graph of the query 〈s, t,O (GY |B)V〉. Integers
in nodes are OIDs. Superscripts of categories are equivalent
row indices in the DP table. The subgraph from the node
1 to the node 5 is a DAG graph corresponding to the SRE
O (GY |B)V

X[i, j]
i∈outu

=

0 If i = 0

min
r∈inu

{ min
0≤l<|Cr|

{X[r, l] + d(cr,l, ci,j)}} If i > 0

where, Cr is the category corresponding to the r-th row in the
DP table X , ci,j is the j-th node in the category Ci.

Lemma III.1. Value X[i, j] in the DP table represents the
optimal cost of the SRCP of the query 〈s, ci,j , Ri〉 where Ri

is the SRE corresponding to a subgraph of GQ that includes
all paths from the node just after the source node of GQ to
the source node of the edge labeled Ci.

For example, consider the query 〈s0, t6,O1 (G2Y3 |B4)V5〉,
its query graph is shown in Fig. 4. The value X[3, 1] will
represent the optimal cost of the SRCP of the query 〈s, y1, R3〉
in which R3 = O1G2 corresponding to the subgraph having
edges from the node 1 (the node just after the source node of
GQ) to the node 3 (the source node of the edge Y3).

Proof: We prove this by induction on the sequence of
computation steps 1 ≤ k ≤ N , in which N is the number of
computation steps (the number of nodes in GQ).



For the base case, where k = 1, then this claim is
trivially true, because X[0, 0] is the optimal cost for the query
〈s,c0,0, R

0〉 = 〈s, s, {}〉 which has dR(s, s) = 0.
For the induction step, k > 1. Let u be the node in GQ that

generates the k-th computation step. For a set of nodes Vu that
are before the node u in the topological sort of GQ, let Eu

be a set of edges related to nodes in Vu, and ps be a set of
row indices of categories on the edges in Eu. Our induction
hypothesis assumes that this claim holds true for all values
X[i, •], i ∈ ps. Let consider the (k + 1)-th computation step
generated by the node v in GQ, that is inv → outv , in which
inv and outv is the set of row indices of all in-coming and out-
going edges of the node v, respectively. It is clear that inv ⊆
ps. Since each ci,j is a member of category Ci, i ∈ outv, j =
0 . . . (|Ci| − 1), it suffices to find the shortest path cost from
nodes cr,l in categories Cr (r ∈ inv, 0 ≤ l < |Cr|) to ci,j . It
follows from our induction hypothesis that the value of X[i, j]
is computed by min

r∈inv

{ min
0≤l<|Cr|

{X[r, l] + d(cr,l, ci,j)}}.

Corollary III.2. Let m be the row index of the dummy
category {t}. Value X[m, 0] represents the cost of the SRCP
of the query 〈s, t, R〉.

Figure 5 shows a table containing costs during the com-
putation of the query 〈s0, t6,O1 (G2Y3 |B4)V5〉. The order of
computation steps is as follows.

1st step: [] → [0]
2nd step: [0] → [1]
3rd step: [1] → [2, 4]
4th step: [2] → [3]
5th step: [3, 4] → [5]
6th step: [5] → [6]
7th step: [6] → []

The optimal cost dR(s, t) = 9 of the query is stored at the
last row (its row index is 6 that is the index of the dummy
category {t}) of the table. Note that the first step is actually to
initialize the value of X[0, 0], and the last step does nothing.

C. Single Source Shortest Path (SSSP) Search
A computation step “xs → ys” is to compute values in

rows in the list ys by using rows in xs. Let Uxs be a union of
categories corresponding to rows in xs and Uys be a union of
categories corresponding to rows in ys, then the step “xs →
ys” is equivalent to computing values for the nodes in category
Uys from values of the nodes in category Uxs. This can be
done by using a many-to-many shortest path search from the
nodes in Uxs to the nodes in Uys. However, such a many-
to-many search leads to many redundant computations due to
repeatedly visiting the input graph. By creating a super-node
s′ and edges from s′ to the nodes u in Uxs with weights being
values of u in the DP table [5], we can efficiently compute
values for the nodes in Uys by using a single shortest path
search from s′ until all nodes in Uys are settled (Assume that
we use Dijkstra algorithm).

Theorem III.3. Given a weighted digraph G = (V,E,w)
and an SRCP query Q = 〈s, t, R〉. Let GQ = (VQ, EQ)
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Fig. 5: A table of optimal costs for the query in Fig. 1.
The first column contains names of categories. The first row
contains indices of nodes in a category. Each row contains
optimal costs from s to a node in a category via some other
categories according to the SRE. Curved arrows on the left
indicate computation steps and its orders.

be the query graph of Q and Tsssp be the complexity of a
single source shortest path search, the cost of our algorithm
is O(|VQ|Tsssp), and the space complexity of the algorithm is
O(|EQ|).

Corollary III.4. Given a weighted digraph G = (V,E,w)
and an SRCP query Q = 〈s, t, R〉. Let GQ = (VQ, EQ) be the
query graph of Q. When a Dijkstra algorithm with a Fibonacci
heap is used for SSSP searches [10], our algorithm answers
Q in the time complexity of O(|VQ|(|E|+ |V |log|V |)).

One advantage of this approach is that it is independent
of the underlying SSSP search. Thus, we can use any fast
SSSP algorithm to implement, such as Contraction Hierarchies
technique [7], [5], Delta-Stepping [11], PHASE [12], etc. This
is useful because we can apply different efficient fast SSSP
algorithms for different kinds of graphs (road networks, social
networks, biological networks, etc.)

IV. OPTIMIZATIONS

Although the dynamic programming formulation can help
solve the SRCP problem, there is a need in optimizing the
SRCP query algorithm. First, the number of computation steps
(|VQ|) depends on user-defined queries. For example, two
queries, 〈s, t, (OGYV |OBV)〉 and 〈s, t,O (GY |B)V〉, have the
same meaning, but the former needs 6 computation steps and
the latter needs only 5. Second, consider the Trip Planning
Query that is to find the shortest path going through at
least one point in each category of a given set of categories
C = {C1,C2, . . . ,Ck}. It can be presented in SRCP query as
〈s, t, R1 |R2 | . . . |Rk!〉 where Ris are permutations of the set
C, i = 1 . . . k!. In this case, |VQ| will be ((k−1)k!+2) which
is not practical even for small k (e.g. k = 5. See Sect. V for
more discussion). This section will discuss how to engineer
an efficient algorithm for answering the SRCP query.



Optimization is to reduce the size of the query graph GQ.
In particular, there are two measures for the size of the query
graph: the number of nodes and the number of edges. The
number of nodes affects the time complexity and the number
of edges affects the space complexity that is the size of the
dynamic programming table. Here, we focus on the problem
of optimizing the time complexity, therefore the problem can
be defined as finding a graph with the minimum number of
nodes that generates exactly the same total order constraints
as a given query graph.

The query graph is a subclass of non-deterministic finite
state automatons (NFA) [9]. It is well known that NFA
minimization is computationally hard, and cannot in general
be solved in polynomial time. There exists a well-known
algorithm for minimizing NFAs [9]. The algorithm computes a
minimal equivalent deterministic finite automaton (DFA) with
respect to the number of nodes, and consists of two steps:
determinization and minimization. The determinization step is
to compute a DFA from an NFA, then the DFA is minimized
by the minimization step to get a minimal DFA.

Ström [13] has proposed two simplified algorithms for
the two steps determinization and minimization in the case
of word graphs that represent a set of hypotheses in speed
recognition system. A word graph is a DAG with exactly one
source node and one sink node. In this section we apply these
algorithms to optimize the query graph which has a similar
structure to word graphs.

A. Forward Optimization (Determinization)

A deterministic finite state automaton (DFA) has a property
that, given a sequence of categories, there is at most one path
in the DFA that generates it. The key to a determinization
algorithm is identifying the correspondence between a set of
nodes in the original graph and a node in its DFA graph. This
leads to an exponential computation because there are 2N sets
of nodes in a graph of N nodes. However, the algorithm can
be simplified in the case of the query graph that is a DAG
with one source node and one sink node.

The idea of a forward optimization is scanning the query
graph GQ from its source node to its sink node, and
grouping nodes that come from the same node with the same
categories [13]. Let DGQ be a deterministic query graph that
is the result of the forward optimization, a node in DGQ is
correspondent to a set of nodes in GQ. Figure 6 describes
an example of the forward optimization for the query
〈s, t,C1C4C6C9 |C1C4C7C9 |C1C5C7C9 |C2C8C9 |C3C8C9〉.
Initially, the graph DGQ contains only one node created from
the source node 0 of GQ. Because there is only one edge
going out from the node 0 of GQ, a new node in DGQ is
also correspondent to only one node in GQ (node 1). In the
next step, since there are three out-going edges of the node 1
in GQ with the same category C1, we can group their target
nodes into one set {2, 3, 4} and create a new equivalent node
in DGQ. Two nodes 7 and 9 in GQ are both coming from
nodes in the same set {2, 3, 4} with the same categories C4,
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Fig. 6: Forward optimization.

thus we also group them to create a new node in DGQ, This
procedure is performed until reaching the sink node of GQ.

B. Backward Optimization (Minimization)

This optimization is applied to the deterministic graph that is
the result of the forward optimization. The idea of a backward
optimization is that if there are multiple nodes going to the
same node with the same set of categories, then we group them
into one node. Because the deterministic query graph is a DAG
in which edges go from the source node towards the sink node,
we will process nodes in the reverse order from the sink node
util reaching the source node. We call this process backward
optimization. This process is the same as minimizing a DFA
because it merges any pair of nodes that generate exactly the
same sequence of categories.

Figure 7 describes a process of the backward optimization.
We initialize the minimal deterministic query graph MDGQ

with the sink node in the input deterministic query graph
DGQ. Then we scan the graph DGQ from the sink node back
to the source node in order to add new equivalent nodes to
the graph MDGQ. For each pair of nodes, the information
we need to compare is the categories on the out-going edges
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and the nodes that they go to. To store such information, for
each node, we maintain a set of tuples of an out-going edge’s
label and an equivalent target node. If there are multiple nodes
having the same set, then we group them to create a new
node in the graph MDGQ. For example in Fig. 7, because
five nodes 8, 9, 10, 12, 13, 14 in MDQ (see Fig. 7a) go to the
same node 15 with the same edge label C9, so we group them
and create an equivalent node 8 in the graph MDGQ (see
Fig. 7b). Note that, although two nodes 7 and 11 in DGQ go
to nodes in the same set {8, 9, 10, 12, 13, 14}, we do not group
them. This is because the node 7 has two edges to nodes in
{8, 9, 10, 12, 13, 14}, while the node 11 has only one edge to
nodes in {8, 9, 10, 12, 13, 14}.

C. Optimization of the DP Table

For our approach, the number of rows in the DP table is
equal to the number of edges in the query graph GQ. Although
the optimization of the number of nodes in GQ also causes a
decrease of the number of edges, this decrease is not remark-
able. Moreover, because the number of elements in each row
of the table is equal to the number of nodes in the equivalent
category, the size of the DP table becomes large when the
query contains a ”long” total order constraints, leading to out-
of-memory errors. Therefore we need to efficiently manage
the DP table.

One solution to managing the DP table is dynamically
creating it. As discussed earlier, the DP table is constructed
according to a topological sort of the query graph of a query.
When considering a node in that order, in-coming edges are

used to compute values for rows corresponding to out-going
edges, and never used again. Thus, after each computation
step, we need not store rows corresponding to in-coming
edges.

D. Optimization of the Query Structure

Although two forward and backward optimizations result in
a minimal query graph GQ in terms of the number of nodes,
for some user-defined queries, we can get a smaller graph GQ

by preprocessing the SREs in the user-defined queries.
Consider SRCP queries in the following form

〈s, t, R1R2R3 |R2〉

where R1, R2, R3 are arbitrary SREs. They have the same
effect as the query

〈s, t, R2〉

Therefore, for this kind of queries, we can eliminate all
SREs that contain another SREs. This can be generalized for
SRCP queries having more alternatives.

V. IMPLEMENTATION AND EVALUATION

We implemented a framework1 to answer the SRCP queries.
The overview of our framework is showed in the Fig. 8.
First, it takes an SRCP query as input, parses it to get a
query graph, then optimizes the query graph by two steps
“determinization” and “minimization”. Next, it will generate
a sequence of computation steps, in which each computation
step is executed by a single source shortest path search. For
simplicity, we just compute the optimal cost for the optimal
path satisfying the query. However, one can extract the optimal
path by keeping traces of computation steps.

For the implementation of a single source shortest path,
we used a fast algorithm proposed by Rice [5], which has
been engineering based on the speed-up technique called Con-
traction Hierarchies. Contraction Hierarchies (CH) technique
currently is one of the fastest speed-up technique for shortest
path problem on road networks [14]. Its idea is preprocessing
a graph by augmenting it with shortcuts so that shortest path
costs are preserved. Shortcuts are then intensively used by a
bidirectional Dijkstra algorithm to speed up the shortest path
search on the augmented graph.

A. Environment

All our experiments were ran on a Macbook Pro machine
which has a 2.6 GHz Intel Core i5, 8 GB 1600 MHz DDR3
memory, clang-503.0.40 (based on LLVM 3.4svn). Programs
were compiled with optimization level 3. We used a library of
contraction hierarchies written by Robert Geisberger2 in C++
to create and access an augmented graph.

Experiments were performed with a graph of the Full USA
road network, having 23, 947, 347 nodes and 58, 333, 344
edges. We borrowed the graph from the benchmarks of the

1http://www.prg.nii.ac.jp/members/tungld/srcp-July2014.tar.gz
2http://algo2.iti.kit.edu/source/contraction-hierarchies-20090221.tgz
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9th DIMACS implementation challenge 3. It took about 25
minutes to create an augmented graph using the CH technique
(this graph will be used as a common input graph for programs
in our experiments)

The following programs are implemented and used in our
experiments to compare results of discussed algorithms.
• gsp: the algorithm proposed by Rice [5] to answer the

Generalized Shortest Path Query that uses total order
constraints 〈s, t,C1C2 . . .Ck〉. We implemented the core
of this algorithm (without some heuristic technique).

• perm: a naive algorithm, which was mentioned in the
beginning of the Sect. III, to answer the SRCP query by
evaluating sub-queries for all total order constraints, then
taking the minimal cost from the sub-queries. Sub-queries
are evaluated by the gsp algorithm.

• srcp-noopt: our algorithm for the SRCP query without
optimizations.

• srcp-opt: our algorithm for the SRCP query with op-
timizations. Two optimizations were implemented: the
forward and the backward. To store a set of nodes, we
used a standard class std::set which supports equality
comparison. We used a class std::unordered map as a
hash table to store sets of nodes, which allows for fast
access to the sets of nodes to determine their existing and
elements. The boost graph library 4 is used to implement
the optimizations.

Categories used in our queries are generated randomly and
have the same number of nodes.

B. Results

1) Influence of the Optimizations: We measure the perfor-
mance of our algorithm for the trip planning queries which
are expensive queries. A Trip Planning Query (TPQ) with k
categories is written in the SRCP queries as follows.

〈s, t, R1 |R2 | . . . |Rk!〉

where Ris are permutations of the set {C1,C2, . . . ,Ck}, i =
1 . . . k!. For example, R1 is C1C2 . . .Ck, R2 is C2C1 . . .Ck,
and so on.

39th DIMACS implementation challenge: shortest paths. 2006.
http://www.dis.uniroma1.it/challenge9/.

4http://www.boost.org/doc/libs/1 55 0/libs/graph/doc/
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First, we fix the number of categories being 5, and then
change the size of categories. The naive solution that generates
all permutations of categories requires 720 computation steps
((5 + 1) ∗ 5!). Without optimizations, our algorithm generates
482 computation steps which is nearly half of that of the naive
solution. By using optimizations, the number of computation
steps reduces to 32 (25) that is more practical. Performance of
algorithms is represented in the Fig. 9a. It shows that the srcp-
opt algorithm is quite scalable when the size of categories is
increased.

Next, we will see the effect of the number of categories
on the performance of the query. We fix the size of each
category and change the number of categories in the query. As
indicated in Fig. 9b, the running time of the perm algorithm is
significantly increased, while the srcp-opt algorithm is quite
stable. Although the srcp-noopt algorithm can reduce the
number of computation steps twice, it still follows an factorial
running time. This experiments show the important role of
optimizations in our solution.
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TABLE I: The number of computation steps in each query

Q1 Q2 Q3 Q4 Q5
perm 9 16 28 48 80
srcp-opt 9 8 7 6 5

2) Influence of the Alternation Operators: To see the im-
pact of alternation operators ( | ) for a given query on the
performance of our optimal algorithm, we do experiments with
queries which differ in the number of alternation operators,
while the number of categories is the same. Starting with
a query without alternatives, each time we insert one “ | ”
operator to create a new query. In particular, we use the
following queries.

Q1 = 〈s, t,C1C2C3C4C5C6C7C8〉
Q2 = 〈s, t, (C1 |C2)C3C4C5C6C7C8〉
Q3 = 〈s, t, (C1 |C2)(C3 |C4)C5C6C7C8〉
Q4 = 〈s, t, (C1 |C2)(C3 |C4)(C5 |C6)C7C8〉
Q5 = 〈s, t, (C1 |C2)(C3 |C4)(C5 |C6)(C7 |C8)〉

Figure 10 shows the result. It is interesting that when there
are more options in the SRCP query, our algorithm becomes
faster. Looking the Table I that shows the number of com-
putation steps for each query, we see that the reason of such
good performance is that the number of computation steps
is reduced, leading to a decrease of the running time of our
algorithm. Meanwhile, if we use the perm algorithm, then the
number of computation steps will be dramatically increased
because there are many total order constraints generated. This
result also shows that our algorithm can reduce a large amount
of redundant computation steps when alternation operators
appear in the query.

3) Overhead of Optimizations: First, we measure the per-
formance of our algorithm when answering the query GSP.
We compare it to the algorithm proposed by Rice [5]. As
can be seen in the Fig. 11, two algorithms have the same
performance when the number of categories is increased. This
is easy to understand because, for this query, our algorithm
leads to the same dynamic programing table as that of gsp
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TABLE II: Performance of optimizations

1 2 3 4 5 6
forward (ms) 0.026 0.033 0.069 0.290 2.566 53.697
backward (ms) 0.018 0.034 0.084 0.302 1.580 10.872

algorithm. Moreover, there is no improvement on the structure
of the query when applying optimizations, thus the overhead
is very small.

However, for the trip planning queries, the overhead of
optimizations, in particular, the overhead of the forward op-
timization, is expensive. Table II shows the running times of
the forward and backward optimizations when the number of
categories (k) is changed from 1 to 6. With small k (1, 2, 3, 4),
the backward optimization takes less time than the forward
optimization. Nevertheless, the forward optimization is more
expensive with larger k (5, 6). This is because, the forward
optimization takes an exponential time complexity, while the
backward optimization takes a linearithmic time complexity.
Furthermore, both optimizations highly depend on the way of
storing sets of nodes during their computations. This effects
the performance of determining whether a set already exists
or not.

VI. RELATED WORK

The category-constrained shortest path problem is a variant
of regular-language-constrained shortest path queries in which
constraints are on a set of nodes in a graph instead of
individual nodes/edges. There are many solutions proposed to
answer such queries. Each solution is for a specific kind of
constraints over categories.

Trip Planning Queries [1] is the query that has no ordered
constraints. The existence of multiple choices per category
makes the problem difficult to solve. The complexity of the
TPQ is NP-Hard with respect to the number of categories.
Several approximation algorithms are proposed. These algo-
rithms are based on nearest neighbor searches. A feasible path
is formed by iteratively visiting the nearest neighbor of the last
nodes added to the path from all nodes in the categories that



have not been visited yet. The second one is the minimum
distance algorithm, a novel greedy algorithm, which results a
much better approximation bound. The algorithm chooses a set
of nodes, one node per one category in the query. These nodes
are chose so that the total distance from the start node to it and
from it to the end node is the minimum among nodes in the
same categories. The algorithm then create a path by following
these nodes in nearest neighbor order. Rice et al. [2] proposed
an exact solution for the Generalizes Traveling Salesman
Path Problem Query (GTSPP) that is similar to TPQ. The
algorithm is building a product graph of the original graph
G = (V,E) and a covering graph built on the power set
of the query’s categories. Finding the answer of the GTSPP
query is finding the shortest path in the product graph. The
time complexity is 2k(|E| + |V |k + |V |log|V |), in which
k is the number of categories in the query. The algorithm
is then improved by incorporating the graph preprocessing
technique called Contraction Hierarchies (CH) [7], resulting
in the time complexity of O(2k(m′ + |V |k), in which m′ is
the number of edges of the preprocessed graph. It is noted that
the improved algorithm is slightly different from the orignal
algorithm, in which it executes a series of sweeping phases
according to levels of an abstraction of the product graph, and
highly depends on the CH technique.

In parallel to Li et al.’s work [1], Sharifzadeh et al [3]
proposed the optimal sequenced route query (OSR) that is
similar to TPQ but imposes a total order constraints over cat-
egories. In other words, OSR query is to find the shortest path
starting from a given point and passing through a number of
categories in a particular order. They proposed two algorithms
to operate on the Euclidean distance. The first one is LORD,
a light threshold-based iterative algorithm. First, LORD uses
a greedy search to find an threshold (upper-bound) for the
cost of the optimal path. The greedy search is a successive
nearest neighbor search from the starting node to the last
category. Then, the LORD finds the optimal path in the reverse
order, from the last category to the starting node. During the
finding, it updates the threshold value and uses it to prune
nodes that cannot belong to the optimal path. The second
algorithm is R-LORD, an extension of the LORD, that uses
R-tree to efficiently examine the threshold values. However,
both algorithms are impractical to road networks where nearest
neighbor searches are very expensive. Thus, another algorithm,
progressive neighbor exploration (PNE), has been proposed in
the paper. The idea of the PNE is incrementally create the set
of candidate paths. At each step it needs two nearest neighbor
searches: one is to expand the current best candidate path, the
other is to refine that path by replacing the last node in the
path by a new node.

Sharifzadeh et al. [15] introduced a pre-processing approach
for the OSR query by using additively weighted Voronoi
diagrams. This approach is efficient and practical compared
with R-LORD algorithm, however, one of the disadvantages
is that it is not flexible when requiring fixed sequences among
categories. Rice et al. [5] proposed another approach using
Contraction Hierarchies technique and dynamic programming

for the Generalized Shortest Path (GSP) query that is the
same as the OSR query but having only one destination point.
Its advantage is that it can be apply for any possible set of
categories in a query. Our work is inspired by the idea of a
dynamic programming formulation from Rice et al.’s work,
and we extend their algorithm in two aspects. First, we allow
multiple categories involved in a computation steps. Second,
we introduce “jumping” computations in the DP table that
compute an arbitrary row from an other arbitrary row in the
table, allowing us freely describe computation steps guided by
a directed acyclic graph representation.

Being close to our SRCP query is the optimal route queries
with arbitrary order constraints proposed by Li et al. [4]. This
query considers partial order constraints over categories, which
are described by a visit order graph. Two algorithms have
been proposed namely Backward search and Forward search.
The backward search algorithm computes the optimal paths in
reverse manner similar to R-LORD algorithm [3]. However,
instead of loading nodes belonging to the last category, the
backward search retrieves the set of candidate nodes that may
be part of the optimal path, which belong to any categories
contained in the visit order graph. The forward search is
similar to a greedy algorithm. It also use the backward search
algorithm for backtracking process, eliminating some nodes
that cannot be a part of the optimal path. Both algorithms
have the time complexity of O(N2 · 2k), in which k is the
number of categories in the visit order graph and N is the
total number of nodes in the data set (road network or spatial
database).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the general SRCP query
for finding the optimal path constrained by categories. We
have found a reasonable subset of the general SRCP queries
that uses simplified regular expressions as constraints. Even
though this subset is limited, it covers all of the existing
category-constrained shortest path queries and has efficient
implementation. We have proposed a dynamic programming
formulation to solve the subset of SRCP queries in which
it is reduced to a sequence of single source shortest path
searches on the input graph. This result is important because
we can use any fast single source shortest path search even
with preprocessing to speed up the query. By exploiting a
directed acyclic graph representation of a query, we can easily
derive an efficient algorithm for answering the query.

In the future, we will apply the latest parallel algorithm for
single source shortest path searches on road networks, which
is called parallel hardware-accelerated shortest path trees
(PHASE) algorithm [12]. Experiments on complex networks,
such as social networks, web graph, biological networks,
are also interesting. Another future work is extending the
query language so that it can express more constraints on
nodes of the optimal path. For example, the current query
language cannot describe problems of finding the optimal path
that continuously passes multiple different nodes in the same
category. This is a kind of problems to find simple paths



(visiting a node at most once); it is interesting but very difficult
to solve [6], [16].
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