
ISSN 1884-0760

GRACE TECHNICAL REPORTS

On the use of Bidirectional Transformations
for Translational Semantics

Florent Latombe and Soichiro Hidaka

GRACE-TR 2014–01 Apr 2014

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

On the use of Bidirectional Transformations for

Translational Semantics ∗

Florent Latombe
IRIT, Université de Toulouse,

Toulouse, France

Soichiro Hidaka
National Institute of Informatics

Tokyo, Japan

April 10, 2014

Abstract

In this work, we aim at defining the semantics of Executable Domain-
Specific Modeling Languages (xDSMLs) in a translational way by us-
ing Bidirectional Transformations written with the GRoundTram frame-
work1, where the backward transformation of GRoundTram enables us,
between each step of execution of the target model conforming to the
target xDSMLs (where the state of the model changes), to propagate the
changes back to the state of the model conforming to the source xDSML, in
coherence with the forward transformation that provides the translational
semantics. It is possible to define most elements composing an xDSML
using Model-Driven tools like the Eclipse Modeling Framework (EMF),
however this creates a technical gap with GRoundTram which is relevant
to graphs. We propose a workflow and the first steps of its implementa-
tions which allows us to transform graphs into models and vice-versa for
the implementation of translational semantics of an xDSML.

1 Introduction

This section introduces the context of this work in subsection 1.1, the
goal of this work in subsection 1.2 and the running example used for
experimentation in subsection 1.3.

∗The work presented in this technical report was done between the 7th of January 2014
and the 26th of March 2014 during an international internship at the National Institute of
Informatics (Tokyo, Japan) under the supervision of Soichiro Hidaka.

1http://www.biglab.org/

1

http://research.nii.ac.jp/~hidaka/
http://www.biglab.org/

1.1 Context

1.1.1 Bidirectional Transformation

The work presented in this document relies on the GRoundTram
Framework[5, 7] developed by the BiG Project2 of the NII. For
more information about GRoundTram, see the project website at
http://www.biglab.org/ or contact Soichiro Hidaka. For bidirectional
transformations in general, please refer to [2, 8].

1.1.2 Definition of Executable Domain-Specific Modeling
Languages

The context of this work is the definition of Executable Domain-
Specific Modeling Languages, hereafter refered to as xDSMLs.
xDSMLs are, in particular, Domain-Specific Languages or DSLs.
There exists a lot of litterature concerning DSLs and it is not the aim
of this document to go into details about the practice of DSL design.
What is essential to understand, is that DSLs are usually very small
languages, typically not Turing-complete and designed for a very small
audience (usually experts in a given field). Readers who want to know
more about DSLs can have a great overview in Voelter et al.’s book
DSL Engineering . xDSMLs are also, in particular, Domain-Specific
Modeling Languages or DSMLs. DSMLs are a flavour of DSLs where
the goal of the language is to model systems and their behaviours.
Empirical studies have proven that the use of DSMLs by the industry
is growing and requiring new techniques and tools [9]. Lastly, xDSMLs
are also Executable, usually through interpretation or generation (akin to
compilation) and thus need clear semantics.

Defining a DSL [4] is usually done by defining an Abstract Syntax
(AS) which are the concepts and relations manipulated by the domain at
hand, one or several Concrete Syntaxes (CS) in order to create instances
(programs), and a mapping towards a Semantic Domain (SD). The AS can
easily be defined in a Model-Driven Engineering (MDE) way by defining
a MetaModel (MM) using, in our case, the Ecore editor of the Eclipse
Modeling Project3. Concrete Syntaxes are usually textual (using xText4

for instance) or graphical (using Sirius5 for instance). The mapping
towards the SD can be realized in different ways which will not be detailed
here but can usually be categorized among one of these three families:
Operational Semantics, Denotational Semantics, Axiomatic Semantics.

1.1.3 GEMOC: On the Globalization of Modeling Lan-
guages

GEMOC6 is an open initiative exploring the necessary breakthrough in
software languages to support a global software engineering. GEMOC

2http://www.biglab.org/
3http://eclipse.org/modeling/
4https://www.eclipse.org/Xtext/
5http://www.eclipse.org/sirius/
6http://www.gemoc.org

2

http://www.biglab.org/
mailto:hidaka@nii.ac.jp
http://dslbook.squarespace.com/
http://www.biglab.org/
http://eclipse.org/modeling/
https://www.eclipse.org/Xtext/
http://www.eclipse.org/sirius/
http://www.gemoc.org

investigates tools and methods in software language engineering (SLE)
for the design and implementation of collaborative, interoperable and
composable modeling languages. In particular, GEMOC aims at providing
technical and methodological means to reify the concurrency of languages
at the language level [1]. Details about GEMOC will not be provided in
this document as they are not directly relevant to the issue of translational
semantics using bidirectional transformations, but any question can be
redirected to Florent Latombe.

1.2 Main Goal

The methodology and tools developed in GEMOC for defining xDSMLs
focus on defining the semantics of xDSMLs through an Operational Se-
mantics manner. However this technical report presents an approach to-
wards defining the semantics of an xDSML through a Translational Se-
mantics manner. In other words, our goal is to provide the semantics of
an xDSML (refered to as source xDSML) using the already well-defined
semantics of another xDSML (refered to as target xDSML). Thus the need
for a transformation from source xDSML to target xDSML, also refered
to as the Forward Transformation in the Bidirectional Transformations
context. However, simply being able to execute a language using another
language’s semantics is not enough. We want to be able to display (textu-
ally or through a graphical animation) the execution while it is happening.
We also want to be able to take reactive systems into account, where the
user or an environment (in the case of GEMOC, usually other xDSMLs)
will have the opportunity to make choices on the flow of the execution. In
order to be able to do that, the AS of the source xDSML must be able to
encode the state of a model conforming to the xDSML. We also need the
same capacity in the target xDSML’s AS. On top of that, between each
step of execution (where the state of the executed model changes), we need
to propagate the changes in the state of the model conforming to the tar-
get xDSML up to the state of the model conform to the source xDSML,
in coherence with the Forward Transformation mentioned before. This
second transformation is also refered to as the Backward Transformation
in the Bidirectional Transformations context.

Why translational semantics ? Implementing the semantics of
an xDSML in a translational way can sometimes feel more expensive
and time-consuming than in an operational way. This may be due to
the fact that one needs to understand two domains and their respective
semantics instead of one in order to be able to write the transformation
between source and target xDSML. One also needs to be familiar with the
Transformation Language used. However, translational semantics provide
huge steps forward in reusability and modularity. In particular, GEMOC
proposes to write the semantics of an xDSML in an operational way while
reifying the concurrency at the language level. This architecture provides
a lot of advantages in terms of reusability and analysis of the concurrency
models used by xDSMLs, but at a cost: mapping the model of concurrency
(as defined in GEMOC) with the operations triggering changes in the
model comes with its own methodology and tools. Therefore, being able

3

mailto:florent.latombe@irit.fr

Figure 1: Expected Workflow for the example detailed in subsection 1.3

to reuse existing xDSMLs written using the GEMOC methodology and
tools can provide many advantages: one still has the advantages of having
a reified model of concurrency, while not having to deal with the most
complex parts of designing an xDSML in the GEMOC methodology.

1.3 Example

The running example used for experimentation is the translational seman-
tics of a simplified version of SPEM7 into Petri Nets.

Source xDSML SPEM is a modeling language used to model
processes. The MetaModel used is visible on figure 2. A Process

owns several ProcessElements, which are either WorkDefinitions or
WorkSequences. A WorkSequence has a kind which is either startToStart,
startToFinish, finishToStart, finishToFinish which represents the
nature of the relation between its two referenced WorkDefinitions,
predecessor and successor. A WorkDefinition knows its outgoing and
incoming WorkSequences and has an ExecutionState which represents
the current state of the WorkDefinition during execution, and is either
Ready, Running, or Finished.

Target xDSML Petri Nets are a mathematical modeling language
used for the description of distributed systems. In our flavour of Petri
Net, whose MetaModel is visible on figure 6, a PetriNet is composed of
several PetriNetElements, which are either Nodes or Arcs. Arcs are of
kind either ”normal” or ”read” (when read arcs are traversed, marking of
the source Place is not decremented) and link two Nodes (referencessource
and target). But these two Nodes must be of different natures: both source

7http://www.omg.org/spec/SPEM/2.0/

4

http://www.omg.org/spec/SPEM/2.0/

Figure 2: MetaModel of the xSPEM xDSML

Figure 3: MetaModel of the PetriNet xDSML

and target cannot be a Place at the same time, or be a Transition at the
same time. Place and Transition are the two concrete types of Nodes.
Places have an initialMarking and a currentMarking attributes encoded
as integers. Nodes know about their outgoing and incoming Arcs.

Previous work Faiez Zalila has created and used a bidirectional trans-
formation between SPEM and PetriNet in a previous internship at NII
for model-checking purposes [13]. However, the main differences with the
work presented here lie in the fact that the MetaModels used are differ-
ent, as we are using bidirectional EReferences (marked as EOpposite) in
our MetaModels whereas Faiez Zalila was not ; and the source and target

5

languages SPEM and PetriNet are only examples in our case and could
have been different, whereas Faiez Zalila was using Petri Nets to do model
checking and therefore relied heavily on properties inherent to Petri Nets.

1.4 Rest of the document

Besides the current section (1), which introduces the work and its context,
section 2 presents the current state of the implementation, while section 3
presents the upcoming work left to do to complete the propose workflow.
Section 4 will conclude this tehnical report. Lastly, the Appendix sec-
tion A is about the dead-end met when trying to use Bidirectional Trans-
formations for a slightly different topic: reversable pattern-matching of
events.

2 Implementation

In this section are shown the current implemented elements. The overall
goal can be seen on figure 4. This figure is not to be taken literally ; it
is only there to illustrate the kind of structure we are supposed to have
in the end. Notably, the approach using generic higher-order transforma-
tions [10] and their outputs (transformations from model to graph and
transformation from graph to model, with fixed MetaModels of respec-
tively input and output) is not implemented. Instead the implementation
uses a transformation which takes a MetaModel as input (interpretative
approach instead of the generative approach presented in the figure).

Note: The repository containing the sources will be made available
online8 once a more elaborated version of the work presented in this report
has been published.

8http://www.prg.nii.ac.jp/projects/tsbx/

6

http://www.prg.nii.ac.jp/projects/tsbx/

F
ig

u
re

4
:

Z
o
o
m

ed
-i

n
v
ie

w
o
f

th
e

w
o
rk

fl
ow

fo
r

o
u

r
ex

a
m

p
le

7

2.1 Starting Point

The starting point of the current work is at the GT SOURCE MODEL
element of figure 4, that is the graph representation of the source model
in a format the GRoundTram framework accepts as input: thus the
Dot [3] graph with labels exclusively on edges. Let us use an exam-
ple, refered to as ”sample 1” in the repository9. It consists in a Process

named ”TalkDrinkWorkExample” composed of 3 WorkDefinitions and
4 WorkSequences. The WorkDefinitions are named ”Talk”, ”DrinkCof-
fee” and ”Work”. Their ExecutionState is NULL as they have not been
initialized yet. In our modeled process, we may only start drinking cof-
fee if we have started talking (WorkSequence startToStart from ”Talk” to
”DrinkCoffee”) and we may finish talking only if we have finished drinking
coffee (WorkSequence finishToFinish from ”DrinkCoffee” to ”Talk”). We
may also only start working if we have finished both talking and drinking
coffee (WorkSequences finishToFinish from ”Talk” to ”Work” and from
”DrinkCoffee” to ”Work”).

2.2 Bidirectional Transformation

The bidirectional transformation written using GRoundTram is specific to
both xSPEM and PetriNet. It takes a graph corresponding to an xSPEM
model as input (the starting point mentioned earlier in subsection 2.1)
and produces the equivalent PetriNet model as output. Both graphs can
only have labels on edges as this is the input and output format used by
the GRoundTram framework.

More precisely, a Process is transformed into a PetriNet. A
WorkDefinition named ”x” is transformed into 4 Places: ”x ready”,
”x running”, ”x started”, ”x finished” with initialMarking of 1 for
”x ready” and 0 for the other Places and currentMarking of NULL for
all Places ; 2 Transitions: ”x start” and ”x finish” ; and 5 arcs: from
”x ready” to ”x start”, from ”x start” to ”x running”, from ”x start”
to ”x started”, from ”x running” to ”x finish”, from ”x finish” to
”x finished”. The left half of Figure 6 depicts these components.

A WorkSequence is transformed into an Arc of kind ”read” from
a Place to a Transition. Let us consider a WorkSequence of na-
ture startToStart from the WorkDefinition named ”x” to the
WorkDefinition named ”y”. The element corresponding to this
WorkSequence is an Arc between Place ”x started” and Transition

”y start” (depicted by a dotted line in Figure 6). Had the WorkSequence

been of nature startToFinish, then it would have connected ”x start”
with ”y finished”. If it had been of nature finishToStart it would
have connected ”x finished” with ”y start” and if it had been of nature
finishToFinish it would have connected ”x finished” with ”y finish”.

More technically, in our UnQL transformation, we first create a
PetriNet with the name of the input Process using a Select query.
Inside this query there is another Select query which is in charge of
creating all the PetriNetElements to place in the containment reference
elements of PetriNet. First, the easier part is creating the 4 Places,

9src/examples/test.transformation/src/sample1/inputs

8

{&}
58

57

Process

56

name

55

elements

54

EString

52

WorkSequence

51

WorkSequence

50

WorkSequence

49

WorkSequence

48

WorkDefinition

47

WorkDefinition

46

WorkDefinition

53

"TalkDrinkWorkExample"

31

successor

30

predecessor

29

kind

28

successor

27

predecessor

26

kind

25

successor

24

predecessor

23

kind

22

successor

21

predecessor

20

kind

45

process

44

outgoingLinks

43

name

42

incomingLinks

41

currentExecutionState

40

process

39

outgoingLinks

38

name

37

incomingLinks

36

currentExecutionState

35

process

34

name

33

incomingLinks

32

currentExecutionState

Process

WorkSequence

WorkSequence

19

EString

WorkSequence

17

ExecutionState

Process

WorkSequence

WorkSequence

15

EString

WorkSequence

13

ExecutionState

Process

11

EString

WorkSequence

WorkSequence

9

ExecutionState

WorkDefinition

WorkDefinition

7

WorkSequenceKind

WorkDefinition

WorkDefinition

5

WorkSequenceKind

WorkDefinition

WorkDefinition

3

WorkSequenceKind

WorkDefinition

WorkDefinition

1

WorkSequenceKind

18

"Talk"

16

NULL

14

"DrinkCoffee"

12

NULL

10

"Work"

8

NULL

6

"startToStart"

4

"finishToStart"

2

"finishToFinish"

0

"finishToStart"

Figure 5: Graph representation of the input xSPEM model

9

x_finish

x_start

x_finished

x_ready

x_runningx_started

y_finish

y_start

y_finished

y_ready

y_started y_running

Figure 6: PetriNet components created from a WorkSequence of nature
startToStart from WorkDefinition x to y

2 Transitions and 5 Arcs corresponding to each WorkDefinition.
Afterwards is the harder part which consists in creating an Arc which,
depending on its kind, will have a different source and a different target.
For this, another Select query is created. This query looks up, in the
elements created in the first part, the Place which has the following
name: name of the predecessor WorkDefinition of the WorkSequence

concatenated with either ” started” or ” finished” depending on the kind
of the WorkSequence. The Place found will be the source of the Arc

we are creating. Then, we have to look up for the Transition which
will be the target of the Arc we are creating. This Transition must
have the following name: name of the successor WorkDefinition of the
WorkSequence concatenated with either ” start” or ” finish” depending
on the kind of the WorkSequence.

The compositionality of the UnQL language achieves the capturing of
twig-like patterns to retrieve subgraphs encoding required model elements
like WorkDefinitions, as well as traversals of intermediate results created
during the first part of the above transformation.

There is a limitation in the semantics of GRoundTram which causes
problems in creating loops in the output graph if these loops were not
already present in the input graph. For instance, it is not possible to
have, in the output graph, a nice representation of an EReference from
an EObject to its container (in our case, from a PetriNetElement to its
owning PetriNet). This problem also occurs for bidirectional EReferences
like the EReferences sourceand target of type Node in the class Arc, whose
opposites are incomingArcs and outgoingArcs in the class Node. This
is due to how the ”select”, ”replace”, ”extend” and ”delete” queries of
GRoundTram are implemented. Therefore, for now we put a placeholder

10

label on the edge which should lead to the EObject referenced. We choose
to use the label ”EOppositeReference”. The value of this EReference will
be computed later on in the transformation of subsection 2.4.

After the transformation, we have an UnCAL graph which we are
able to transform into a Dot [3] graph. Unfortunately it is too big to be
contained in this document, but can be found in the repository10

2.3 Transformation from graph to model

The Dot graph resulting from the output of the GRoundTram transfor-
mation is still a valid classical Dot graph. Thus, tools based on classical
Dot format can be used. In our case, we will use the parser for Dot tex-
tual concrete syntax generated by Xtext so as to obtain an XMI model
conform to the Dot MetaModel. The Dot MetaModel is independent from
PetriNet or xSPEM so this parser will always be applicable to the out-
put of a GRoundTram transformation. This parser can be found in the
repository11 too.

2.4 Transforming from a Dot model into a
PetriNet model

Now, we need to transform the XMI model conform to the Dot MetaModel
into an XMI model conform to our PetriNet MetaModel. A transforma-
tion written in Java12 takes as input the XMI model conform to the Dot
MetaModel and creates the PetriNet XMI model equivalent. In partic-
ular, it decodes the bidirectional EReferences. EReferences which have
an EOpposite but have no value attached to them in the graph are com-
puted last, and by going through the whole graph looking for the opposite
EReference we are able to re-construct the value of all the missing ERef-
erences. For example, consider that in the input Dot model the value of
the EReference source of a given Arc is present, then in order to add this
Arc to the outgoingArcs EReference of the correct Node, we have to look
through all the created Nodes and compare them to the value of the source
EReference of our Arc. When the match is found, then we can set the
value of the EReference outgoingArcs (with respect to its multiplicity).

Afterwards, we have found that this approach was similar to the one
Wider describes in subsections 4.1 and 4.2 in [12].

3 Upcoming work

3.1 Improvements on the existing transformation

The transformation mentioned in subsection 2.4, which we can abusively
call a transformation from graph to model, is not entirely decorelated
from the target xDSML used as example. Therefore, it could use some
slight improvements to make it truly generic and only parameterized by

10src/examples/test.transformation/src/sample1/outputs
11src/core/org.gemoc.translational semantics.dot.xtext/src/org/gemoc/translational semantics/dot/xtext/Parser.java
12src/examples/test.javaparsing/src/test/javaparsing/DotXmiModelToPetriNetModel.java

11

the MetaModel of the target xDSML. Most of the algorithm though is
still unreliant on the specific features of the MetaModel and thus these
improvements should not be too big.

3.2 Transformation from model to graph

Our starting point was that of a xSPEM model encoded as a graph, but the
true starting point should be of the model itself. Therefore we also need
a transformation which, parameterized by the MetaModel of the source
xDSML, will be able to encode models conform to the MetaModel of the
source xDSML into graphs which can server as input for the bidirectional
transformation.

3.3 Usage

Once the work mentioned in previous subsections 3.1 and 3.2 have been
made, the generic workflow shown on figure 4 should be the following:

1. The input model conforming to the source xDSML MetaModel is
transformed into a Dot model using the transformation from model
to graph mentioned in 3.2

2. This Dot model is pretty-printed into the textual concrete syntax of
Dot

3. The Forward Transformation of the GRoundTram Bidirectional
Transformation is applied to the Dot graph obtained

4. The result of the transformation is parsed using the xText parser
mentioned in 2.3

5. The output Dot model is then transformed into a model conform to
the target xDSML MetaModel using the transformation mentioned
in 2.4

6. A step of execution is made on this model (by the GEMOC Execu-
tion Engine in our case), which typically changes the value of some
EAttributes and EReferences in the model.

7. The updated model is then transformed back into a Dot model, using
the same transformation as in step 1 but parameterized this time by
the target xDSML MetaModel

8. The Dot model is then pretty-printed into a Dot graph as in step 2

9. The Backward Transformation of the GRoundTram Bidirectional
Transformation is applied to the Dot graph obtained

10. The output Dot graph is then parsed by the parser, as in step 4

11. The Dot model obtained is then transformed back into a model con-
form to the source xDSML MetaModel using the same transforma-
tion as in step 5 but parameterized this time by the source xDSML
MetaModel

This workflow must then be repeated for every step of the execution
resulting in a change in the model being executed.

12

4 Conclusion

The semantics of an Executable Domain-Specific Modeling Language de-
signed in a Model-Driven way can be defined in a translational way using
Bidirectional Transformations implemented in GRoundTram. The gap
between the technical spaces of models and edge-labeled graphs can be
closed by using a set of transformations which can ultimately be reduced
down to only 2 transformations specific to either the source xDSML or the
target xDSML used. These two transformations can be obtained either
by generation using Higher-Order Transformations, or by interpretation
by providing a MetaModel as argument.

The first of these transformations is a transformation which, given a
MetaModel (of our source xDSML or of our target xDSML), can transform
models conform to the given MetaModel into models conforming to the
Dot MetaModel (with labels exclusively on edges so as to comply with
GRoundTram formats). This transformation is then used to transform
the original model we want to execute into a model corresponding to an
edge-labelled graph so as to be pretty-printed and served as input to the
GRoundTram transformation ; this same transformation is also used to
transform the executed model conform to the target xDSML after it has
been modified by a step of execution so as to be pretty-printed in order
to be the input of the Backward Transformation.

The second transformation is a transformation which, given the Meta-
Model of the source xDSML or of the target xDSML, can transform Dot
graphs (as before, with labels exclusively on edges) into a model conform-
ing to the given MetaModel. This transformation is used first on the Dot
edge-labeled graph obtained after the Forward Transformation so as to
recreate a model conforming to the target xDSML from a graph ; it is
then used as the very last step of the proposed workflow on the Dot graph
resulting from the parsing of the output of the Backward Transformation
so as to recreate, from the given graph, a model conforming to the source
xDSML.

We have provided the first steps of implementations for this second
transformation and used it successfully on the example of defining the
semantics of xSPEM using PetriNets. Upcoming work should build on
that and the full workflow proposed should be completed, so as to provide
a fully implemented solution to the gap existing between the models and
graphs technical spaces. Once refined, this workflow could be implemented
in the GEMOC tools so as to provide a way to define the semantics of
new xDSMLs using previously well-defined xDSMLs.

Acknowledgments

Many thanks to Professor Zhenjiang Hu of the National Institute of In-
formatics. Also many thanks to Quang Minh Tran and the rest of the
BX Team of NII for their inputs and discussions during this internship.
Thanks to the NII International Internship Program for providing this
collaboration opportunity.

13

References

[1] Benoit Combemale, Julien Deantoni, Matias Vara Larsen, Frédéric
Mallet, Olivier Barais, Benoit Baudry, and Robert France. Reify-
ing Concurrency for Executable Metamodeling. In Martin Erwig,
Richard F. Paige, and Eric Van Wyk, editors, SLE - 6th Interna-
tional Conference on Software Language Engineering, volume 8225
of Lecture Notes in Computer Science, pages 365–384, Indianapolis,
IN, États-Unis, 2013. Springer. doi: 10.1007/978-3-319-02654-1\ 20.
URL http://hal.inria.fr/hal-00850770. CNRS PICS Project
MBSAR (http://gemoc.org/mbsar).

[2] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. Bidirectional Transforma-
tions: A Cross-Discipline Perspective. In International Conference
on Model Transformation (ICMT 2009), pages 260–283. LNCS 5563,
Springer, 2009.

[3] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C.
North, and Gordon Woodhull. Graphviz and Dynagraph - Static
and Dynamic Graph Drawing Tools. In GRAPH DRAWING SOFT-
WARE, pages 127–148. Springer-Verlag, 2003.

[4] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics
of ”semantics”? Computer, 37(10):64–72, Oct 2004. ISSN 0018-9162.
doi: 10.1109/MC.2004.172.

[5] S. Hidaka, Zhenjiang Hu, K. Inaba, H. Kato, and K. Nakano.
Groundtram: An integrated framework for developing well-behaved
bidirectional model transformations. In Automated Software Engi-
neering (ASE), 2011 26th IEEE/ACM International Conference on,
pages 480–483, Nov 2011. doi: 10.1109/ASE.2011.6100104.

[6] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato,
Kazutaka Matsuda, and Keisuke Nakano. Bidirectionalizing Graph
Transformations. In ACM SIGPLAN International Conference on
Functional Programming, pages 205–216. ACM, 2010.

[7] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato,
and Keisuke Nakano. GRoundTram: An Integrated Framework
for Developing Well-Behaved Bidirectional Model Transformations.
Progress in Informatics, (10):131–148, March 2013. URL http:

//dx.doi.org/10.2201/NiiPi.2013.10.7.

[8] Zhenjiang Hu, Andy Schürr, Perdita Stevens, and James F. Ter-
williger. Dagstuhl seminar on bidirectional transformations (bx).
SIGMOD Record, 40(1):35–39, 2011.

[9] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. Empirical assessment of mde in industry. In Pro-
ceedings of the 33rd International Conference on Software Engineer-
ing, ICSE ’11, pages 471–480, New York, NY, USA, 2011. ACM.

14

http://hal.inria.fr/hal-00850770
http://dx.doi.org/10.2201/NiiPi.2013.10.7
http://dx.doi.org/10.2201/NiiPi.2013.10.7

ISBN 978-1-4503-0445-0. doi: 10.1145/1985793.1985858. URL http:

//doi.acm.org/10.1145/1985793.1985858.

[10] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and
Jean Bézivin. On the use of higher-order model transformations. In
Proceedings of the 5th European Conference on Model Driven Ar-
chitecture - Foundations and Applications, ECMDA-FA ’09, pages
18–33. Springer-Verlag, 2009.

[11] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engel-
mann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido
Wachsmuth. DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org, 2013. ISBN 978-1-4812-
1858-0.

[12] Arif Wider. Implementing a Bidirectional Model Transformation
Language as an Internal DSL in Scala. In K. Selçuk Candan, Sihem
Amer-Yahia, Nicole Schweikardt, Vassilis Christophides, and Vincent
Leroy, editors, Proceedings of the Workshops of the EDBT/ICDT
2014 Joint Conference, number 1133 in CEUR Workshop Pro-
ceedings, pages 63–70, Aachen, 2014. URL http://ceur-ws.org/

Vol-1133#paper-10.

[13] Faiez Zalila and Soichiro Hidaka. Facilitating verification results feed-
back on DSM verification context using bidirectional model transfor-
mation. unpublished manuscript, February 2013.

A Pattern matching of events using Bidi-
rectional Transformations

Context We wanted to be able to create pattern matching of events
from low-level events into higher-level events. We also needed to be
able to reverse these patterns, so that according to another specification
referencing higher-level events we could intervene on the lower-level events.
For examples one such pattern matching could be

e1 + e2 → F1

meaning that the coincidence of an occurrence of event e1 with an occur-
rence of event e2 would trigger an occurrence of event F1 ;

e2|e3 → F2

meaning that the union of an occurrence of event e2 with an occurrence
of event e3 would trigger an occurrence of event F2. Then, in another
specification, we needed to be able to compute the reverse of F1 or F2.

15

http://doi.acm.org/10.1145/1985793.1985858
http://doi.acm.org/10.1145/1985793.1985858
http://ceur-ws.org/Vol-1133#paper-10
http://ceur-ws.org/Vol-1133#paper-10

Problem Although there are difficulties in how to define the reverse
of e2|e3, this was not the main problem here. The main problem was
that we needed to be able to compute the reverse of, say, F2 without
having had an occurrence of F2 actually happen beforehand.
This simple need (both specifications relative to the same higher-level
events not being executed in sequence) is incoherent with the way the
backward semantics of GRoundTram are done, relying on traces of the
forward transformation [6].

Conclusion Bidirectional Transformations written in GRoundTram
cannot be used to create bidirectional mappings called in an arbitrary
order ; instead, it is to be expected that the forward and backward
transformations will be called in sequence. They do not need to be
temporarily close, but the input of the backward transformation should
explicitly be the output of a forward transformation in the first place, and
cannot just be used outside of this context.

16

	Introduction
	Context
	Bidirectional Transformation
	Definition of Executable Domain-Specific Modeling Languages
	GEMOC: On the Globalization of Modeling Languages

	Main Goal
	Example
	Rest of the document

	Implementation
	Starting Point
	Bidirectional Transformation
	Transformation from graph to model
	Transforming from a Dot model into a PetriNet model

	Upcoming work
	Improvements on the existing transformation
	Transformation from model to graph
	Usage

	Conclusion
	Pattern matching of events using Bidirectional Transformations

