
ISSN 1884-0760

GRACE TECHNICAL REPORTS

“Putback” is the Essence of Bidirectional
Programming

Sebastian Fischer Zhenjiang Hu Hugo Pacheco

GRACE-TR 2012-08 December 2012

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/



The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Bidirectional transformations, programs with a forward and a backward
transformation that maintain consistency between input and output, are
routinely written in ways that do not let programmers specify their behavior
completely. Several bidirectional programming languages exist to aid program-
mers in writing bidirectional transformations with increased maintainability
but decreased expressiveness.

Such languages allow programmers to write bidirectional transformations
as one program for both directions, which is easier to maintain than separate
programs for each direction. However, the maintainability provided by exist-
ing bidirectional languages comes at the cost of expressiveness because the
ambiguity of synchronization is solved by default strategies which are hidden
from programmers. The programmers’ inability to influence synchronization
strategies has led to the proposal of a vast number of approaches that consider
tailor-made synchronization strategies for particular applications.

In this paper, we argue that such ambiguity is essential for bidirectional
transformation and advocate that the synchronization strategy should not be
hidden from programmers but considered from the start. We propose a novel
approach to specifying so called well-behaved bidirectional programs by their
backward transformations, capable of expressing all aspects of a bidirectional
transformation completely, while retaining maintainability.

Soundness of our approach results from a systematic analysis of the laws
describing well-behaved bidirectional transformations based on existing math-
ematical concepts. We show that well-behaved bidirectional transformations
are uniquely determined by their backward transformations and corresponding
forward transformations can be obtained for free.
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The further backward you can look,
the further forward you can see.

– Winston Churchill

1 Introduction

Bidirectional transformation (BX for short) [Czarnecki et al., 2009, Hu et al., 2011],
originated from the view updating mechanism in the database community [Bancilhon and
Spyratos, 1981, Dayal and Bernstein, 1982, Gottlob et al., 1988], has been recently at-
tracting a lot of attention from researchers in the communities of programming languages
and software engineering since the pioneering work on a combinatorial language for bidi-
rectional tree transformation [Foster et al., 2007]. Bidirectional transformation provides
a novel mechanism for synchronizing and maintaining the consistency of information
between input and output, and has seen many interesting applications, including the
synchronization of replicated data in different formats [Foster et al., 2007], presentation-
oriented structured document development [Hu et al., 2008], interactive user interface
design [Meertens, 1998] or coupled software transformation [Lämmel, 2004].

1.1 Bidirectional Transformation (BX)

A bidirectional transformation consists of a pair of transformations: the forward transfor-
mation is used to produce a target view from a source, while the backward transformation
is used to “put back” modifications on the view to the source. To allow the forward trans-
formation to discard information when producing a view, the backward transformation is
supplied the original source in addition to the updated view. This situation is depicted
in Figure 1 where, as is customary, the forward transformation is called get (also know as
view function) and the backward transformation is called put (shorthand for “putback”).

Example 1.1. As a simple example for a bidirectional transformation consider a forward
function getFirst that selects the first component of a pair and a corresponding backward
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Figure 1: Forward and Backward Directions in Bidirectional Transformations

function putFirst that updates the first component and retains the second component from
the original pair.

getFirst (x , y) = x
putFirst (x , y) z = (z , y)

Not every combination of get and put functions forms a reasonable bidirectional
transformation. The definitions need to fit together in the sense that one constitutes the
opposite direction of the other. Put formally, the get and put functions of a bidirectional
transformation should be well-behaved in the sense that they satisfy the following GetPut
and PutGet laws.

put s (get s) = s GetPut

get (put s v) = v PutGet

The GetPut property requires that not changing the view shall be reflected as not
changing the source, while the PutGet property requires all changes in the view to be
completely reflected to the source so that the changed view can be computed again by
applying the forward transformation to the changed source.

1.2 Bidirectional Programming

Bidirectional programming is to develop well-behaved bidirectional transformations in
order to solve various synchronization problems.

A straightforward approach to bidirectional programming is to write two unidirectional
transformations. Although this ad-hoc solution provides full control over both forward and
backward transformations and can be realized using standard programming languages, it
scales badly for non-trivial transformations and easily becomes expensive and error-prone:
not only do we have to write two transformations instead of a single one, but the two
transformations must be shown to satisfy the well-behavedness laws. In addition, it
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is a maintenance problem if a modification to one of the transformations requires a
redefinition of the other transformation as well as a new proof of the laws.

To ease bidirectional programming and to enable maintainable bidirectional program-
ming, it is preferable to write just a single program that can denote both transformations,
which has motivated the following two methods:

• Bidirectionalization of Forward Transformation. This is to allow users to write the
forward transformation in a familiar (unidirectional) programming language, and
derive a suitable backward transformation through bidirectionalization techniques
[Keller, 1986, Larson and Sheth, 1991, Xiong et al., 2007, Matsuda et al., 2007,
Voigtländer, 2009, Hidaka et al., 2010].

• Design of Domain-specific BX Languages. This is to instruct users to write a
program in a particular bidirectional programming language [Foster et al., 2007,
Bohannon et al., 2006, 2008, Pacheco and Cunha, 2010, Hofmann et al., 2011, 2012,
Pacheco et al., 2012], from which both transformations can be derived.

What both methods have in common is that one writes a forward transformation
in a unidirectional language or a domain-specific BX language, and a corresponding
good backward transformation can be automatically derived, which makes bidirectional
programming easy and maintainable. Despite these advantages, there is an impractical
assumption that

for a forward transformation get , it is sufficient to derive a “suitable” put
that can be combined to form a well-behaved bidirectional transformation.

In general a get function may not be injective, so there may exist many possible put
functions that can be combined with get to form a bidirectional transformation. Moreover,
the most “suitable” or “best” backward transformation may be hard to find and to justify.
There is no clear consensus on the best requirements even for well-studied domains
[Buneman et al., 2008].

To understand the inherent ambiguity in possible “putback” functions, consider, as an
example, the following forward transformation.1

getEvens :: [Int ]→ [Int ]
getEvens ns = filter even ns

It returns those elements of a list of numbers which are even.

evens [2, 3, 5, 6] = [2, 6]

What is its corresponding put? If 6 is eliminated from the result, leaving the view list
[2], there are many well-behaved ways of putting back this elimination to the source. For

1We use Haskell syntax for our examples as we discuss further in Section 3.1. The filter function is
predefined and selects all elements from a list that satisfy the given predicate – in this case even,
which is also predefined.
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example, we could delete the number 6 from the source [2, 3, 5, 6] to obtain the updated
source [2, 3, 5] or change 6 to n obtaining [2, 3, 5, n ] where n is an arbitrary odd number.
Keller [1986] argues that many of these “putback” functions are incomparable, and that
there is no reasonable approach to say which is the best.

It is this unavoidable ambiguity of put that makes bidirectional programming difficult
to be used in practice due to possibly unpredictable behaviors, and that has led to the
boom of current bidirectional frameworks that propose to answer the needs of particular
bidirectional applications [Czarnecki et al., 2009, Hu et al., 2011].

1.3 Putback-based Bidirectional Programming

So far, bidirectional programming has been focused on writing the forward transformation
(or a bidirectional program that resembles writing the forward transformation), and then
trying to derive a suitable (but less predictable) backward transformation that embodies
a specific way to solve the ambiguity of update translation (i.e., an update strategy)
[Keller, 1986, Barbosa et al., 2010, Pacheco et al., 2012]. Nevertheless, whatever update
strategy is given, it does not resolve the ambiguity problem because there is in general
no best update strategy [Buneman et al., 2008].

In this paper, we argue that the update strategy should be considered from the start,
and propose a novel putback-based approach to bidirectional programming: writing put
and deriving get (i.e., specifying the intended backward transformation that best suits
particular purposes, and deriving the forward transformation.) The new approach attains
the advantages of writing a single program to specify a bidirectional transformation to
enable easy maintenance. It also enjoys an important feature that, in sharp contrast
to bidirectional programming based on get where get is not sufficient to determine put ,
bidirectional programming based on put has the potential to describe all intentions of
bidirectional transformations, since there is only one get that can be combined with a
given put to form a well-behaved bidirectional transformation.

There are two major difficulties in constructing a framework for putback-based bidi-
rectional programming. One is to clarify sufficient and necessary conditions on the put
function such that it can be used to describe all intentions of a well-behaved bidirectional
transformation while guaranteeing existence and uniqueness of the corresponding get
function. The other difficulty is how to automatically derive the unique get from put in
practice. Our main technical contributions can be summarized as follows.

• We clarify necessary conditions on putback functions of well-behaved bidirectional
transformations in Section 3 and use these conditions to characterize different
classes of BXs in Section 4.

• In the same section, we formally prove that for a given put function that satisfies
the identified necessary conditions the corresponding get function is unique in each
considered class of BXs. Hence, the get function is redundant and can be derived
automatically, retaining maintainability and full control over the update strategy.

• In Section 5, we describe a prototype implementation of deriving get from put
in the functional logic programming language Curry [Hanus (editor), 2012] and
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Figure 2: The GetPut law Figure 3: The PutGet law

demonstrate how to program in putback style using programs that implement
different update strategies for transformations resembling database queries.

We begin in Section 2 by discussing the considered classes of BXs more formally and
provide corresponding intuitions using examples that we also use to show the ambiguity
of backward transformations for given forward transformations. We discuss related work
in Section 6 and provide our conclusions together with possibilities for future work in
Section 7.

2 Classes of Bidirectional Transformations

In this section we review different classes of bidirectional transformations, discussing
their laws both equationally and intuitively. Example transformations in this section are
minimalistic to highlight the essential differences between different classes of BXs.

2.1 Well-behaved BXs

Foster et al. [2007] call bidirectional transformations that satisfy the GetPut and
PutGet laws well-behaved.

Definition 2.1 (GetPut law). The GetPut law describes a property of calling the
forward function get before the backward function put.

put s (get s) = s

It is depicted in Figure 2.
The put function should yield an unmodified source when passing the view obtained by

get unchanged along with the original source. This property captures the intuition that if
no view update takes place the source should not be updated either.
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Definition 2.2 (PutGet law). The PutGet law describes a property of calling the
backward function put before the forward function get.

get (put s v) = v

It is depicted in Figure 3.
When passing a source obtained by put to get then get should yield the same view that

was passed to put. This property captures the intuition that view updates are reflected in
the source type by put and can be observed by get.

The bidirectional transformation defined in Example 1.1 is well-behaved because it
satisfies the GetPut and PutGet laws. To verify the GetPut law, consider the
following equations.

putFirst (x , y) (getFirst (x , y))
= { definition of getFirst }

putFirst (x , y) x
= { definition of putFirst }

(x , y)

So, indeed, when we update the first component of a pair with its own first component,
the pair does not change.

To verify the PutGet law, consider the equations below.

getFirst (putFirst (x , y) z )
= { definition of putFirst }

getFirst (z , y)
= { definition of getFirst }

z

So, indeed, if we query the first component of a pair with an updated first component,
we get back the value used for updating.

Example 2.3 (Change counter). As another example for a well-behaved bidirectional
transformation, consider the combination of getFirst with the following backward function.

putFirstCount (n, c) m = if n =I m then (m, c) else (m, c + 1)

This function increments the second component of a pair whenever we change its first
component.

To verify the GetPut law, we can check the following equations.

putFirstCount (n, c) (getFirst (n, c))
= { definition of getFirst }

putFirstCount (n, c) n
= { definition of putFirstCount }
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Figure 4: The PutPut law

if n =I n then (n, c) else (n, c + 1)
= { reduction to then branch }

(n, c)

Because we do not change the first component during the update, the counter is not
incremented.

To verify the PutGet law, we can proceed as follows.

getFirst (putFirstCount (n, c) m)
= { definition of putFirstCount }

getFirst (if n =I m then (m, c) else (m, c + 1))
= { reduction of getFirst in both branches }

m

Regardless of whether the counter is incremented, the first component of an updated
pair is the value used for updating.

2.2 Very well-behaved BXs

Foster et al. [2007] call well-behaved bidirectional transformations that also satisfy the
PutPut law very well-behaved.

Definition 2.4 (PutPut law). The PutPut law describes a property of calling the
backward function put twice with different views.

put (put s v ′) v = put s v PutPut

It is depicted in Figure 4.
When put is called twice in a row then the result should be the same as the result of

the second call with the updated source replaced by the original. This property captures
the intuition that view updates are independent of each other.
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The bidirectional transformation defined in Example 1.1 is very well-behaved, as can
be verified by the following equations.

putFirst (putFirst (x , y) z1) z2
= { definition of putFirst }

putFirst (z1, y) z2
= { definition of putFirst }

(z2, y)
= { definition of putFirst }

putFirst (x , y) z2

The first update (using the value z1) does not influence the second update (using z2)
because updates completely overwrite the effect of previous updates.

The bidirectional transformation defined in Example 2.3 is not very well-behaved
because the PutPut law is violated if two updates in a row change the first component
of the pair more often than the second update alone.

putFirstCount (putFirstCount (42, 0) 43) 42
= { definition of putFirstCount }

putFirstCount (43, 1) 42
= { definition of putFirstCount }

(42, 2)
6=

(42, 0)
= { definition of putFirstCount }

putFirstCount (42, 0) 42

Different updates are not independent because their effect on the counter cannot be
overwritten.

Example 2.5 (Maintaining difference). As a second example of a bidirectional transfor-
mation that is very well-behaved consider the function getFirst together with the following
backward function that maintains the original difference of the components of a pair when
updating the first component.

putFirstDiff (x , y) z = (z , z + y − x )

When updating the first component, the second is also changed such that the difference
between the components remains the same. Here are some example calls to clarify this
behavior.

putFirstDiff (1, 2) 3 = (3, 3 + 2− 1) = (3, 4)
putFirstDiff (1, 1) 1 = (1, 1 + 1− 1) = (1, 1)
putFirstDiff (3, 2) 1 = (1, 1 + 2− 3) = (1, 0)
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The following equations show that the GetPut, PutGet, and PutPut laws hold,
respectively, for the bidirectional transformation defined in Example 2.5.

putFirstDiff (x , y) (getFirst (x , y))
= { definition of getFirst }

putFirstDiff (x , y) x
= { definition of putFirstDiff }

(x , x + y − x )
= { associativity and inverse of addition }

(x , y)

getFirst (putFirstDiff (x , y) z )
= { definition of putFirstDiff }

getFirst (z , z + y − x )
= { definition of getFirst }

z

putFirstDiff (putFirstDiff (x , y) z1) z2
= { definition of putFirstDiff }

putFirstDiff (z1, z1 + y − x ) z2
= { definition of putFirstDiff }

(z2, z2 + z1 + y − x − z1)
= { associativity and inverse of addition }

(z2, z2 + y − x )
= { definition of putFirstDiff }

putFirstDiff (x , y) z2

Example 2.5 follows a general pattern to construct very well-behaved bidirectional
transformations by maintaining a constant complement [Bancilhon and Spyratos, 1981]
of the view in invocations of the put function. In fact, Foster et al. [2007] prove that
view updating under constant complement captures every very well-behaved BX.

2.3 Bijective BXs

Foster et al. [2007] call bidirectional transformations that satisfy the StrongGetPut
law in addition to the PutGet law bijective.

Definition 2.6 (StrongGetPut law). The StrongGetPut law is a stronger version
of the GetPut law for well-behaved bidirectional transformations.

put s ′ (get s) = s StrongGetPut

When put is called on the result of get it should yield the same source that was given to
get initially, regardless of what source is used for the update. Together with the PutGet
law (see Definition 2.2) the StrongGetPut law captures the intuition that there is a
one-to-one correspondence between sources and views implemented by the get and put
functions.

10



The bidirectional transformation defined in Example 1.1 is not bijective because there
is no one-to-one correspondence between pairs and their first components. To verify that
the StrongGetPut law is violated, consider the following inequality.

putFirst (1, 2) (getFirst (3, 4))
= { definition of getFirst }

putFirst (1, 2) 3
= { definition of putFirst }

(3, 2)
6=

(3, 4)

Unlike (very) well-behaved BXs, bijective BXs do not allow to discard information when
computing a view from a source. Examples 2.3 and 2.5 also do not define bijective
bidirectional transformations because they use the same forward function as Example 1.1
which discards information.

3 Preliminary observations on putback functions

We now introduce notation and review mathematical concepts that play a role when
we characterize the different classes of BXs in Section 4. While doing so, we observe
necessary conditions on put functions implied by laws for bidirectional transformations.

3.1 Currying, point-free style, and infix operator sections

We denote function application by juxtaposition (as in the functional programming
language Haskell [Marlow (editor), 2010]). For example, the application of a function get
to a source argument s is written as follows.

get s

We write functions with multiple arguments in so-called curried style, i.e., instead of
taking (a tuple of) multiple arguments directly, multi-argument functions take one
argument and yield a function for the remaining arguments. As is conventional, function
application associates to the left and, hence, the application of a function put to a source
argument s and a view argument v is written as follows.

put s v = (put s) v

The higher-order functions curry and uncurry translate between the curried and uncurried
versions of a function.

curry f x y = f (x , y)
uncurry f (x , y) = f x y

For example, we can obtain the uncurried version of a put function by calling uncurry
and then pass the arguments as a pair.
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uncurry put (s, v) = put s v

Sometimes, we give type annotations for functions, again in Haskell notation. If sources
have type S and views are of type V then curried and uncurried put functions have the
following types, respectively.

put :: S → (V → S )
uncurry put :: (S ,V )→ S

As is conventional, the function-type constructor associates to the right, so the type
S → (V → S ) can be written S → V → S , for short.

We write id for the identity function on arbitrary types. To highlight a specific
argument (and result) type of id we sometimes write it as a subscript, such as idS for
the identity function on a type S .

We write a dot to denote function composition. For example, the composition of a
partially applied put function with a get function, applying get to the result of put s, is
written as follows.

get · put s = λv → get (put s v)

Lambda abstractions, like the one above, define anonymous functions.
Binary functions, such as put , can be enclosed in backquotes to use them as infix

operators. Furthermore, partial applications of infix operators can be formed for the first
and second argument using parenthesized infix operator sections where only the left (i.e.,
first) or right (i.e., second) argument is provided. The following examples, demonstrate
the use of such notation.

s ‘put ‘ v = put s v
(s‘put ‘) = λv → put s v = put s
(‘put ‘v) = λs → put s v

Proposition 3.1 (Point-free laws for BXs). We can now rephrase some of the laws
for bidirectional transformations reviewed in Section 2 in so-called point-free style, i.e.,
without mentioning some arguments of functions.

1. The PutGet law (cf. Definition 2.2) states the following equation for all sources
s.

get · put s = id

2. The PutPut law (cf. Definition 2.4) states the following equation for all views v
and v ′.

(‘put ‘v) · (‘put ‘v ′) = (‘put ‘v)
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3. The StrongGetPut law (cf. Definition 2.6) states the following equation for all
sources s.

put s · get = id

Reformulating laws in point-free style will help identify necessary conditions on putback
functions using standard mathematical terminology.

3.2 Mathematical propositions

This subsection recalls basic mathematical concepts used subsequently and relates them
to the previously introduced notation.

Definition 3.2 (Injectivity and left inverse). A function f :: A→ B is injective if and
only if there is a function g :: B → A such that g · f = idA. In this case, g is called left
inverse of f .

Intuitively, an injective function maps different arguments to different results. As a
consequence, the result type is “at least as big as” the argument type.

Definition 3.3 (Surjectivity and right inverse). A function f :: A→ B is surjective on
B if and only if there is a function g :: B → A such that f · g = idB. In this case, g is
called right inverse of f .

Intuitively, a surjective function yields every value in its result type for some argument.
As a consequence, the argument type is “at least as big as” the result type.

Proposition 3.4 (Injectivity and Surjectivity in BXs). Certain laws for bidirectional
transformations impose injectivity and surjectivity requirements on bidirectional transfor-
mations.

1. The PutGet law (cf. Proposition 3.1) implies that get is surjective on the view
type V and “put s” is injective for all sources s. If the PutGet law holds then,
for all sources s, get is a left inverse of “put s” and “put s” is a right inverse of
get.

2. The StrongGetPut law (cf. Proposition 3.1) implies that get is injective and
“put s” is surjective on the source type S for all sources s. If the StrongGetPut
law holds then, for all sources s, get is a right inverse of “put s” and “put s” is a
left inverse of get.

Definition 3.5 (Bijectivity and inverse). A function f is bijective if and only if it is
injective and surjective. In this case, there is exactly one left inverse g of f . It is also a
right inverse of f and, therefore, called inverse, for short. We write f−1 for the inverse
of a bijective function f .
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Intuitively, a bijective function defines a one-to-one correspondence between its argu-
ment and result type. As a consequence, both have the same cardinality.

Proposition 3.4 justifies why bidirectional transformations that satisfy both the Put-
Get as well as the StrongGetPut law are called bijective, because in this case get
is bijective and put s is its inverse for all sources s. This shows that put functions
in bijective bidirectional transformations can ignore their source argument, such that
they trivially satisfy the PutPut law (cf. Definition 2.4). Therefore, every bijective
bidirectional transformation is also very well behaved.

It is worth considering the differences between the properties defined in Definitions 3.2–
3.5 for multi-argument functions in curried and uncurried style. For example, for a given
put function we can distinguish the following notions of injectivity.

1. put is injective

2. put s is injective for all source values s

3. uncurry put is injective

We can build an intuition for the differences between these properties by considering the
cardinalities of source and view types, say |S| and |V | respectively.

The cardinality of the argument type S of put is |S| and the cardinality of its result
type V → S is |S||V |. Therefore, it is easy to give an injective put function. In fact, the
constant put function defined as follows is an example.

put s v = s

On the other hand, the argument type (S ,V ) of uncurry put has cardinality |S| · |V |
and its result type S has cardinality |S|. So, for finite source and view types with |V | > 1
there is no put function such that uncurry put is injective.

Property 2 lies in-between properties 1 and 3. For source types that are “at least as
big as” the view type, there are put functions that satisfy property 2. The constant put
function, however, is a counter example because all views are mapped to the same source.

We can make similar observations for surjectivity instead of injectivity of multi-argument
functions.

Proposition 3.6 (Surjectivity of uncurry put). The GetPut law (cf. Definition 2.1)
implies that “uncurry put” is surjective on the source type.

Proof. If the GetPut law holds then the function “pr = λs → (s, get s)” is a right
inverse of “uncurry put”:

uncurry put (pr s)
= { definition of pr }

uncurry put (s, get s)
= { definition of uncurry }

put s (get s)

14



= { GetPut law }
s

Our final mathematical concept that turns out helpful for characterizing the different
classes of BXs introduced in Section 2 is idempotence.

Definition 3.7 (Idempotence). A function f ::A→ A is called idempotent if the following
equation holds.

f · f = f

This notion is useful to observe that well-behaved BXs satisfy a weaker version of the
PutPut law (cf. Proposition 3.1).

Proposition 3.8 (Idempotence of (‘put ‘v)). In a well-behaved bidirectional transfor-
mation, i.e., which satisfies the GetPut and PutGet laws, the function (‘put ‘v) is
idempotent for all views v. This idempotence requirement can also be expressed as the
following equation, called PutTwice law [Foster, 2009].

put (put s v) v = put s v PutTwice

Proof. The following equations use the PutGet and GetPut laws to derive the claimed
idempotence requirement.

((‘put ‘v) · (‘put ‘v)) s
= { function composition }

(s ‘put ‘ v) ‘put ‘ v
= { prefix notation }

put (put s v) v
= { PutGet law }

put (put s v) (get (put s v))
= { GetPut law }

put s v
= { infix operator section }

(‘put ‘v) s

The PutPut law is stronger than idempotence of (‘put ‘v) because it requires a similar
equation for compositions of put applied to different views v and v ′ instead of compositions
of put applied to the same view. Example 2.3 shows that the PutPut law is stronger
than idempotence of (‘put ‘v) because the bidirectional transformation defined there is
well-behaved, but not very.
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4 Characterizing BXs in terms of the putback function

We now characterize different classes of BXs introduced in Section 2 based on necessary
conditions observed in Section 3. From this characterization we will be able to identify
exactly, for each introduced class of BXs, which part of the definition of a bidirectional
transformation is redundant due to the corresponding laws.

As a preliminary observation, note that for bijective BXs the put function is uniquely
determined by the get function and vice-versa. We can define

put s = get−1

for all sources s to derive a unique put from get . We can also define

get s = (put s)−1 s

to derive a unique get from put .
For (very) well-behaved BXs the get function does not give rise to a unique put function.

Examples 1.1 and 2.5 are two different very well-behaved BXs with the same put function.
Hence, (very) well-behaved BXs cannot be specified completely by only providing a get
function.

In the remainder of this section, we show that (very) well-behaved BXs can be specified
completely by giving their put function. No additional conditions on put functions are
required apart from necessary conditions observed in Section 3.

4.1 Characterizing well-behaved BXs

Our first theorem shows that we can replace each of the defining laws for well-behaved
BXs by necessary conditions observed previously.

Theorem 4.1 (Characterizing well-behaved BXs). The following propositions are equiv-
alent.

1. The GetPut and PutGet laws hold.

2. The GetPut law holds, (‘put ‘v) is idempotent for all views v, and “put s” is
injective for all sources s.

3. The PutGet law holds, (‘put ‘v) is idempotent for all views v, and “uncurry put”
is surjective on the source type.

Proof. We show the implications 1⇒ 2⇒ 1⇒ 3⇒ 1.

1⇒ 2 The idempotence requirement follows from Proposition 3.8. The injectivity re-
quirement is a direct consequence of the PutGet law (cf. Proposition 3.4).

2⇒ 1 To conclude the PutGet law

get (put s v) = v
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for all sources s and views v , let pl be a left inverse of put (put s v). Then, verify
the following equations using the GetPut law and Proposition 3.8.

get (put s v)
= { definition of id }

id (get (put s v))

= { p l is left inverse of put (put s v) }
p l (put (put s v) (get (put s v)))

= { GetPut law }
p l (put s v)

= { idempotence of (‘put ‘v), Proposition 3.8 }
p l (put (put s v) v)

= { p l is left inverse of put (put s v) }
id v

= { definition of id }
v

1⇒ 3 The idempotence requirement follows from Proposition 3.8. Surjectivity of
“uncurry put” follows from Proposition 3.6.

3⇒ 1 To conclude the GetPut law, let pr be a right inverse of “uncurry put”, and
for a source s define “(s ′, v) = pr s” such that “put s ′ v = s”. Then, verify the
following equations using the PutGet law and Proposition 3.8.

put s (get s)
= { put s ′ v = s }

put (put s ′ v) (get (put s ′ v))
= { PutGet law }

put (put s ′ v) v
= { idempotence of (‘put ‘v), Proposition 3.8 }

put s ′ v
= { put s ′ v = s }

s

We cannot replace both defining laws for well-behaved BXs by the employed necessary
conditions on the put function without losing the connection to the get function. However,
those necessary conditions on put functions are sufficient in the sense that they give rise to
a unique get function such that the resulting bidirectional transformation is well-behaved.
The following Theorem 4.2 shows that put functions satisfying the necessary conditions
used in Theorem 4.1 characterize well-behaved BXs, i.e., well-behaved BXs are uniquely
determined by their putback function.
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Theorem 4.2 (Uniqueness of get for well-behaved put). Assume a put function that
satisfies all of the following propositions.

1. (‘put ‘v) is idempotent for all views v.

2. “put s” is injective for all sources s.

3. “uncurry put” is surjective on the source type.

Then the following propositions are also satisfied.

(a) For every source s there is exactly one view v such that put s v = s.

(b) There is exactly one get function such that the resulting BX is well-behaved.

Proof. (a) Regarding the existence of v , choose for all s a source s ′ and a view v such
that s = put s ′ v according to (3). Then, the following equations hold because of
Proposition 3.8.

put s v
= { s = put s ′ v }

put (put s ′ v) v
= { idempotence of (‘put ‘v), Proposition 3.8 }

put s ′ v
= { s = put s ′ v }

s

A view v satisfying the equation put s v = s is unique because “put s” is injective
according to (2).

(b) Regarding the existence of get define

get s = v ,with v such that s = put s v

according to (a). Then, we can verify the GetPut law as follows.

put s (get s)
= { definition of get }

put s v ,with v such that s = put s v
= { s = put s v }

s

From the second proposition of Theorem 4.1 we can now conclude that the resulting
BX is well-behaved.

Regarding the uniqueness of get , consider get ′ such that the resulting BX is well-
behaved. Then, we can observe the following equations making use of (a) and the
PutGet law.
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get ′ s
= { proposition (a) }

get ′ (put s v),with v such that s = put s v
= { PutGet law }

v ,with v such that s = put s v
= { definition of get }

get s

This result shows that well-behaved BXs are characterized by their putback function,
i.e., the get function is redundant for the purpose of specification.

4.2 Characterizing very well-behaved BXs

Very well-behaved BXs differ from well-behaved BXs only in the PutPut law (see
Definition 2.4) which (as we have observed after Proposition 3.8) is a stronger version of
the idempotence requirement on (‘put ‘v) for all views v .

As a consequence, the following characterization of very well-behaved BXs is a direct
consequence of Theorem 4.1.

Corollary 4.3 (Characterizing very well-behaved BXs). The following propositions are
equivalent.

1. The GetPut, PutGet, and PutPut laws hold.

2. The GetPut and PutPut laws hold and “put s” is injective for all sources s.

3. The PutGet and PutPut laws hold and “uncurry put” is surjective on the source
type.

Proof. Direct consequence of Theorem 4.1 because the PutPut law (cf. Proposition 3.1)
implies idempotence of (‘put ‘v) for all views v .

We get a similar result regarding the uniqueness of the get function for a given put
function of a very well-behaved BX as we observed for well-behaved BXs.

Corollary 4.4 (Uniqueness of get for very well-behaved put). Assume a put function
that satisfies all of the following propositions.

1. The PutPut law holds.

2. “put s” is injective for all sources s.

3. “uncurry put” is surjective on the source type.

Then there is exactly one get function such that the resulting BX is very well-behaved.

Proof. The propositions imply those of Theorem 4.2 so there is a unique get function
such that the resulting BX is well-behaved. It is also very well-behaved because the put
function satisfies PutPut according to proposition (1).
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4.3 Partial BXs

So far, we have assumed get and put to be functions —in the mathematical sense—
between a source type S and a view type V . This entails, specifically, that get and put
are both total, i.e., yield a value for every argument in their respective domains. In the
case of well-behaved BXs, totality of get means surjectivity of uncurry put and totality
of put means surjectivity of get .

While it is possible, in principle, to define precise types that match the domain and
range of arbitrary get and put functions exactly, in practice, it is often convenient to
allow the source and view types of bidirectional transformations be larger and define get
or put as partial functions between these larger types [Pacheco, 2012].

Example 4.5 (Partial BX to access the head of a non-empty list). As an example for a
partial bidirectional transformation, consider the following definitions.

getHead (x : ) = x
putHead ( : xs) x = x : xs

In Haskell, (x : xs) denotes a list containing at least one element – x being the first and
xs containing all remaining ones.

Here are some example calls, that demonstrate the behavior of the forward and backward
functions using an alternative list notation.

getHead [1, 2, 3] = 1
getHead [ ] -- fails

putHead [1, 2] 3 = [3, 2]
putHead [ ] 1 -- fails

If we define the source type for this transformation to be the type [Elem ] of lists of
elements of type Elem and the view type to be Elem then getHead and putHead do not
form a well-behaved BX. The GetPut and PutGet laws are violated if we use the
empty list as a source value.

putHead [ ] (getHead [ ]) 6= [ ]
getHead (putHead [ ] 1) 6= 1

Also, note that one of the conditions on the put function used in Theorem 4.2 is violated:
“uncurry putHead” is not surjective because put s v 6= [ ] for all s and v .

In Example 4.5, however, there is an easy way out. If we define the source type to be
the type of non-empty lists then putHead does satisfy all conditions of Theorem 4.2 and
getHead is the unique forward function forming a well-behaved BX with putHead .

In general, we may assume such precise types even if we do not express them in
a programming language. For example, in Section 5 we will define a bidirectional
transformation whose view type consists of people from Tokyo. While we do not model
the type of people from Tokyo in our programming language of choice, we can still use
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Theorem 4.2 to derive a corresponding forward function automatically via the same
reasoning we applied to Example 4.5.

Alternatively, we could reformulate our definitions such that get and put are partial
functions and bidirectional laws are partial equalities. This relaxation still preserves all
the above theorems (excluding surjectivity of get and of uncurry put) as long as get and
put are safe [Pacheco, 2012], in the sense that get is defined for the image of put and
put is defined for the image of get . For space and readability reasons, we refrain from
restating our results with partial functions.2

5 Put-based programming of BXs

Our main result, Theorem 4.2, states that in a well-behaved bidirectional transformation
the definition of get is redundant given a definition of put that satisfies certain properties
necessary for well-behavedness. In this section, we argue for specifying a well-behaved
BX by defining a put function. We show how to use the functional-logic programming
language Curry [Hanus (editor), 2012] to derive a corresponding get function automatically
and show, using several examples, how to define put functions for well-behaved BXs.

5.1 Using Curry to derive get from put

We can use the built-in search facilities of the functional-logic programming language
Curry to derive the get function of a well-behaved bidirectional transformation from their
put function automatically. While search is probably not the most efficient way to obtain
get from put it is sufficient for the demonstration purposes of this section.

Syntactically, Curry is an extension of basic Haskell. Semantically, an important
difference is the handling of pattern matching – especially in presence of multiple rules.
In Curry, pattern-match failure is handled silently and more than one defining rule of
a function (or more accurately: operation)3 may be applied nondeterministically. For
example, the following program splits a given list in two parts at an arbitrary position.

split xs = ([ ], xs)
split (x : xs) = (x : ys, zs)

where
(ys, zs) = split xs

The defining rules of split are overlapping but, unlike in Haskell, not only the first
matching rule is applied but all matching rules are applied nondeterministically. For
example, there are three possible results of the call split [1, 2]:

([1, 2], [ ])
([1], [2])
([ ], [1, 2])

2An Alloy [Jackson, 2012] model with precise partial definitions and a lightweight proof of Theorem 4.2
can be downloaded from http://www.di.uminho.pt/~hpacheco/publications/Put.als.

3Because of nondeterminism, the input-output relation of a Curry operation does not necessarily describe
a function.
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Implementations of Curry usually allow to observe all nondeterministic results interactively
and are free to present them in an arbitrary order.

An alternative way to define split is by constraining free variables. Instead of encoding
nondeterminism using overlapping rules, we can also induce search by calculating with
unknown information. Here is an alternative definition of split following this approach.

split xs | xs =I ys ++ zs = (ys, zs)
where

ys, zs free

This definition expresses in a guard that concatenating two unknown lists ys and zs
using the predefined operation “++” should yield the argument list xs. The Curry
implementation searches for instantiations of ys and zs that satisfy the guard and returns
them as result of split . As there are, generally, multiple ways to instantiate ys and zs to
satisfy the guard, the result of split is nondeterministic like with the previous definition.4

In order to define the get function of a bidirectional transformation based on a put
function, we can use the same programming style as in the second definition of split . For
convenience, we first define a type for bidirectional transformations between a source
type s and a view type v .

type BX s v = s → v → s

The type BX s v defines bidirectional transformations as their put function. We provide
a function put that just calls this function.

put :: BX s v → s → v → s
put bx s v = bx s v

The function get is defined based on put using the constraint given in Theorem 4.2.

get :: BX s v → s → v
get bx s | put bx s v =I s = v

where
v free

These definitions allow to define bidirectional transformations by giving only the putback
function but to use them in both directions. In the remainder of this section we show
several examples of defining and using bidirectional transformations in this putback style.

5.2 Record field access

The most basic bidirectional transformations access fields of records similarly to Exam-
ple 1.1. To demonstrate record field access, we define a type for people.

4Depending on the Curry implementation, constraint equalities need to be specified using a different
operator. We use the Kiel Curry System KiCS2 [KiCS2 developers, 2012] which allows to apply
standard equality to free variables.
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data Person = Person Name City
data Name = Hugo | Sebastian | Zhenjiang
data City = Braga | Kiel | Tokyo

Example 5.1. We define bidirectional transformations name and city to access the
name and associated city of a person, respectively.

name :: BX Person Name
name (Person c) n = Person n c

city :: BX Person City
city (Person n ) c = Person n c

Both definitions specify a bidirectional transformation by its putback function and we
can issue calls in the Curry system KiCS2 to check that the derived forward function
works as expected.

KiCS2 〉 get name (Person Hugo Braga)
Hugo

KiCS2 〉 get city (Person Zhenjiang Tokyo)
Tokyo

Of course, we can also call the putback function —directly or indirectly using put— as
the following examples demonstrate.

KiCS2 〉 put city (Person Sebastian Tokyo) Kiel
Person Sebastian Kiel

KiCS2 〉 city (Person Sebastian Tokyo) Kiel
Person Sebastian Kiel

We can also use these bidirectional transformations in other Curry functions. For example,
the following predicate checks whether a person is from a given city.

isFrom :: City → Person → Bool
isFrom c p = c =I get city p

In the following, we define bidirectional transformations in analogy to database view
updates using a database of people.

5.3 Database view updating

Historically, database view updating is a primary source of motivation for researching
bidirectional transformations. We now demonstrate how different view update strategies
described in the literature can be expressed in our put-based framework for bidirectional
programming.
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For the sake of simplicity, we regard database tables as sets of rows represented as lists
sorted by a key identifying rows uniquely. For example, the following is a database of
people where each person is identified by their name.

people = [hugo, sebastian, zhenjiang ]

hugo = Person Hugo Braga
sebastian = Person Sebastian Tokyo
zhenjiang = Person Zhenjiang Tokyo

In order to update this database of people, the following function mergePeople will be
helpful. It takes two tables of people (sorted by name) and merges them into a single
(sorted) table of people. If entries with the same key are present in both tables then the
entry in the second table overwrites the entry in the first.

mergePeople :: [Person ]→ [Person ]→ [Person ]
mergePeople old new = merge (sorted old) (sorted new)

where
merge [ ] ps = ps
merge (p : ps) [ ] = p : ps
merge (p : ps) (q : qs)
| get name p < get name q

= p : merge ps (q : qs)
| get name p =I get name q

= q : merge ps qs
| get name p > get name q

= q : merge (p : ps) qs

sorted [ ] = [ ]
sorted (p : ps) = ascending p ps

ascending p [ ] = [p ]
ascending p (q : qs)
| get name p < get name q

= p : ascending q qs

The function mergePeople restricts the tables passed as arguments to be sorted using
the partial function sorted that ensures that its argument is a sorted list of people. The
function sorted is the identity function on sorted tables but fails on lists of people that
are not sorted by name (in mathematical terms, a coreflexive relation that is a subset of
the identity relation).

Now, consider a database query that selects all people from a certain city. For example,
selecting all people from Tokyo from the people database defined above would result in
the following view of this database.

[Person Sebastian Tokyo,Person Zhenjiang Tokyo ]

When adding new people to this view, reflecting it in the original database is straightfor-
ward: if a person with the same name already exists then change their city to Tokyo; if
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there is no person with that name in the original database then add it.5 For deletion,
however, there is no straightforward update strategy. When deleting a person from the
view, we can either

1. delete it from the original database or

2. change their city to a city different from Tokyo.

Keller [1986] argues that both strategies may be reasonable depending on context, so a
system computing an update strategy automatically solely based on the definition of the
view function is insufficient. Using put-based bidirectional programming, both strategies
above can be expressed in a straightforward way.

5.3.1 Reflecting deletions via deletions

The first strategy —deleting people from the original database that are not present in
the updated view— can be implemented as follows:

• first, delete all people from the given city from the original database,

• then update the result by merging all people from the updated view.

Example 5.2 (Reflecting deletions via deletions). The following function peopleFrom
implements a bidirectional transformation using the strategy described above.6

peopleFrom :: City → BX [Person ] [Person ]
peopleFrom c source view =

let elsewhere = filter (not · isFrom c) source
in mergePeople elsewhere (map ensureCity view)

where
ensureCity q | isFrom c q = q

The function peopleFrom uses mergePeople to merge the list elsewhere of people not
from the given city in the original source with the list of people from the updated view .
The function mergePeople ensures that both lists are sorted. Additionally, peopleFrom
restricts updated views using the local function ensureCity which is a partial identity
function on people from the given city. Restricting updated views is important for
maintaining the injectivity requirement of Theorem 4.2, as we discuss below. As a

5In fact, these are not the only well-behaved ways to handle additions in a view. Changing the city
of an existing person could be distinguished from deleting it and adding a new person if people
would have additional properties besides their name and city. Also, adding people not from Tokyo
would not violate well-behavedness if only performed when a person in the view is not present in the
source. While our approach allows to define all such updates, we restrict ourselves to more reasonable
strategies trying to keep updates minimal, which is consistent with update translation strategies used
for database view updating.

6The predefined function map applies a given function to each element of a list.
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consequence of this restriction, it is not possible to move people to a different city using
this update strategy.

Conceptually, peopleFrom c is a bidirectional transformation between the source type
of sorted lists of people and the view type of sorted lists of people from the city c. Note
that specifying the view type in the type system would require a dependently typed
programming language, i.e., one where the types of expressions can depend on the values
of others. Curry is not dependently typed, so we define peopleFrom c as a partial function
instead.

To verify that the get-function derived by our framework is unique and the resulting
transformation is well-behaved, we need to check the following three conditions:

1. peopleFrom c (peopleFrom c s v) v = peopleFrom c s v for all cities c, sorted lists
s of people, and sorted lists v of people from the city c,

2. peopleFrom c s is injective for all cities c and sorted lists of people s, and

3. uncurry (peopleFrom c) is surjective on sorted lists of people for all cities c.

The first condition is satisfied because the second application of peopleFrom c will remove
the updated people and then re-add them, so updating twice using the same view is the
same as updating only once.

The second condition is satisfied because peopleFrom c restricts updated views to
people from the given city and is not defined for other views. Without this restriction,
views that contain people from the original database not from the city c would map to the
same updated source as views not containing them, violating the injectivity requirement.
By deleting all people from the city c from the original source and ensuring that people
in the updated view are from the city c, peopleFrom c ensures that updated views are
mapped uniquely to updated sources.

The third requirement is satisfied because every database of people can be obtained
using peopleFrom c by passing it as original source together with a view that includes all
its people from the city c.7

Together, these conditions ensure that the get function derived for peopleFrom c is
unique and the resulting BX is well-behaved. The following calls demonstrate the behavior
of the derived view function and the defined update strategy.

KiCS2 〉 get (peopleFrom Tokyo) people
[Person Sebastian Tokyo,Person Zhenjiang Tokyo ]

KiCS2 〉 put (peopleFrom Tokyo) people [zhenjiang ]
[Person Hugo Braga,Person Zhenjiang Tokyo ]

KiCS2 〉 put (peopleFrom Tokyo) people [put city hugo Tokyo, zhenjiang ]
[Person Hugo Tokyo,Person Zhenjiang Tokyo ]

7This requirement would not be necessary in a reformulation of Theorem 4.2 for partial functions, but it
ensures that the domain of the forward function (i.e., the range of the uncurried backward function)
is the “type” of all sorted lists of people, as intended.
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The first call demonstrates the get function querying all people from Tokyo in the
database defined earlier. The second call demonstrates deleting sebastian by deleting
him from the updated view passed to the put function. The result contains hugo who
is not from Tokyo and zhenjiang who was included in the updated view. The third call
demonstrates deleting sebastian and moving hugo to Tokyo by adding him to the list of
people from Tokyo.

5.3.2 Reflecting deletions via modifications

Instead of deleting people from the database that are not present in the updated view
queried by city we can also move them to a different city. This strategy can be implemented
as follows:

1. first move all people from the queried city to the new city in the original source,

2. then call the update strategy defined in Section 5.3.1 to overwrite all moved people
who are present in the view, effectively moving only those who are not present.

Example 5.3 (Reflecting deletions via modifications). The following definition imple-
ments the strategy described above.

peopleFromTo :: City → City → BX [Person ] [Person ]
peopleFromTo from to source view =

let moved = map move source
in peopleFrom from moved view

where
move p | get city p =I from = put city p to

| otherwise = p

Again, we need to verify the conditions of Theorem 4.2 to ensure that the resulting
BX is well-behaved:

1. Putting an original source with the same view twice is the same as updating it
only once because the underlying transformation peopleFrom satisfies this property
for all sources, i.e., also for the modified source passed by peopleFromTo.

2. The injectivity requirement is also implied by the corresponding property for the
underlying transformation.

3. Regarding surjectivity, note that, even though people in the original source are
moved initially, they can be moved back by including all moved people in the view
argument. So obtaining an arbitrary source as result of peopleFromTo is achieved
in the same way as for peopleFrom.

Here are example calls that demonstrate the difference between the peopleFrom strategy
and the peopleFromTo strategy.
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KiCS2 〉 get (peopleFromTo Tokyo Kiel) people
[Person Sebastian Tokyo,Person Zhenjiang Tokyo ]

KiCS2 〉 put (peopleFromTo Tokyo Kiel) people [zhenjiang ]
[Person Hugo Braga,Person Sebastian Kiel ,Person Zhenjiang Tokyo ]

KiCS2 〉 put (peopleFromTo Tokyo Kiel) people [put city hugo Tokyo, zhenjiang ]
[Person Hugo Tokyo,Person Sebastian Kiel ,Person Zhenjiang Tokyo ]

The get function of the BX peopleFromTo Tokyo Kiel is the same as the get function
of peopleFrom Tokyo. The difference is only in the put function which moves sebastian
from Tokyo to Kiel when he is deleted from the view instead of deleting him from the
source. Inserted people, like hugo, are inserted into the original source (or modified if
they already exist) just like before.

5.3.3 Missing support for ensuring well-behavedness

Examples 5.1 through 5.3 show how to write bidirectional transformations in putback
style. The definitions inspired by database queries follow a verbal description of update
strategies and are implemented modularly by reusing common parts. We have argued
informally that our definitions satisfy the necessary conditions for the transformations to
be well-behaved and observed their behavior using example calls.

Ensuring well-behavedness can be tricky, however. As an example of a bidirectional
transformation where well-behavedness is possible but not easily ensured, we discuss
joins of database tables without showing their implementation.

Consider that we define datatypes for books associating titles with owners which allow
the following definitions.

someBooks = [Book The Art of Computer Programming Zhenjiang ,
Book The Elements of Style Sebastian,
Book The Lord of the Rings Hugo ]

somePeople = [hugo, zhenjiang ]

The result of joining the tables someBooks and somePeople is the following list of pairs
containing titles and cities.

[(The Art of Computer Programming ,Zhenjiang ,Tokyo),
(The Lord of the Rings,Hugo,Braga)]

Sebastian’s book is not included because he is not listed in the table somePeople. Say,
we want to update this join to include another book owned by Sebastian and at the same
time remove Hugo’s book.

someJoin = [(The Art of Computer Programming ,Zhenjiang ,Tokyo),
(To Mock a Mockingbird ,Sebastian,Tokyo)]

When implementing a putback function for joins, we need to consider at least the
following questions.
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1. Should books like The Element of Style that are not part of the updated view be
included in the book table of the updated source?

2. What about the explicitly removed book The Lord of the Rings?

3. Can we always add such new books to the book table?

4. Can we always add new owners to the person table?

We will answer these questions in turn considering well-behavedness of the resulting
transformation.

1. Books like The Elements of Style that are not part of the view but of the book
table in the original source need to be included in order to satisfy the GetPut law.
If we do not include such books in the updated book table, we could not update
the source (someBooks, somePeople) with it’s join and get back the same source.
On the other hand, we need to delete such books from the updated source, if the
view is updated with other books of the same owner for reasons discussed below.

2. For deleted books like Hugo’s we have different options. We can delete the book
from the updated book table or delete the owner from the updated person table.
When deleting a book from the book table, we need to distinguish this case from the
previous case where we have to keep a book that is not part of the view because the
owner is not in the person table. Deleting Hugo from the people table is admissible
in this case because he has no other books. If there were other books owned by
Hugo in the original book table, however, we could not delete him from the updated
people table without violating the PutGet law: when computing the join for the
updated source, all other books owned by Hugo would be missing.

3. We can (and, because of the PutGet law, have to) add new books to the book
table.

4. We can add new owners to the person table if they do not have other books
listed in the book table but need to be careful about adding owners of other
books. For example, if we add Sebastian to the updated person table because
his book To Mock a Mockingbird should be included in the view, his other book
The Elements of Style would also be included. Hence, we need to delete all other
books from newly added owners or disallow adding books from new owners.

While it is, in principle, possible to implement every conceivable update strategy in
putback style, it can be tricky to get right. Providing support for programmers to ensure
well-behavedness of bidirectional transformations while maintaining the expressiveness
which allows to define every well-behaved bidirectional transformation is subject of future
research.
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6 Related Work

The literature most related to our theory of BXs can be classified according to two main
categories.

The first focuses on taking an existing language for defining the get function, and then
trying to derive a suitable put function through bidirectionalization techniques. This
kind of bidirectional approach has been mostly followed in the database community,
where it is known as the classical view-update problem. A database administrator may
define views that provide simplified or restructured information to users. Since the view
typically contains less information than the source, a view update can be translated in
general into multiple source updates, and the problem lies in how to choose a suitable
update translation strategy.

The second approach is to design a bidirectional programming language in which a
programmer writes both the get function and the put function in a single expression.
Bidirectional programming languages for the kinds of BXs considered in this paper, where
the get function defines a view and the backward function a view update strategy, are
usually called lenses.

Deeper and broader revisions of related work on bidirectional transformations can be
found in [Foster, 2009, Pacheco, 2012, Czarnecki et al., 2009, Hu et al., 2011].

6.1 View-update Problem

Work on database view-update translation has a long tradition in the database community,
going back to the late 70s and 80s when it was extensively studied.

In seminal work, Bancilhon and Spyratos [1981] remark that, given a complement
function such that the tupled get-complement function is injective, the translation of
view updates under a constant complement is unique. Their formulation is essentially
isomorphic to very well-behaved BXs [Foster et al., 2007].

To formalize the notion of a reasonable complement, Hegner [2004] extends the closed
views theory of Bancilhon and Spyratos [1981] with a notion of order on source and
view updates, such that put is monotonic: the reflection of an insertion in the view is
an insertion in the source, and similarly for deletions. He then establishes that for a
get written in a monotonic SPJ (select-project-join) relational algebra, there is a unique
translation of insertion and deletion view updates independently of the choice of the
complement.

Although closed views guarantee that view updates do not affect parts of the database
that are not visible through the view, they are often too conservative and disallow many
reasonable view update translations that do not keep any complement constant. A more
liberal theory of open views that rejects fewer updates but permits several reasonable
translations is proposed by Dayal and Bernstein [1982]. They formalize that a correct view
update translation shall simply not introduce view side effects, and propose algorithms
that perform one possible update translation for views written in a SPJ relational algebra.
Their formulation is essentially isomorphic to well-behaved BXs [Foster et al., 2007].

Nevertheless, an open strategy is inherently ambiguous, as it may introduce side
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effects in the source database that users are not aware of by only looking at the view.
Since different translations may be more appropriate for different scenarios, Keller [1986]
proposes an interactive algorithm that, based on a SPJ view definition, runs a dialog
with the view programmer to choose a particular view update policy that obeys a set of
intuitive criteria.

Other authors like Larson and Sheth [1991] point out that, for some examples, the
available information at view definition time is not sufficient for a view programmer to
unambiguously select a suitable view update strategy, and that information about the
issued view update is necessary. Using similar criteria as Keller [1986], they propose
an interactive algorithm that collects semantic information both at view definition time
(provided by the view programmer) and at view update time (provided by the view user),
and permits choosing from a larger number update policies for a broader class of view
definitions written using also relational difference, union and intersection.

A common feature of these relational BX approaches is that they are operation-based,
i.e., they consider actual edit operations in contrast to our state-based BXs that consider
whole source and view states, and the proposed update strategies process insertion,
deletion and modification updates independently. For example, an update strategy that
reacts to block operations like deleting a group in the source if all members of the group
are deleted in the view is not definable in an approach that considers independent view
updates. Moreover, the approaches with dialog only consider update translators that
satisfy a given set of criteria deemed intuitive (normally by trying to reduce the number
of source side effects), but not all well-behaved update translators. For example, the lens
from Example 2.3 would be typically left out. Note also that put programming is not a
commitment to an update translator at putback definition time: the view programmer
can leave parameters (that do not affect the derived get function) to be controlled by
users at view update time.

6.2 Bidirectional Programming Languages

In the last ten years, various bidirectional programing languages have become increasingly
popular across a wide range of communities, including data synchronization, model
transformations, graph transformations, relational databases and functional programming.
We review only a few that are more related to our work.

The pioneering work of Foster et al. [2007] proposes one of the first bidirectional
programming languages for defining views of tree-structured data. They recast many of
the ideas for database view-updating into the design of a language of BXs named lenses,
consisting of a get and a put function that satisfy well-behavedness laws analogous to the
ones proposed by Dayal and Bernstein [1982] and Bancilhon and Spyratos [1981]. The
novelty of their work is by putting emphasis on types and totality of lens transformations,
and by proposing a series of combinators that allow reasoning about totality and well-
behavedness of lenses in a compositional way. The kinds of BXs studied in our paper are
precisely total (very) well-behaved lenses.

Bohannon et al. [2006] propose a language of lenses for relational data built using
standard SPJ relational algebra combinators and composition. Their relational lenses

31



provide one possible update policy based on a careful treatment of functional dependencies.
They also develop a type system using record predicates and functional dependencies
to express the exact conditions on the source and view schemas under which lenses are
total and well-behaved.

Bohannon et al. [2008] design a language for the bidirectional transformation of string
data, built using a set of regular operations and a type system of regular expressions. To
overcome issues with order, their lens combinators adopt an update translation strategy
based on keys that are introduced by the programmer in the form of annotations to lens
expressions. Matching lenses [Barbosa et al., 2010] generalize the string lens language by
lifting the update translation strategy from a key-based matching to support a set of
different alignment heuristics that can be chosen by users.

Pacheco and Cunha [2010] propose a point-free functional language of total well-behaved
lenses, using a simple positional update strategy, and later Pacheco et al. [2012] extend
the matching lenses approach to infer and propagate insertion and deletion updates over
arbitrary views defined in such point-free language.

Hidaka et al. [2010] propose the first linguistic approach for bidirectional graph trans-
formations, by giving a bidirectional semantics to the UnCal graph algebra. Although
their base semantics is compositional, they process deletions in the view by locating the
correlated subgraph in the source, and for insertions in the view they have a dialog with
the user at view update time to calculate the correlated inserted subgraph in the source.

All existing bidirectional programing approaches based on lenses focus on writing
bidirectional programs that resemble writing the get function, and possibly take some
additional parameters that provide limited control over the update strategy of the put
function. Since these languages are state-based, the put function of a lens must align the
updated view and the original source structures to identify the modifications and translate
them to the source accordingly. Although for unordered data (relations, graphs) such
alignment can be done rather straightforwardly, for ordered data (strings, trees) it is more
problematic to find a reasonable alignment strategy, and thus to provide a reasonable view
update translation strategy. Our results open the way to put programming languages,
that in theory could give the programmer the possibility to express all well-behaved
update translation strategies.

In his PhD thesis, Foster [2009] independently discusses a characterization of lenses in
terms of put functions (considering only total get and put functions), in point-wise terms,
similar to our main theorem. Interestingly, he arrives at a notion of put semi-injectivity
that is slightly stronger than our injectivity of put s. He also uses the PutTwice law
which we identify as idempotence of ‘put ‘v . Nevertheless, he does so only to plead for a
forward programming style and does not pursue a putback programming style. Moreover,
he advocates that both styles are equivalent because writing a bidirectional program in a
get-based bidirectional language is the same as writing a backward transformation. We
disagree on the grounds that they are pragmatically distinct, as programmers of a BX
in an existing get-based bidirectional language are limited by the language designer in
their knowledge and control of the backward update strategy, and thus are supplied with
“a” backward transformation and not “the” backward transformation. Our emphasis on
putback programming highlights that programmers must be both aware of and responsible
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for the backward update strategy to specify a BX completely. We explore the putback
style to demonstrate this difference and illustrate a possible way to derive get functions
from put functions.

6.2.1 Symmetric Bidirectional Programming Languages

Bidirectional programming languages in the style of lenses are asymmetric, in the sense
that get is surjective and the view type usually contains less information than the source
type. In a symmetric bidirectional programming language, both the source and target
types may contain information not present on the other side, giving rise to different laws
and mathematical properties.

Meertens [1998] studies the construction of a language of constraint maintainers for
preserving the consistency of artifacts in user interfaces. A maintainer has a forward
function get :: (S ,T ) → T that propagates source updates, a backward function put ::
(T ,S )→ S that propagates target updates and a consistency relation R ⊆ (S, T ) that
the functions must preserve. Meertens [1998] also notes that composition of maintainers
is not well-behaved in general, but interestingly proves that the composition of two
well-behaved lenses with a common view type yields a well-behaved maintainer between
their source types.

Hofmann et al. [2011] build a language of symmetric lenses over algebraic data
structures. A maintainer consists of two transformations get :: (S ,C ) → (T ,C ) and
put :: (T ,C ) → (S ,C ) and a complement c :: C that preserves a history of the source
and target information lost through previous update translations. Unlike maintainers,
symmetric lenses support composition. They also show that any symmetric lens can be
viewed as the composition of two lenses with a common source consisting of the domain
of consistent triples of type (S ,C ,T ).

7 Conclusions and Future Work

In this article, we characterize the class of (very) well-behaved bidirectional transforma-
tions solely based on their putback functions. In doing so, we rephrase existing laws
for BXs based on simple mathematical concepts such as injectivity, surjectivity, and
idempotence. We use our characterization to show that (very) well behaved BXs are
uniquely determined by their backward functions and corresponding forward functions can
be obtained automatically. In sharp contrast to bidirectional programming approaches
based on get , writing put is sufficient to express all (very) well-behaved BXs.

Following this putback-based characterization of BXs, we show how to implement
existing update strategies as putback functions. We use the built-in search facilities of the
functional-logic programming language Curry, to obtain the get function corresponding
to a user-defined put function that satisfies necessary conditions for well-behavedness. We
informally argue that our definitions satisfy these well-behavedness properties and discuss,
based on a more complicated example, that ensuring them can be difficult without further
assistance.
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The first immediate direction for future work is to investigate the design of put program-
ming languages for particular data domains, that guide users by only allowing them to
define well-behaved BXs but retain the full power of writing put . Notwithstanding, users
are not necessarily obliged to fully control the update strategy: as for get programming,
default parameters for put may be used when adequate. In fact, we believe that a style
of injective put s functions with clear inverses can prove to be equally manageable and
even more intuitive than the traditional style of surjective get functions with ambiguous
inverses. Moreover, a fully expressive put programming language for a particular data
domain (e.g., databases and relational algebra) could serve as a unified framework to
express and compare BX approaches in that domain; and interfaces for existing BX
approaches could be implemented on top of the core framework. Such a unified framework
would constitute a foundational response to the recently growing unification effort of
the different BX communities, stated in publications such as [Czarnecki et al., 2009, Hu
et al., 2011, Terwilliger et al., 2012].

Some bidirectional programming approaches [Keller, 1986, Larson and Sheth, 1991,
Hidaka et al., 2010] relax the requirement imposed by PutGet to admit view side effects
in some particular cases, instead of disallowing view updates. An interesting direction
for future work would be to investigate how to extend our theory to consider view side
effects. Another challenging direction is to discover how to uniquely specify classes of
symmetric BXs, either directly or by decomposing them into pairs of asymmetric BXs.
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