
ISSN 1884-0760

GRACE TECHNICAL REPORTS

iGRT: A Generic Interface for GRoundTram

Yiqing ZHU Tao ZAN
Soichiro HIDAKA Zhenjiang HU

GRACE-TR 2012–06 June 2012

CENTER FOR GLOBAL RESEARCH IN

ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS

2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

iGRT: A Generic Interface for GRoundTram

Yiqing ZHU1 Tao ZAN2

Soichiro HIDAKA3 Zhenjiang HU3

1School of Software, Shanghai Jiao Tong University, China

alex.yqzhu@gmail.com
2The Graduate University for Advanced Studies, Japan

zantao@nii.ac.jp
3National Institute of Informatics, Japan

{hidaka, hu}@nii.ac.jp

June 5th, 2012

Abstract

Bidirectional transformation plays an important role in maintaining
the consistency of two models, and it has many potential applications,
such as model synchronization, software evolution, etc. Currently we
have a powerful tool called GRoundTram, which is designed for compo-
sitional development of well-behaved and efficient bidirectional graph
transformations. However, as the graph representation in GRound-
Tram is a directed edge-labelled graph, it is quite difficult to apply it
to real-world graphs directly, as graphs have more sophisticated repre-
sentations usually.

In this paper, we present iGRT, a generic interface for GRound-
Tram. It serves as the connection between the graphs in real world and
GRoundTram system. We have designed the representation for real
world graphs, and provided traceable transformations between real-
world graph representation and GRoundTram representation without
losing any information. By using iGRT, we can easily shuttle between
the different representations and maintain the synchronization as well.
We have implemented iGRT and offered a friendly user interface based
on the eclipse framework. Experiment result shows that iGRT en-
hances GRoundTram’s application work to a large extent.

1 Introduction

From Wikipedia, “bidirectional transformations (bx) are programs whose
code expresses a transformation both from input to output and back to the
corresponding input (possibly with modifications) in a single piece of code”.1

1http://en.wikipedia.org/wiki/Bidirectional transformation/

1

It aims at maintaining the consistency of two (or more) related sources of
information, especially for software engineering domains [5].

It has been realized nowadays that bx can provide solutions to a diverse
set of problems, such as model synchronization, software evolution, etc [12].
Figure 1 shows one example in model-driven software development. Sup-
pose M1 and M2 are two models, and there already exists one bx (t1 and
t2) between them. t1 is a transformation from M1 to M2, and t2 is the
corresponding backward transformation. From the picture we can see that
once M2 has evolved to M2

+ with some modifications (signified as the grey
part in M2

+), by using the transformation t2, we can easily get the relevant
evolved model M1

+, with the reflected modifications on M1 (signified as the
grey part in M1

+), thus keeping the synchronization of the two models.

M1
M2

M1 M2
+ +

model
evolution

t1

t2

synchronization

Figure 1: Model evolution by bidirectional transformation.

Currently, we have developed a powerful tool called GRoundTram [9]
[11]. It is an integrated framework for developing well-behaved bidirectional
model transformations, and it also provides bx on graphs [7] [6] [10] [4].
Bidirectional graph transformation has long been regarded as an important
but difficult problem, because a large part of the objects in real world can
be modeled as graphs, while treating graphs is more difficult than treating
trees, as it has a more complicated structure which contains cycles. By using
GRoundTram, graphs can be processed so that operations such as queries
and transformations can be done quite efficiently on graphs. Figure 2 is the
overview of the GRoundTram system. It is composed of four main parts,
input, validation, bx and graphic user interface. The input to the system
is a source model together with its schema, a transformation described in
UnQL+, and a target model schema. The validation part serves as a mecha-
nism to detect errors during development as early as possible and help users
to develop correct models and transformations. The bx part makes GRound-
Tram unique as it provides well-behaved bidirectional transformation, and
it also provides a user-friendly GUI to make itself easily used. Readers can
refer to the user manual of GRoundTram [8] for more information.

However, one problem falls on the practical utility of GRoundTram, for
it does not support processing real-world graphs directly. The reason is that

2

!"#"$%&'"()*+,

-$*)./($0*'"()

Source Model (DOT/UnCAL) Source Schema (KM3)Model Validation Forward TransformationTransformation(UnQL+) Target Schema (KM3)Model TransformationValidationVerified Transformation Target Model(DOT)Graph UpdateUpdated Target Model(DOT)Backward TransformationUpdated Source Model (DOT)Graph UpdateSource Model(DOT)
Figure 2: Overview of GRoundTram.

the internal graph representation in GRoundTram is directed edge-labeled
graph [3], and it is not a direct representation for most graphs in real world
as they usually hold information on nodes. For example, the edge may be
directed or undirected, and the node may also have labels.

Such shortage will lead to the fact that GRoundTram cannot be eas-
ily applied to most common graphs, as the different representations of the
graphs in two parts have placed a big obstacle between real world and
GRoundTram. Therefore, the ability of this powerful tool to process bx
on graphs has been decreased a lot.

In this paper, we present iGRT, a generic interface for GRoundTram.
It provides a way to make GRoundTram more applicable by giving transfor-
mations between general graphs and internal graphs in GRoundTram. By
taking advantage of iGRT, users can easily shuttle between the two kinds
of graphs without losing any information, thus being able to use GRound-
Tram to treat general graphs in real world directly. For example, giving
two real-world graphs with general representation, we can first use iGRT to
transform them into GRoundTram graphs, and then use GRoundTram to
transform them with each other. When finishing processing these graphs,
we can use iGRT to transform them back to general graphs with reflected
modification or other impact on the original ones. In this way, a connection
between these two real-world graphs has been created.

In order to work out solutions on how to do transformations between
general graphs in real world and graphs in the GRoundTram system, we
have studied several specific graphs at first, and then summarized the com-

3

mon attributes and structures from them, therefore designed methodology
for processing general graphs. Here we have selected three specific graphs:
usecase diagram, class diagram and state diagram. The former two are very
popular graphs from UML diagrams. They are quite necessary in software
development process. And state diagram is also very common for it models
the behaviour of a system, specifying the sequence of events that a system
goes through during its lifetime in response to events. Due to the represen-
tativeness of these three graphs, the common attributes and transformation
methodology concluded from them can be well applied to most graphs in
real world.

The rest of the paper is organized as follows: the next section presents
the overview of iGRT. Section 3 illustrates how to represent general graphs
in real world as well as in the GRoundTram system. The transformation
algorithms between these two kinds of graphs are explained in Section 4.
Meanwhile, the representations and algorithms for the three specific graphs
will also be shown as concrete examples along with the description for general
graphs in these two sections. Some useful operations based on iGRT such
as graph modification propagating and graph query propagating which can
be used to support solving the updating problem between real-world graphs
and GRoundTram graphs will be described in Section 5. Section 6 gives the
technical details of the implementation of iGRT, and Section 7 concludes
the paper.

2 Overview

Figure 3 shows an overview of our approach. As can be seen from the
picture, iGRT has three main parts: InterRep, TransAlg and UncalRep.
The two outside mediums of iGRT are real-world graphs and GRoundTram
graphs, and our work seems like a middleware connecting real world and the
GroundTram system. Now let us have a first look at how iGRT behaves.

UncalRep

iGRT

InterRep TransAlg

…

…..

……

………

real-world graphs

u1

u2
uc

open

close

safe closed

GRoundTram

GRoundTram graphs

a

b

c

graph

element

attr1

attr2

…

element

attr1

attr2

…

…

traceable transformation
graph

node

id

edge

id

label

nodeToPred

nodeToSucc

…
real world

Figure 3: Overview of iGRT.

iGRT is targeting at making the GRoundTram system more applicable
to real-world graphs. As there are so many kinds of graphs in real world
with different structures, for example, flow diagram, class diagram, etc, and

4

they are always saved in distinct formats, such as XML [2], dot, etc. In
order to treat various graphs using the same methodology, we need to unify
them into a solitary representation. The InterRep part is responsible for this
unification work. Given a real-world graph as input, InterRep part will nor-
malize it with the specified graph schema . We have defined several default
schemas for some popular graphs, and the schemas can also be provided by
the users. According to the schema, different graphs can be unified into the
same intermediate representation (InterRep graph), thus being able to be
treated in one way.

As pointed out before, the GRoundTram system has its internal graph
representation which is directed graph with edge labeled. Serving as a con-
nector connecting GRoundTram with real world, iGRT also has another
part, UncalRep, targeting at representing the graphs in GRoundTram. The
graph representation in UncalRep (UncalRep graph) is quite similar to
graphs in GRoundTram, other than it may contain some additional at-
tributes to make the transformation algorithms work more conveniently,
such as “nodeToSucc” attribute, which signifies the succeeding nodes of
each node.

So far iGRT already has two parts representing the graphs in real world
and GRoundTram. What we need now is a way to shorten the distance be-
tween them. This work is done by the TransAlg part. In this part, we have
presented traceable transformation algorithms, on purpose of doing trans-
formation between InterRep graphs and UncalRep graphs bidirectionally
without losing any information. “traceable” here specifies that the algo-
rithms will save the trace information when doing the transformation work
[13]. Therefore, when one graph has been transformed to another graph by
these algorithms, it can be traced back to the original one directly.

In addition, according to the saved trace information, when one graph is
updated with some modifications, the modifications can be easily propagated
to the other graph by some additional operations based on the trace, such
as modification propagating and query propagating, so that the two graphs
can be kept synchronized. Moreover, graph query can also be transferred
from InterRep graph to UncalRep graph. When users want to do query
on real-world graph, the query will be translated onto the corresponding
graph in GRoundTram system, hence the query task can be fulfilled by
GRoundTram.

Figure 4 is a usage scenario of our work. From the picture we can see that
iGRT stands between real world and the GroundTram system. If we want to
use GRoundTram to treat some real-world graph, say one state diagram in
Figure 4, we can input it to iGRT, and iGRT will first normalize it to Inter-
Rep graph according to state diagram’s graph schema. Then the TransAlg
part will transform it to UncalRep graph, and finally it will be outputted
with the internal representation of GRoundTram, so that it can be input
to GRoundTram for further processing. The transformation from the right

5

State

State

Transition

String

src

dest

name

e1

n1

src_of

“CAPS_LOCK” e4

String

“default”

dest_of

name

String

“caps_locked”

n2

name

n3

n4

n5

n6n7

n8

n9

n10

n11 n12

n13

n14

n15

e2

e3

e5

e6

e7

e8

e9

e10 e11

e12

e13

e14

e15

e16

default

caps_locked

CAPS_LOCK iGRT

real world

GRoundTram

Update Update
Trace Infomation

Figure 4: Usage scenario of iGRT.

part to the left part is quite similar. And due to the saved trace information,
when there are some modifications on the InterRep graph, the modifications
will be directly propagated to the UncalRep one. For example, after iGRT
transforms the state diagram to the edge-labeled graph, if the edge labeled
“CAPS LOCK” has been changed to edge labeled “CAPS UNLOCK” when
GRoundTram does some operations on the graph, the iGRT will transfer
the modification back to the original state diagram according to the trace
information. As a result, the transition “CAPS LOCK” will be evolved to
transition “CAPS UNLOCK”.

iGRT is developed based on the Eclipse platform, and all the graphs
and algorithms are coded in Java. The detailed techniques about the imple-
mentation will be discussed in Section 6. In the next section, we will first
explain the working mechanism of the InterRep part and the UncalRep part
in iGRT.

3 InterRep and UncalRep in iGRT

From the description in last section, we have an overview of iGRT, which
has three main parts, InterRep, TransAlg and UncalRep. In this section, we
will explain two parts of them, InterRep and UncalRep, which are serving
for normalizing and representing graphs. We will first describe what general
graphs look like by using the graph schema as well as how to normalize
them according to the graph schema. After that, we will use three specific
diagrams as concrete examples to illustrate our methodology.

6

3.1 General InterRep and UncalRep Graph

Generally speaking, graphs are composed of nodes and edges, and they have
their own properties with different types. Here we will first generalize graphs
by regarding all their contents as elements and attributes. More specifically,
all the nodes and edges in the graph are considered as “element”. And their
properties are thought of as the “attribute” of the “element”. Moreover,
if the type of the property is reference rather than primitive, the property
itself also becomes an “element”, according to this mechanism, the type of
the “attribute” will be primitive or “element”.

In this way, we can easily normalize the real-world graph in the following
schema, and it is also the cornerstone of iGRT’s InterRep part. Here the
language for specifying graph schemas is similar with KM3 [1], a neutral
language to write metamodels and to define domain specific languages. From
the schema we can see that the graph may contain several elements. Each
element may contain several attributes ai whose type is another element. By
using “ Primitive” to specify some primitive element such as string. “number
= ...” signifies the number of this attribute that the element can hold.

Schema S = {

Element Primitive E1;
Element Primitive E2;
...
Element Ei {

attribute a1 : Ej [number];
attribute a2 : Ek[number];
...

}

Element Ei+1 {
attribute a1 : Ej [number];
attribute a2 : Ek[number];
...

}

...

}

For each kind of real-world graph, it will have its own graph schema,
and usually it is not unique. So when users want to process a specific kind
of graph, they had better provide the corresponding graph schema at the
same time. But for some popular graphs, we have already designed default

7

schemas embedded in iGRT. After the graph and its schema being offered,
InterRep part will automatically give the corresponding schema instance,
i.e. the InterRep graph in the following style. Notice that ei are elements
of the relevant graph schema, and ai are their attributes.

Instance i of S = {

ei1 = {
a1 = ...;
a2 = ...;
...

}
ei2 = {

a1 = ...;
a2 = ...;
...

}
...

}

The attained InterRep graph will then be transformed to UncalRep
graph by iGRT’s TransAlg part. In this section we will not explain how the
algorithm works, instead, we will first show the relevant UncalRep graph.

As the graph schema has signified clearly all the properties of the cor-
related graph, and iGRT should not lose any information while doing the
transformation, the UncalRep graph can be just created according to each
element and its attributes by extending them to one branch in the Uncal-
Rep graph. In detail, for each element, we will use one edge labeled with
its name to represent the element itself. For each of its attribute, if it is
primitive type, we will use three edges labeled with its name, type and the
attribute itself to represent the attribute, and if it is “element” type, we will
use one edge to label its name and then connect it with the corresponding
element. In this way, the labels of the edges in the UncalRep graph can
capture all the properties of the InterRep graph. Because UncalRep graph
is quite similar to the internal graph representation in GRoundTram, it can
be directly transferred to the graph that can be input to the GRoundTram
system.

After showing iGRT’s InterRep part and UncalRep part based on the
general graphs, let us get down to the following three specific graphs in order
to have a further understanding of our work.

8

3.2 Concrete Cases

A. Use Case Diagram

In the Unified Modeling Language, use case diagram overviews the usage
requirements for a system. They are useful for presentations to management
and/or project stakeholders as well as developers.

As Figure 5 depicts, usually use case diagram contains three main ele-
ments: Actor, Usecase and Relation. An Actor is a person, an organization,
or an external system that plays a role in one or more interactions with
the system and is drawn as a stick figure. A Usecase describes a sequence
of actions that provide something of measurable value to an actor. Use-
cases are drawn as horizontal ellipses. Relation shows which Actor carries
out which Usecase, or which Usecase includes other Usecase, and use case
diagram also includes other Relations between Usecases beyond the simple
“include”, such as “extend”, “generalize”. Relation can be directed (signi-
fied with an arrow) or undirected, which means the two parts are related
with each other. And relation is drawn as solid line (for “associate” and
“generalize”) or dashed line (for “include” and “extend”) according to dif-
ferent represented meanings.

Actor Usecase

(undirected)
associate

include

extend

generalize

u
uc

Relation

Figure 5: Elements of use case diagram.

Each of the above elements has its own attributes. Actor or Usecase
has an attribute called “name”, with type “string” to explain what it is.
And when it has some outgoing Relation, it will have “src of” attribute,
with the content of the connected Relation. Meanwhile, Actor or Usecase
may have “dest of” attributes for incoming edges. For element Relation, it
also has the attribute “name”, showing what kind of the relation it is. And
it has two subtypes, UniRelation and BiRelation, representing the directed
relation and the undirected relation separately. For UniRelation, it will have
one “src” attribute and one “dest” attribute, corresponding to the source
and the destination of the relation. For BiRelation, it does not have “dest”
attribute. In exchange, it has two “src” attributes. According to the above
description, it is straightforward to write the graph schema for use case
diagram as follows:

9

Schema UCD = {

Element Primitive String;

Element Entity {
attribute name : String[1];

}
Element Actor extends Entity {

attribute src of : Relation[0-*];
attribute dest of : Relation[0-*];

}
Element Usecase extends Entity {

attribute src of : Relation[0-*];
attribute dest of : Relation[0-*];

}

Element Relation {
attribute name : String[1];

}
Element UniRelation extends Relation {

attribute src : Entity[1];
attribute dest : Entity[1];

}
Element BiRelation extends Relation {

attribute src : Entity[2];
}

}

tiger
eating meat

Figure 6: Real case of use case diagram.

Figure 6 gives a real example of use case diagram. In the diagram, there
is one Actor names “tiger”, and one Usecase names “eating meat”. They
are connected with the “associate” Relation from “tiger” to “eating meat”,
means the “tiger” will take the “eating meat” action. This graph is a real-
world graph, and according to the description of its elements and attributes,
we can easily normalize it by the InterRep graph as follows:

10

Instance ucd of UCD = {

actor = {
name = “tiger”;
src of = relation;

}
usecase = {

name = “eating meat”;
dest of = relation;

}
relation = {

name = “associate”;
src = actor;
dest = usecase;

}

}

Actor
name: tiger

Usecase
name: eating meat

UniRelation
name: associate

N1 N2
E1

Figure 7: Illustration of InterRep graph of Figure 6.

Figure 7 illustrates the InterRep graph of the given use case diagram.
It is composed of two elements shaped as nodes, Actor “tiger” and Usecase
“eating meat”, and one element shaped as edge, UniRelation “associate”,
from “tiger” to “eating meat”.

The TransAlg part of iGRT will then use the transformation algorithm
to transform this normalized graph to UncalRep one. Now let’s see what
the UncalRep graph is.

As Figure 8 depicts, the UncalRep graph for the real-world use case di-
agram in Figure 6 is a directed edge-labeled graph (the node’s label “ni”
and edge’s label “ei” are only for explanation, and they are not meaningful
in the real representation). In the UncalRep graph, each element of the
InterRep graph is extended to several nodes and edges, with labels to show
what the element is, what the element’s attribute’s name is, what the ele-
ment’s attribute’s type is and what the element’s attribute is. For example,
in Figure 8, {n1, e1, n2} means the element is “UniRelation”, and {e2, n3,
e3, n4, e4, n5} means this attribute has a name attribute “associate”, with
the type “String”. {e5, n6, e6, n7} tells that the “UniRelation” element has
another attribute “src”, whose type is “Actor”, etc.

11

Actor Usecase

UniRelation

String

src dest

name

e1

n1

src_of

“associate” e4

String

“tiger”

dest_of

name

String

“eating meat”

n2

name

n3

n4

n5

n6n7

n8

n9

n10

n11 n12

n13

n14

n15

e2

e3

e5e6

e7

e8

e9

e10

e11
e12

e13

e14

e15

e16

Figure 8: UncalRep graph of Figure 6.

B. Class Diagram

Class diagram is another useful diagram in the Unified Modeling Lan-
guage. It is a type of static structure diagram that describes the structure
of a system by showing the system’s classes, their attributes, operations (or
methods), and the static relations that exist among the classes.

Figure 9 shows the two main elements of the class diagram: Class and
Relation. Class represents both the main objects and interactions in the
application and the objects to be programmed. Classes are drawn as boxes
which contains three parts: the name of the class, the attributes of the class
and the methods or operations the class can take or undertake. Relation
depicts the specific types of logical connections found among classes. There
are five kinds of relations: associate, aggregate, composite, depend and gen-
eralize, each is drawn as a solid/dashed line with different kinds of arrows
accordingly.

The schema of class diagram is described as follows. Here the Class’s
attributes “attribute” and “operation” themselves are also elements.

Schema CD = {

Element Primitive String;

Element Attribute {
attribute name : String[1];

12

class

(undirected)
associate

generalize

(undirected)
aggregate

(undirected)
composite

depend

Relation

Figure 9: Elements of class diagram.

attribute type : String[1];
}
Element Operation {

attribute name : String[1];
}
Element Class {

attribute name : String[1];
attribute attribute : Attribute[0-*];
attribute operation : Operation[0-*];
attribute src of : Relation[0-*];
attribute dest of : Relation[0-*];

}
Element Relation {

attribute name : String[1];
}
Element UniRelation extends Relation {

attribute src : Class[1];
attribute dest : Class[1];

}
Element BiRelation extends Relation {

attribute src : Class[2];

}
}

Figure 10: Real case of class diagram.

13

Figure 10 is a simple concrete class diagram in the real world. It only
contains one class, with name “tiger”, attributes “species” and “age”, and
operation “eatingMeat”. The following is the InterRep graph of the class
diagram:

Instance cd of CD = {

attribute1 = {
name = “species”;
type = “String”;

}
attribute2 = {

name = “age”;
type = “Integer”;

}
operation = {

name = “eatingMeat”;
}
class = {

name = “tiger”;
attribute = attribute1;
attribute = attribute2;
operation = operation;

}

}

Then the UncalRep graph of Figure 10 can be easily given by iGRT as
Figure 11 shows.

C. State Diagram

State diagrams are used to give an abstract description of the behavior
of a system. This behavior is analyzed and represented in series of events,
which could occur in one or more possible states. State diagrams have four
main elements which are shown in Figure 12. A state represents a stage
in the behavior pattern of an object in the system. An initial state, also
called a creation state, is the one that an object is in when it is first created,
whereas a final state is one in which no transitions lead out of. A transition
is a progression from one state to another and will be triggered by an event
that is either internal or external to the object.

The schema of the state diagram is as follows:

Schema SD = {

14

attribute

Operation

Class

String

operation

name

e1

n1

e4

String

name

String

“eatingMeat”

n2
name

n3

n4

n5

n6

n8

n9

n10

n22 n23

n24

n25

n26

e2

e3
e5

e7

e8

e9

e21 e22

e23

e24

e25

“tiger”

n7

Attribute e6

“species”

type

String

n11

n12

n13

e10

e11

e12“String”

name

n14

n19

n20

n21

e19

e20

Attribute e14

type

String

n16

n17

n18

e15

e16

e17“age”

e18

String

“Integer”

attribute
e13

n15

Figure 11: UncalRep graph of Figure 10.

s

InitialState FinalStateState Transition

Figure 12: Elements of state diagram.

Element Primitive String;
Element Entity {

attribute name : String[1];
}
Element InitialState extends Entity {

attribute src of : Transition[0-*];
}
Element FinalState extends Entity {

attribute dest of : Transition[0-*];
}
Element State extends Entity {

attribute src of : Transition[0-*];
attribute dest of : Transition[0-*];

}
Element Transition {

attribute name : String[1];
attribute src : Entity[1];

15

attribute dest : Entity[1];
}

}

default caps_lockedCAPS_LOCK

Figure 13: Real case of state diagram.

Figure 13 is a fragment of a concrete state diagram. It is composed of two
states “default” and “caps locked”, and one transition “CAPS LOCK” from
the former state to the latter one. This state diagram implies that by doing
the “CAPS LOCK” transition, the “default” state can be transformed to the
“caps locked” state. Following is the InterRep graph of the state diagram
according to the schema:

Instance sd of SD = {

state1 = {
name = “default”;
src of = transition;

}
state2 = {

name = “caps locked”;
dest of = transition;

}
transition = {

name = “CAPS LOCK”;
src = state1;
dest = state2;

}

}

Similarly, the UncalRep graph of the state diagram in Figure 13 can be
easily given by iGRT as Figure 14 shows.

Now we have finished introducing how the InterRep part and UncalRep
part of iGRT work on general graphs as well as three specific graphs: use case
diagram, class diagram and state diagram. iGRT regards all the properties
in the real world graph as elements and their attributes, so that they can
be normalized to edge-labeled graph in GRoundTram system. In the next
section, we will explain how the traceable algorithms in TransAlg part are
designed so that iGRT manages to do transformation between InterRep

16

State State

Transition

String

src dest

name

e1

n1

src_of

“CAPS_LOCK” e4

String

“default”

dest_of

name

String

“caps_locked”

n2

name

n3

n4

n5

n6n7

n8

n9

n10

n11 n12

n13

n14

n15

e2

e3

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e16

Figure 14: UncalRep graph of Figure 13.

graph and UncalRep graph bidirectionally without losing any information.

4 TransAlg in iGRT

In this section, we will explain the mechanism of iGRT’s last part, the
TransAlg part. This part targets at doing traceable transformation between
InterRep graph and UncalRep graph bidirectionally. We will first introduce
the algorithms for general graphs, and then instantiate it by taking a look
at how it works on use case diagram.

4.1 General Algorithm

As we have stated before, for real-world graphs, according to the general
schema designed, all the properties such as nodes and edges are regarded
as elements and their attributes in the InterRep graph. Meanwhile, in the
UncalRep graph, all of the elements and attributes are transformed to cor-
responding edge-labeled branches.

Now let’s see how the TransAlg works on these two kinds of graphs so
that they can be transformed to each other without losing any information.
First we will explain the traceable transformation from InterRep graph to
UncalRep graph, and then the reversed one.

17

A. InterRep to UncalRep

For each UncalRep graph, we will scan all the elements one by one, and
reconstruct them as two nodes plus one edge. The edge is labeled with the
element’s name. For each attribute of the element, if it is primitive type, we
will expand it to a new branch with three nodes and three edges. The edges
are labeled with the attribute’s name, the attribute’s type and the attribute
itself separately. If the attribute’s type is element type, we will first add
one edge labeling the attribute’s name, and then check whether the element
has been processed yet. For processed element, we will connect the edge to
the element’s first node. Else we will process the element using the above
procedure and then connect the attribute with it.

In order to keep this transformation traceable, while doing the transfor-
mation, we will save the trace information in both parts at the same time.
In detail, after transforming the element, we will save the corresponding Un-
calRep branch in the element and attribute, and save the element in the first
node of the branch. After transforming the element’s attribute, we will save
the relevant branch in the element. In this way, all the trace information is
kept well.

The pseudo code of the algorithm is as follows:

Algorithm traceable transI2U (InterRep irg) {

for each unprocessed element e in irg:
transform(e){

record : e has been processed;
expand it to node1→edge1→node2;
set edge1’s label with e’s name;
save: {node1, edge1, node2}→e;
save: e→node1;

for each attribute a in e:
if a’s type is primitive

expand it to edgea→nodea→edgeb→nodeb→edgec→nodec;
set the source of edgea with the e’s node2;
set edgea’s label with a’s name;
set edgeb’s label with a’s type;
set edgec’s label with a’s value;
save: edgea, nodea, edgeb, nodeb, edgec, nodec→a;

else if its type is element e*
if e* has been processed

expand it to edgea;
set edgea’s label with a’s name;
set the source of edgea with e’s node2;

18

set the destination of edgea with e*’s node1;
save: edgea→a;

else
expand it to edgea;
set edgea’s label with a’s name;
set the source of edgea with e’s node2;

transform(e*);
set the destination of edgea with e*’s node1;
save: edgea→a;

}

}

When getting the UncalRep graph by this traceable transformation al-
gorithm, we can easily trace back to the InterRep graph again by scanning
all the nodes and picking up the InterRep elements saved in them as trace
information. Then they all can automatically compose the original InterRep
graph. The pseudo code of the trace back algorithm is as follows:

Algorithm back2InterRep (UncalRep urg) {

create InterRep graph irg;

for each node n in urg:
if find an InterRep element e saved in n

add e to irg;

return irg;

}

B. UncalRep to InterRep

The traceable transformation algorithm from UncalRep graph to Inter-
Rep graph is quite like a reversion of the previous algorithm. In this algo-
rithm, first of all, we will scan all the edges in the UncalRep graph. When
finding one unprocessed edge l whose label is an element’s name according to
the pre-defined or user-defined graph schema, we will create a corresponding
element e in the InterRep graph. And then we will scan all the branches
below edge l. Here each branch will correspond to one attribute of e as
described in the graph schema. If the type of the attribute is primitive, we
will just compress the branch to an attribute and add it to e. Else if the
type is element, we will check whether the element has been processed or

19

not. If so, we will add the processed element as an attribute to element
e. Else we will first process the element and then add it as an attribute to
e. Trace information is also saved while doing the transformation. When
compressing each branch to one element, we will save the element in the
branch’s first node, and save the branch in the element at the same time.
When compressing the corresponding branch of an attribute, we will save it
in the relevant attribute. The pseudo code of the algorithm is as follows:

Algorithm traceable transU2I (UncalRep urg){

for each edge e with unprocessed start node in urg:
transform(e){

record : e’s start node has been processed;
if e’s label signifies an element

compress nodea→e→nodeb to element ele;
save: nodea, e, nodeb→ele;
save: ele→nodea;
for each outgoing edge from nodeb oe:

if oe signifies a primitive type attribute pa
compress oe→nodea→edgea→nodeb

→edgeb→nodec to ele’s attribute;
save: oe, nodea, edgea, nodeb, edgeb, nodec→ele;

else if oe signifies an element type attribute ea
if ea has been processed

compress ea to ele’s attribute;
save: oe→ele;

else
/∗ process oe→nodea→edgea ∗/

transform(edgea)
compress edgea’s corresponding element

to ele’s attribute;
save: oe→ele;

}

}

Similarly, when getting the InterRep graph by this traceable transfor-
mation algorithm, we can easily trace back to the UncalRep graph again
by scanning the elements and picking up all the UncalRep nodes and edges
saved in them as the trace information. Then they all can automatically
make up the original UncalRep graph. The pseudo code is as follows:

Algorithm back2UncalRep (InterRep irg) {

20

create UncalRep graph urg;

for each element e in irg:
if find UncalRep nodes n1, n2, ..., ni

and edges e1, e2, ..., ej saved in e
add n1, n2, ..., ni and e1, e2, ..., ej to urg;

return urg;

}

After introducing the general traceable transformation algorithms in
TransAlg, let’s see how it can work on the specific graph, use case diagram,
in order to have a further understanding.

4.2 An Example

In this part, we again use the use case diagram in Figure 6 as concrete
example. As Figure 15 illustrates, when given the InterRep graph in Figure
7 as the input for our TransAlg part, it will start transformation by scanning
all the elements. When it meets the element Actor “tiger” (N1), it will
transform it to {n6, e6, n7}, then the “name” attribute is being processed.
Because this attribute’s type is primitive, TransAlg will just expand it to {e7,
n8, e8, n9, e9, n10}. When processing its “src of” attribute, as the type is the
“UniRelation” element and it has not been processed before, TransAlg will
transfer to treat this element (E1). {n1, e1, n2} is first created and then {e2,
n3, e3, n4, e4, n5} is also added corresponding to its “name” attribute. When
processing its “src” attribute, as the attribute’s type is “Actor” element and
it has already been transformed, TransAlg will just add e5 and connect it
to n6. For the “dest” attribute, as its type is “Usecase” element and it
has not been processed before, TransAlg will again focus on this element.
Then {n11, e12, n12} and {e13, n13, e14, n14, e15, n15} is added. As the
“dest of” attribute is the processed element “UniRelation”, TransAlg will
just add e16 and connect it to n1. After the element Usecase “eating meat” is
processed, TransAlg will add e11 and let it point to n11, and now the element
UniRelation “associate” has also been processed. At last, TransAlg will add
e10 and connect it to n11. While doing the transformation, TransAlg will
save the trace information as Figure 15 shows. In the InterRep graph, {n6,
e6, n7, e7, n8, e8, n9, e9, n10, e10} is saved in element N1 and its attributes.
{n1, e1, n2, e2, n3, e3, n4, e4, n5, e5, e11} is saved in element E1 and its
attributes, and {n11, e12, n12, e13, n13, e14, n14, e15, n15, e16} is saved in
element N2 and its attributes. In the other part UncalRep graph, N1 is
saved in n6, N2 is saved in n11 and E1 is saved in n1.

After the transformation from InterRep graph to UncalRep graph, if we

21

want to trace back to the original InterRep graph, we can just scan all the
nodes in the UncalRep graph and pick up N1, N2 and E1 saved in them.
Then these three elements will make up the InterRep graph.

On the other hand, when given the UncalRep graph in Figure 8 as input,
our TransAlg part will start the transformation by scanning all the edges to
find one whose label is an element’s name. Here it will first meet e1, then
the element “UniRelation” (E1) is created. By scanning its branch {e2,
n3, e3, n4, e4, n5}, the “name” attribute “associate” is added to E1. When
meeting the branch edge e5, as it represents an unprocessed element “Actor”,
N1 is created, and the “name” attribute “tiger” is added. Again TransAlg
will meet another attribute with element type “UniRelation”, and as it has
already been processed, TransAlg will just add E1 to N1 as the “src of”
attribute. After that, the “Actor” N1 is added as E1’s “src” attribute.
Similarly, TransAlg will regard E1 as N2’s “dest of” attribute and N2 as
E1’s “dest” attribute. The trace information is also saved in both part
while doing the transformation.

After getting the InterRep graph, if we want to trace back to the original
UncalRep graph, we can just scan all the elements and their attributes in
the InterRep graph and find the UncalRep nodes and edges saved in them.
Then we can compose the UncalRep graph automatically by using these
nodes and edges.

Actor
name: tiger

N1 ——> n6

N2 ——> n11

E1 ——> n1

Usecase
name: eating meat

UniRelation
name: associate

N1 N2
E1

Actor Usecase

UniRelation

String

src dest

name

e1

n1

src_of

“associate” e4

String

“tiger”

dest_of

name

String

“eating meat”

n2

name

n3

n4

n5

n6n7

n8

n9

n10

n11 n12

n13

n14

n15

e2

e3

e5e6

e7

e8

e9

e10

e11
e12

e13

e14

e15

e16

Element Actor

n6, e6, n7

Attribute name
e7, n8, e8,
n9, e9, n10

Attribute src_of
e10

Element UniRelation

n1, e1, n2

Attribute name
e2, n3, e3,
n4, e4, n5

Attribute src
e5

Attribute dest
e11

Element Usecase

n11, e12, n12

Attribute name
e13, n13, e14,
n14, e15, n15

Attribute dest_of
e16

tiger
eating meat

Figure 15: Transformation between Figure 7 and Figure 8 by TransAlg part.

Now we have a deep insight of how iGRT’s TransAlg part works. As it
presents traceable transformation between the graphs in InterRep part and
UncalRep part without losing any information, we can take advantage of

22

the ”traceable” attribute and maintain the synchronization of the two kinds
of graphs by propagating the graph update between them. In the next
section, we will show two useful operations, graph modification propagating
and graph query propagating, which help fulfill this synchronization task.

5 Operations for Synchronization

In order to synchronize the real world graph in InterRep and GRoundTram
graph in UncalRep, a set of operations need to be provided for this purpose.
In this section, we will describe two useful operations based on the trace
information saved during the transformation. By these operations, users
can keep two graphs being updated at the same time.

5.1 Graph Modification Propagating

In order to make two graphs synchronized, when one kind of the graph is
modified, the other kind of the graph should also keep this modification
in parallel. In detail, when we modify some elements or attributes in the
IntreRep graph, the nodes and edges in the UncalRep graph corresponding
to this modified part should also be changed. Meanwhile, changes in the
InterRep graph ought to be reflected in the UncalRep graph as well.

This work consists of two main steps, the first step is difference analysis.
In this step, we need to compare the original graph and the modified one
to extract all the changed part between them. The second step is change
impact analysis. After modified part being extracted, we need to recognize
the relevant changes in the other kind of the graph by checking the saved
trace information.

Here we will explain methodology on propagating two kinds of mod-
ification, adding and deleting, from InterRep graph to UncalRep graph.
Solutions for propagating modifications of other kinds can easily be worked
out by referring to these algorithms.

Suppose we have two graphs, oig and oig+, being the original InterRep
graph and the modified one separately, the modification only includes adding
and deleting. By using the traceable transformation algorithm explained
before, we have transformed the InterRep graph to UncalRep graph ug, with
trace information saved in both parts. Our target is to get the corresponding
modified UncalRep graph ug+, which exactly matches with oig+.

As stated before, the first step is difference analysis. This step is same
for either adding or deleting. We will compare oig with oig+ to get all the
affected parts of the modifications, and then get all the trace information
saved in them. The trace information here will exactly be the nodes and
edges in the UncalRep graph according to the modification. The second
step, change impact analysis, differs from adding to deleting operations. For
deleting operation, we will simply delete all the affected nodes and edges in

23

ug to get ug+. For adding operation, we will use the traceable transformation
algorithm to transform the modified part to UncalRep graph. When meeting
some elements or attributes being treated before, we will just connect the
new transformed edge with the existed corresponding part in ug and finally
get ug+.

For example, Figure 16 shows a graph modification on the use case dia-
gram we have mentioned before. Here the relation from “tiger” to “eating
meat” is deleted. In order to reflect this modification on the UncalRep
graph, first we need to identify all the affected elements and attributes in
the InterRep graph related with this change. By checking the graph schema
of the use case diagram, we can easily find that there are three places being
changed, the UniRelation element “associate”, the “src of” attribute of the
Actor element “tiger” and the “dest of” attribute of the Usecase element
“eating meat”. They all have been deleted. Then by checking the saved
trace information in these three parts, we can easily synchronize the mod-
ification to the UncalRep graph by deleting the corresponding nodes and
edges {n1, e1, n2, e2, n3, e3, n4, e4, n5, e5, e10, e11, e16}.

Actor
name: tiger

Usecase
name: eating meat

UniRelation
name: associate

N1 N2
E1

Actor Usecase

UniRelation

String

src dest

name

e1

n1

src_of

“associate” e4

String

“tiger”

dest_of

name

String

“eating meat”

n2

name

n3

n4

n5

n6n7

n8

n9

n10

n11 n12

n13

n14

n15

e2

e3

e5e6

e7

e8

e9

e10

e11
e12

e13

e14

e15

e16

Element Actor

n6, e6, n7

Attribute name
e7, n8, e8,
n9, e9, n10

Attribute src_of
e10

Element UniRelation

n1, e1, n2

Attribute name
e2, n3, e3,
n4, e4, n5

Attribute src
e5

Attribute dest
e11

Element Usecase

n11, e12, n12

Attribute name
e13, n13, e14,
n14, e15, n15

Attribute dest_of
e16

tiger
eating meat

Figure 16: Example of graph modification.

5.2 Graph Query Propagating

As described before, we have presented a bidirectional transformation frame-
work between general graphs and the GRoundTram graphs. Here come two
problems : one is how to operate on the general graphs; the other one is how
to translate the operation on general graphs to the GRoundTram graphs.
We solve these two problems by proposing a graph query language iGQL
for querying general graphs. User can write query Q based on the graph

24

schema of the specified real world graphs, then Q in iGQL can be automat-
ically translated into query Q′ in UnQL which queries on the GRoundTram
graph. Since we get Q′, we can use the powerful bidirectional GRoundTram
system to execute the query Q′.

Figure 17: Overview of Query Translation

Figure 17 gives an overview of the propagating of query Q. The iGRT
framework contains two parts: one is for transforming real world graphs into
GRoundTram graphs; the other is automatically transformation of query Q
into Q′.

Here let us take a look at a simple example for the use case diagrams
illustrated in Figure 6. If we want to select the actor whose name is “tiger”
in the use case diagrams as in Figure 7, we can write a query Q like this:

Q = select { $a }
where { Actor : $a } in $db

$a.name = “tiger”

Query Q is written based on the schema UCD of the usecase graph.
From the schema, we can see that Actor is the name of an element. The
Actor has a name attribute, a src of attribute and a dest of attribute. The
query is aiming at choosing actors whose name is “tiger”.

In order to get the answer of Q by iGRT, we need to translate query
Q into query Q′ which is viewed as the input query of the GRoundTram
system. Figure 8 illustrates the representation of a usecase graph in Figure
7 in GRoundTram system. The query Q′ is expressed as follows:

Q′ = select { $a }
where { ∗.Actor : $a } in $db

{ name.String : { “tiger” } } in $a

25

So in fact we execute query Q′ on the GRoundTram system and then get
the result through the bidirectional iGRT framework. When comparing Q′

with Q, the main difference is that query Q does not give the information
of types of each attribute, while in Q′ the type of attribute also considered
in the Query. This is because the graph data model of GRoundTram is for
semi-structured data. So the type of attributes has been added as an edge
label of the graph. This is just a simple case, the graph structure may also
changed in complex situations.

6 Implementation

So far we have introduced all the concepts and methodologies used in iGRT.
In this section, we will explain the technical details of iGRT.

We have implemented iGRT based on the eclipse platform. Figure 18
is the package explorer of iGRT. From the picture, we can see that it is
composed of three modules, interRep, transAlg and uncalRep, responsible
for graph representations and transformation algorithms.

Figure 18: Package explorer of iGRT.

6.1 InterRep

This module targets at normalizing the general graphs. It is composed of
six classes, with two of them residing in the “common” package. Figure
19 is a code fragment of class “Schema”. It is used to save the schema of
real-world graphs. As illustrated in the picture, it contains a name and
several elements, represented by class “Element”. The “Element” possesses

26

several attributes, represented by class “Attribute”, and “Attribute” has
name, type and number.

Figure 19: Code fragment of class ”Schema”.

As described in Figure 20, class “Instance” signifies the instance of the
schema. It still has some elements, and each element has some attributes.
Here the element and attribute are also represented by class “Element” and
“Attribute”. This is the reason why they are in the “common” package. In
order to separate them from being used in schema or in instance, they have
one attribute called “role” to indicate their position.

Figure 20: Code fragment of class ”Instance”.

As stated before, we have embedded several schemas for the popular
graphs as well as their instances in iGRT. These schemas and instances are
located in class ”EmbeddedScheInst” as shown in Figure 21. They can be
easily gotten by calling the static method.

27

Figure 21: Code fragment of class ”EmbeddedScheInst”.

6.2 UncalRep

This module is responsible for representing the graphs in GRoundTram.
Figure 22 is a code fragment of class “UncalRep”. It is very much simi-
lar to graph representation. There are several nodes and edges inside it,
represented by class “UncalNode” and “UncalEdge”. And it has attribute
“schema” to point out with which kind of graph schema it relates. As un-
calRep graph is directed graph with edge labeled, “UncalNode” only has
attribute “id” to identify different nodes, and “UncalEdge” has attribute
“id” and “label”, representing the label of the edge. One additional thing to
mention in class “UncalRep” is that by calling the method “toDot”, we can
transform the UncalRep graph to graph in GRoundTram with its internal
representation.

6.3 TransAlg

This module serves as the transformation algorithm part of iGRT. It is com-
posed of two classes, “TraceableI2U” and “TraceableU2I”, corresponding to
the transformation from InterRep graph to UncalRep graph and the reversed
one.

Figure 23 describes the class “TraceableI2U”, it contains three moth-
ods, “traceableI2U”, “back2InterRep” and “transformEle”. The former two
methods works on doing traceable transformation from InterRep to Uncal-
Rep without losing any information, and the latter one is the sub-method

28

Figure 22: Code fragment of class ”UncalRep”.

used in “traceableI2U”. The “TraceableU2I” is quite the similar, so we will
not explain it here.

Figure 23: Code fragment of class ”TraceableI2U”.

7 Conclusion

This paper presents iGRT, a generic interface for GRoundTram system.
iGRT serves as a bridge between the real world and the GRoundTram sys-
tem. We have designed a general representation called InterRep for real
world graph according to the graph schema and UncalRep for internal graph
of GRoundTram. Meanwhile, we have provided traceable transformation al-
gorithms on these two kinds of graphs so that they can be transformed to
each other bidirectionally without losing any information. Moreover, we
can easily keep InterRep graph and UncalRep graph synchronized by opera-
tions such as graph modification propagating and graph query propagating
based on the saved trace information. By using iGRT, we manage to make
GRoundTram system more applicable to the real world, thus taking advan-
tage of its powerful bx processing ability.

29

References

[1] Atlas group, km3: Kernel metametamodel manual,
http://www.eclipse.org/gmt/atl/doc.

[2] C. Brabrand, A. Møller, and M. Schwartzbach. Dual syntax for xml
languages. Information Systems, 33(4):385–406, 2008.

[3] P. Buneman, M. Fernandez, and D. Suciu. Unql: a query language
and algebra for semistructured data based on structural recursion. The
VLDB JournalThe International Journal on Very Large Data Bases,
9(1):76–110, 2000.

[4] Y. Chen and Z. Hu. Ao software behavior model evolution and syn-
chronization: A bidirectional graph transformation approach. Technical
report.

[5] K. Czarnecki, J. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Ter-
williger. Bidirectional transformations: A cross-discipline perspective.
Theory and Practice of Model Transformations, pages 260–283, 2009.

[6] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidi-
rectionalizing structural recursion on graphs. Technical report, Tech-
nical Report GRACE-TR09-03, GRACE Center, National Institute of
Informatics, 2009.

[7] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. In ACM Sigplan Notices, vol-
ume 45, pages 205–216. ACM, 2010.

[8] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. Groundtram
version 0.9.2 user manual.

[9] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. Groundtram: An
integrated framework for developing well-bahaved bidirectional model
transformations. August 2011.

[10] S. Kato and K. Hu. Towards bidirectional transformations on ordered
graphs.

[11] I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano. Toward
bidirectionalization of atl with groundtram. Theory and Practice of
Model Transformations, pages 138–151, 2011.

[12] Q. Sun, B. Wang, and Z. Hu. Applying bidirectional transformation to
feature model refinement. Technical report.

30

[13] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux.
blinkit: Maintaining invariant traceability through bidirectional
transformations–a technical report. The Open University, Tech. Rep.
TR2011/09, 2011.

31

