ISSN 1884-0760

GRACE TECHNICAL REPORTS

Meta-Models for Wireless Sensor Network
Applications: Data, Group, and Node Views

Ryo Shimizu Kenji Tei
Yoshiaki Fukazawa Shinichi Honiden

GRACE-TR 201201’ February 2012

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Meta-Models for Wireless Sensor Network
Applications: Data, Group, and Node Views

Ryo Shimizu® Kenji Tei?
Yoshiaki Fukazawa! Shinichi Honiden??

1 Waseda University, Tokyo, Japan
kiyoO7@fuka.info.waseda.ac.jp, fukazawa@waseda.jp
2 National Institute of Informatics, Tokyo, Japan
{tei, honiden}@nii.ac.jp
3 The University of Tokyo, Tokyo, Japan

February 16th, 2012

Abstract

Applying model-driven development(MDD) to the wireless sensor
network (WSN) domain is a promising way because MDD deals with
the models from at the abstract level to at the concrete level. In this
context, a developer can separately model the application logic of the
WSN applications at the abstract level and a communication method
and task assignment at the concrete level. However, existing studies
applying the MDD to the WSN application only define the meta-model
at single abstraction level. In this report we define the meta-models
at three abstraction levels. We expect to achieve the MDD process for
WSN applications using the models at multiple abstraction levels with
our meta-models.

1 Introduction

A wireless sensor network (WSN) is a network consisting of small devices,
called sensor nodes, with a wireless communication unit, CPU, RAM, multi-
ple sensors, and a battery. They also have resource constraints, e.g. energy
and reliability. Due to these constraints, the WSN application developer has
to optimize the quality of the sensor data, e.g. the data sensing span and
data loss rate. Because the data quality heavily depends on the execution
environment [6], the developer tunes the data quality by making design de-
cisions such as a communication method and task assignment. To optimize
performance, applications are needed to be executed on the environment at
early stage of development. In this way, the WSN application development

Prototyping Phase Tuning Phase

Rapid Dataflow-level ("/Fin/&graim
prototyping Model ~_Tuning_~

Node-level
L B pplication
ey Co

Model
Figure 1: The overview of the MDD process of the WSN applications.

Dataflow-level
Model

Application
Code

——> : automatic transformation
----- > : manual modeling

th

requires the following: a rapid prototyping that is to develop the prototype
in a low-cost way, and a fine-grained tuning that is to tune the data quality
by the communication methods and task assignments.

The developer usually describes WSN applications by using domain spe-
cific language (DSL) to abstract the details of WSNs. A lot of DSLs are
proposed and they can be classified to three levels, dataflow-, group-, and
node-level, based on a scope of programs [4]. The node-level DSLs express
the instructions for the individual node. The group-level DSLs express the
macro-behavior of the node group. The dataflow-level DSLs only express
data sampling and processing. The developer often adopts the node-level
DSLs, because these DSLs can finely tune the data quality in detail. How-
ever, it is difficult for non-WSN experts to use the node-level DSLs because
it requires the knowledge of the WSN. Hence, dataflow- and group-level
DSLs are suitable for non-WSN experts. These DSLs can express the WSN
application simply whereas they cannot express in-depth designs for tuning
the data quality. Therefore, the developer cannot satisfy two requirements
for the WSN application development by using single DSL.

Model-driven development (MDD) is a promising solution to satisfy these
requirements at the same time. In the MDD process, the developer can
describe the applications as an abstract model, then iteratively refine the
model into concrete ones and the corresponding code. In this context, the
developer can describe the WSN application at the dataflow-level at first.
If the tuning of the data quality is needed, the developer should design the
application at the group- and node-level as well as the dataflow-level. We
illustrated the overview of this process in Figure 1.

However, existing work using the MDD to the WSN application devel-
opment only focused on the single abstraction level. The MDD framework
named Baobab [1] has provided the meta-model for the WSN application
and code generation system. Their meta-model represented node-level DSLs.
Losilla et al. have defined a meta-model for group-level DSLs, and the code

Prototyping Phase Tuning Phase
<<process>> ‘ <<process>>
Dataflow-level F . .
. Modeling Analysis vTunmIgFactar
2
> Vi Vi
s <<process>> <<process>> <<process>>
S Dataflow-level Group-level Node-level
% Tuning Tuning Tuning
8 T T
<<physical>> P i i <<physical>> <<physical>> <<physical>>
| : D o, | : i ode | : Dataflow-levelModel F{ :Grm’?yy ’9‘ Nodel lodel : ApplicationCode
<<process>> .
D <<physical>>
: Group: lodel
Trar
= I
2
H \9 <<process>> P <<process>> <<process>> <<process>>
< >
5 Group2Node Nodelovaodel Dataflow2Group Group2Node Code
|3 T 1 T Trar ! Transformation Generation
@
\% <<process>>
Code
Generation

Figure 2: The development process using multiple abstraction levels.

is automatically generated from the model [3]. Meanwhile, our previous
work [5] proposed the development process using multiple abstraction lev-
els, illustrated in Figure 2. We defined the meta-models at three abstraction
levels and transformation rules between the models described based on our
meta-models. However, the meta-models in [5] is not enough to describe the
real-world WSN applications.

In this report, we describe the definition of meta-models that are the
modified version of meta-models in [5]. We defined three meta-models based
on the existing DSLs and the classification of the DSLs. The dataflow-
level DSML expresses a network-independent dataflow, that is application
logic of the WSN application. The group-level DSML can be described a
configuration of the leader-member type node group. The node-level DSML
contains the role which represents a group of tasks and the node in the
WSN, and expresses a role assignment to nodes. These DSMLs are designed
to describe the most typical WSN applications that samples and sends at
fixed interval [2].

2 The Dataflow-level Meta-Model

We defined the dataflow-level meta-model to expresses a network-independent
dataflow, that is an application logic of the WSN application because data
flow is the basic application logic of WSN applications. The dataflow-level
model consists of a data source, intermediate processing point, data sink
and relations between them.

Figure 3 shows the meta-model at dataflow-level. The data source
(DataSource in the meta-model) needs information of a data type to sense,
duration of data sampling and transmission, and location of the data source.

TemporalAggregationPoinnt

- timeWindow : int

SpatialAggregationPoijnt . i
- duration :int

v,

DataSource AggregationPoint FusionPoint DataSink
- dataType : String - function : String - function : String
- samplingCondition : String - inputDataType : String -inputDataTypes : ArrayList i
- transmissionCondition : String - outputDataType : String |
- location : String i i i
1 [|
%7 ?I | §'7] §'7 J
<<interface>> 0.*| <<interface>> <<interface>> <<interface>>
SrcOutput Aggrinput FusionAggrOutput SinkFusionlnput
1
L J
N/ 1.0
<<interface>> | 1.*
Output

Figure 3: The dataflow-level meta-model.

The data processing point has two processing types: aggregation (Aggregation-
Point) dealing with a single data type and fusion (FusionPoint) dealing
with multiple data types into a single data type. The aggregation also has
two types: a temporal aggregation (TemporalAggregationPoint) and spa-
tial aggregation (SpatialAggregationPoint). The temporal aggregation
deals with the aggregation of time-series data and the spatial aggregation
deals with the aggregation of data that is spatially distributed. They need
attributes for the operation and data type dealing with. The temporal ag-
gregation additionally needs parameters for aggregation, a width of time
window and duration. Treating data is finally collected to the data sink
(DataSink). The developer describe dataflow-level model by deciding the
relations between aforementioned objects and attributes in these objects.

3 The Group-level Meta-Model

We defined the group-level meta-model to express the configuration and
behavior of node groups. The group-level model is dependent on the network
and describable about handling a group of nodes as a single entity, thus the
developer can model the application in more simple way than model the
behavior of the individual node. Each group in the model is the leader-
members type group.

Figure 4 shows the definition of the group-level meta-model. The group
(Group) in our meta-model consists of the leader, member, and commu-

Group

- topology : String
- locationCondition : String
Sink 1 MemberNodes
Communication K)
Leader 1 - selectionPattern : String
- compress : String - dataType : String
LeaderNode 1 - encryption : String - samplingCondition : String
- selectionPattern : String - transmissionCondition : String
0.1
Operator
- function : String
[|
FusionOperator AggregationOperator
- inputDataTypes : ArrayList -inputDataType : String
- outputDataType : String

JA)

[|
SpatialAggregationOperator " TemporalAggregationOperator 0

1|
J| -timeWindow :int
I - duration :int

|

Figure 4: The group-level meta-model.

nications from the members to the leader (Communication), and contains
information of the network topology and location of the group. In our
meta-model, the leader (Leader) is the generalization of a data sink (Sink)
and leader node (LeaderNode) and the member (Member) is the general-
ization of a member group and member nodes (MemberNodes). The mem-
ber nodes yield a sensor data and the nodes need information on the data
sampling, and duration of data sampling and transmission. The developer
can model the in-/out-network aggregation by assigning a data process-
ing task (represented by Operator) to the sink/leader node. The data
processing includes a data fusion (FusionOperator), temporal aggrega-
tion (TempralAggregationOperator), and spatial aggregation (Spatial-
AggregationOperator) same as at dataflow-level. The leader node and
member nodes have a deployment condition that is the conditional expres-
sion of the task assignments to the nodes in WSN. A data compression and
encryption are modeled as the attributes of the communication.

4 The Node-level Meta-Model

The node-level meta-model is defined to express a behavior and configu-
ration of each node because WSN applications are finally executed on the
individual node. The combination of tasks such as data sampling and the
task assignment represent the behavior.

In node-level model, a role that represents the group of task (Role) has
relations to sensor nodes (Node) and these relations represent the task assign-

TemporalAggregationTask

- timeWindow :int

SpatialAggregationTask _ duration : int
T T
FusionTask ‘|7
A tionTask
-inputDataTypes : ArrayList ggregationtas
- outputDataType : String -inputDataType : String |
|
T T
SendingTask
I ReceivingTask - protocol : String
- protqcol : String o - sendDgtaType : St.rl.ng o SamplingTask
OperationalTask - receiveDataType : String - transmissionCondition : String
- compress : String - compress : String - dataType : String
- function : String - encryption : String - encryption : String - samplingCondition : String
R
o1 0.1 = 1 1. 1 1
0.1 0.1 -1 /o 0.1 |1
0.1
BaseStationRole LeaderRole MemberRole [0-1

- memberlds : List

Role 0.* Node
= -id : String
- deploymentCondition : String 1.+ . Ioc-ation String

Figure 5: The node-level meta-model.

ments. We define three types of role, the role as a group member (Member-
Role), group leader (LeaderRole), and base station (BaseStationRole).
The member role is responsible for the task of data sampling (Sampling-
Task) and transmission (SendingTask). The leader role contains a relay-
ing task, data receiving (ReceivingTask) and transmission, and a task of
in-network data processing (OperationalTask). The base station role col-
lects the transmitted data, and then processes the data. Same as at the
dataflow- and group-level, the data processing contains the fusion (Fusion-
Task), temporal aggregation (TemporalAggregationTask), spatial aggre-
gation (SpatialAggregationTask). Each task has attributes to define the
specific behavior and configuration, e.g. the sampling task has the attributes
of the data type and sampling period. As for the communication between
nodes, a routing protocol, data compression, encryption, and data type they
dealing with are modeled as the attributes in both the receiving and sending
side. Figure 5 illustrates the definition of the node-level meta-model.

5 Conclusion

In this report, we described the definition of three meta-models. The MDD
process of the WSN application using multiple abstraction levels is a promis-
ing way to achieve both the rapid prototyping and fine-grained tuning. How-
ever, existing work only focus on the single abstraction level. We define the
dataflow-, group-, and node-level meta-model based on the existing DSLs

for the WSN applications, and describe the details of each meta-model.

In the future, we will evaluate the description capabilities of three meta-
models with the real-world WSN applications. With the transformation
rules between the models described base on our meta-models, we will also
evaluate the applicability of the development process we proposed in [5].

References

[1] Bahar Akbal-Delibas, Pruet Boonma, and Junichi Suzuki. Extensible
and precise modeling for wireless sensor networks. In Jianhua Yang,
Athula Ginige, Heinrich C. Mayr, Ralf-D. Kutsche, Wil Aalst, John My-
lopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyperski,
editors, Information Systems: Modeling, Development, and Integration,
volume 20 of Lecture Notes in Business Information Processing, pages
551-562. Springer Berlin Heidelberg, 2009.

[2] Lan S. Bai, Robert P. Dick, and Peter A. Dinda. Archetype-based designf
sensor network programming for application experts, not just program-
ming experts. In Proceedings of the 2010 Fourth International Confer-
ence on Sensor Technologies and Applications, IPSN 09, pages 323328,
Washington, DC, USA, 2009. IEEE Computer Society.

[3] Fernando Losilla, Cristina Vicente-Chicote, Bérbara Alvarez, Andrés Ib-
ora, and Pedro Sénchez. Wireless sensor network application develop-
ment: An architecture-centric mde approach. In Flavio Oquendo, editor,
Software Architecture, volume 4758 of Lecture Notes in Computer Sci-
ence, pages 179-194. Springer Berlin / Heidelberg, 2007.

[4] Luca Mottola and Gian Pietro Picco. Programming wireless sensor net-
works: Fundamental concepts and state of the art. ACM Comput. Surv.,
43(3):19:1-19:51, April 2011.

[5] Ryo Shimizu, Kenji Tei, Yoshiaki Fukazawa, and Shinichi Honiden.
Model driven development for rapid prototyping and optimization of
wireless sensor network applications. In Proceedings of the 2nd Workshop
on Software Engineering for Sensor Network Applications, SESENA 11,
pages 31-36, New York, NY, USA, 2011. ACM.

[6] Jerry Zhao and Ramesh Govindan. Understanding packet delivery per-
formance in dense wireless sensor networks. In Proceedings of the 1st
international conference on Embedded networked sensor systems, Sen-
Sys 03, pages 1-13, New York, NY, USA, 2003. ACM.

