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Abstract. Buneman et al. proposed a graph algebra called UnCAL (Un-
structured CALculus) for compositional graph transformations based on
structural recursion, and we have recently applied to model transfor-
mations. The compositional nature of the algebra greatly enhances the
modularity of transformations. However, intermediate results generated
between composed transformations cause overhead. Buneman et al. pro-
posed fusion rules that eliminate the intermediate results, but auxiliary
rewriting rules that enable the actual application of the fusion rules are
not apparent so far. UnCAL graph model includes the concept of mark-
ers, which correspond to recursive function call in the structural recur-
sion. We have found that there are many optimization opportunities at
rewriting level based on static analysis, especially focusing on markers.
The analysis can safely eliminate redundant function calls. Performance
evaluation shows its practical effectiveness for non-trivial examples in
model transformations.
Keywords: program transformations, graph transformations, UnCAL

1 Introduction

Graph transformation has been an active research topic [8] and plays an impor-
tant role in model-driven engineering [5, 10]; models such as UML diagrams are

! This is a revised version of the technical report: Soichiro Hidaka, Zhenjiang
Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazutaka Matsuda, Keisuke Nakano and
Isao Sasano, “Marker-directed Optimization of UnCAL Graph Transformations”,
GRACE-TR-2011-02, GRACE Center, National Institute of Informatics, Jun. 2011,
which was a full version of the paper appeared in informal proceedings of The 21st
International Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR 2011), pp. 168-182.
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represented as graphs, and model transformation is essentially graph transfor-
mation. We have recently proposed a bidirectional graph transformation frame-
work [6] based on providing bidirectional semantics to an existing graph transfor-
mation language UnCAL [4], and applied it to bidirectional model transforma-
tion by translating from existing model transformation language to UnCAL [9].
Our success in providing well-behaved bidirectional transformation framework
was due to structural recursion in UnCAL, which is a powerful mechanism of
visiting and transforming graphs. Transformation based on structural recursion
is inherently compositional, thus facilitates modular model transformation pro-
gramming.

However, compositional programming may lead to many unnecessary inter-
mediate results, which would make a graph transformation program terribly in-
efficient. As actively studied in programming language community, optimization
like fusion transformation [11] is desired to make it practically useful. Despite
a lot of work being devoted to fusion transformation of programs manipulating
lists and trees, little work has been done on fusion on programs manipulating
graphs. Although the original UnCAL has provided some fusion rules and rewrit-
ing rules to optimize graph transformations [4], we believe that further work and
enhancement on fusion and rewriting are required.

The key idea presented in this paper is to analyze input/output markers,
which are sort of labels on specific set of nodes in the UnCAL graph model and
are used to compose graphs by connecting nodes with matching input and output
markers. By statically analyzing connectivity of UnCAL by our marker analysis,
we can simplify existing fusion rule. Consider, for instance, the following existing
generic fusion rule of the structural recursion operator in UnCAL:

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))
= rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1 @ rec(λ($l1, $t1).e1)($t1)))(e0)

where rec(λ($l , $t).e) applies transformation e on each edge (whose label is
bound to $l and subgraph pointed by the edge is bound to $g) of the input
graph, and combine the results of e to produce the output graph. rec encodes a
structural recursive function which is an important computation pattern and ex-
plained later. The graph constructor @ connects two graphs by matching markers
on nodes, and in this case, result of transformation e1 is combined to another
structural recursion rec(λ($l1, $t1).e1). If we know by static analysis that e1

creates no output markers, or equivalently, rec(λ($l1, $t1).e1) makes no recur-
sive function call, then we can eliminate @ rec(λ($l1, $t1).e1)($t1) and further
simplify the fusion rule. Our preliminary performance analysis reports relatively
good evidence of usefulness of this optimization.

The main technical contributions of this paper are two folds:

– A sound static inference of markers that is refined over that in [4] (Sec-
tion 3). In the prior inference, the set of output markers was inferred using
subtyping rule, which could lead to a set that is unnecessarily larger than
actually produced at run time. For example, the set of output markers of
the body of rec was treated as identical to the set of input markers. This
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(b) An Equivalent Graph (c) Result of a2d xc on Fig. 1(a)

Fig. 1. Graph Equivalence Based on Bisimulation

over-approximation missed the chance of expression simplification exempli-
fied above. Our inference can avoid this over-approximation by avoiding
subtyping rule and computing the sets in a bottom-up manner.

– A set of rewriting rules for optimization using inferred markers (Section 4),
that is more powerful than that in [4] in the sense that more expressions are
simplified as exemplified above.

All have been implemented and tested with graph transformations widely recog-
nized in software engineering research. The source code of the implementation
can be downloaded via our project web site at www.biglab.org.

The rest of this paper is organized as follows. Section 2 reviews UnCAL
graph model, graph transformation language and existing optimizations. Sec-
tion 3 proposes enhanced static analysis of markers. In Section 4, we build en-
hanced rewriting optimization algorithm based on the static analysis. Section 5
reports preliminary performance results. Section 6 reviews related work, and
Section 7 concludes this paper.

2 UnCAL Graph Algebra and Prior Optimizations

In this section, we review the UnCAL graph algebra [3, 4], in which our graph
transformation is specified.

2.1 Graph Data Model

We deal with rooted, directed, and edge-labeled graphs with no order on outgoing
edges. They are edge-labeled in the sense that all information is stored on labels
of edges while nodes have no labels. UnCAL graph data model has two prominent
features, markers and ε-edges. Nodes may be marked with input and output
markers, which are used as an interface to connect them to other graphs. An
ε-edge represents a shortcut of two nodes, working like the ε-transition in an
automaton. We use Label to denote the set of labels and M to denote the set of
markers.
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Formally, a graph G, sometimes denoted by G(V,E,I,O), is a quadruple
(V, E, I, O), where V is a set of nodes, E ⊆ V × (Label ∪ {ε}) × V is a set
of edges, I ⊆ M× V is a set of pairs of an input marker and the corresponding
node, and O ⊆ V ×M is a set of pairs of nodes and associated output markers.
For each marker &x ∈ M, there is at most one node v such that (&x , v) ∈ I. The
node v is called an input node with marker &x and is denoted by I(&x ). Unlike
input markers, more than one node can be marked with an identical output
marker. They are called output nodes. Intuitively, input nodes are root nodes of
the graph (we allow a graph to have multiple root nodes, and for singly rooted
graphs, we often use default marker & to indicate the root), while an output node
can be seen as a “context-hole” of graphs where an input node with the same
marker will be plugged later. We write inMarker(G) to denote the set of input
markers and outMarker(G) to denote the set of output markers in a graph G.

Note that multiple-marker graphs are meant to be an internal data struc-
ture for graph composition. In fact, the initial source graphs of our trans-
formation have one input marker (single-rooted) and no output markers (no
holes). For instance, the graph in Fig. 1(a) is denoted by (V, E, I, O) where
V = {1, 2, 3, 4, 5, 6}, E = {(1, a, 2), (1, b, 3), (1, c, 4), (2, a, 5), (3, a, 5), (4, c, 4),
(5, d, 6)}, I = {(&, 1)}, and O = {}. DBX

Y denotes graphs with sets of input
markers X and output markers Y. DB{&}

Y is abbreviated to DBY .

2.2 Notion of Graph Equivalence

Two graphs are value equivalent if they are bisimilar. Please refer to [4] for the
complete definition. Informally, graph G1 is bisimilar to graph G2 if every node
x1 in G1 has at least a bisimilar counterpart x2 in G2 and vice versa, and if
there is an edge from x1 to y1 in G1, then there is a corresponding edge from
x2 to y2 in G2 that is a bisimilar counterpart of y1, and vice versa. Therefore,
unfolding a cycle or duplicating shared nodes does not really change a graph.
This notion of bisimulation is extended to cope with ε-edges. For instance, the
graph in Fig. 1(b) is value equivalent to the graph in Fig. 1(a); the new graph has
an additional ε-edge (denoted by the dotted line), duplicates the graph rooted
at node 5, and unfolds and splits the cycle at node 4. Unreachable parts are also
disregarded, i.e., two bisimilar graphs are still bisimilar if one adds subgraphs
unreachable from input nodes.

This value equivalence provides optimization opportunities because we can
rewrite transformation so that transformation before and after rewriting produce
results that are bisimilar to each other [4]. For example, optimizer can freely cut
off expressions that is statically determined to produce unreachable parts.

2.3 Graph Constructors

Figure 2 summarizes the nine graph constructors that are powerful enough to
describe arbitrary (directed, edge-labeled, and rooted) graphs [4]. Here, {} con-
structs a root-only graph, {a : G} constructs a graph by adding an edge with
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G ::= {} { single node graph }
| {a : G} { an edge pointing to a graph }
| G1 ∪ G2 { graph union }
| &x := G { label the root node with an input marker }
| &y { a node graph with an output marker }
| () { empty graph }
| G1 ⊕ G2 { disjoint graph union }
| G1 @ G2 { append of two graphs }
| cycle(G) { graph with cycles }

Fig. 2. Graph Constructors

label a ∈ Label ∪ {ε} pointing to the root of graph G, and G1 ∪ G2 adds two
ε-edges from the new root to the roots of G1 and G2. Also, &x := G associates
an input marker, &x , to the root node of G, &y constructs a graph with a single
node marked with one output marker &y , and () constructs an empty graph that
has neither a node nor an edge. Further, G1 ⊕G2 constructs a graph by using a
componentwise (V,E, I and O) union. ∪ differs from ⊕ in that ∪ unifies input
nodes while ⊕ does not. ⊕ requires input markers of operands to be disjoint,
while ∪ requires them to be identical. G1 @ G2 composes two graphs vertically
by connecting the output nodes of G1 with the corresponding input nodes of
G2 with ε-edges, and cycle(G) connects the output nodes with the input nodes
of G to form cycles. Formal definitions can be found in the full version of [6].
The definition here is based on graph isomorphism (identical graph construc-
tion expressions results in identical graphs up to isomorphism), and they are,
together with other operators, also bisimulation generic [4], i.e., bisimilar result
is obtained for bisimilar operands.

Example 1. The graph equivalent to that in Fig. 1(a) can be constructed as
follows (though not uniquely).

&z @ cycle((&z := {a : {a : &z1}} ∪ {b : {a : &z1}} ∪ {c : &z2})
⊕ (&z1 := {d : {}})
⊕ (&z2 := {c : &z2})) &'
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e ::= {} | {l : e} | e ∪ e | &x := e | &y | ()
| e ⊕ e | e @ e | cycle(e) { constructor }
| $g { graph variable }
| let $g = e in e { variable binding }
| if l = l then e else e { conditional }
| rec(λ($l , $g).e)(e) { structural recursion application }

l ::= a | $l { label (a ∈ Label) and label variable }

Fig. 3. Core UnCAL Language

For simplicity, we often write {a1 : G1, . . . , an : Gn} to denote {a1 : G1} ∪
· · · ∪ {an : Gn}, and (G1, . . . , Gn) to denote (G1 ⊕ · · ·⊕ Gn).

2.4 UnCAL Syntax

UnCAL (Unstructured CALculus) is an internal graph algebra for the graph
query language UnQL, and its core syntax is depicted in Fig. 3. It consists of the
graph constructors, variables, variable bindings (let is our extension and is used
for rewriting), conditionals, and structural recursion. We have already detailed
the data constructors, while variables, variable bindings and conditionals are self
explanatory. Therefore, we will focus on structural recursion, which is a powerful
mechanism in UnCAL to describe graph transformations.

A function f on graphs is called a structural recursion if it is defined by the
following equations

f({}) = {}
f({$l : $g}) = e @ f($g)
f($g1 ∪ $g2) = f($g1) ∪ f($g2),

and f can be encoded by rec(λ($l , $g).e). Despite its simplicity, the core UnCAL
is powerful enough to describe interesting graph transformation including all
graph queries (in UnQL) [4], and nontrivial model transformations [7].

Example 2. The following structural recursion a2d xc replaces all labels a with
d and removes edges labeled c.

a2d xc($db) = rec(λ($l , $g). if $l =a then {d : &}
else if $l =c then {ε : &}
else {$l : &}) ($db)

The outer if of the nested ifs corresponds to e in the above equations. Applying
the function a2d xc to the graph in Fig. 1(a) yields the graph in Fig. 1(c). &'

2.5 Revisiting Original Marker Analysis

There were actually previous work on marker analysis by original authors of
UnCAL. Figure 6 of Section A.1 in the appendix shows typing rules from the
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technical report version of [2]. Note that we call type to denote sets of input and
output markers. Compared to our analysis, these rules were provided declara-
tively. For example, the rule for if says that if sets of output markers in both
branches are equal, then the result have that set of output markers. It is not
apparent how we obtain the output marker of if if the branches have different
sets of output markers.

Buneman et al. [4] did mention optimization based on marker analysis, to
avoid evaluating unnecessary subexpressions. But it was mainly based on run-
time analysis. As we propose in the following sections, we can statically compute
the set of markers and further simplify the transformation itself.

2.6 Fusion Rules and Output Marker Analysis

Buneman et al. [3, 4] proposed the following fusion rules that aim to remove
intermediate results in successive applications of structural recursion rec.

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))

=






rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1))(e0) if $t2 does not appear free in e2

rec(λ($l1, $t1). rec(λ($l2, $t2).e2)
(e1 @ rec(λ($l1, $t1).e1)($t1)))(e0)

for arbitrary e2

(1)
If you can statically guarantee that e1 does not produce any output marker,
which means the rec is “non-recursive”, then the second rule is promoted to the
first rule, opening another optimization opportunities.

Non-recursive Query. Now questions that might be asked would be how often
do such kind of “non-recursive” queries appear. Actually it frequently appears as
extraction or join. Extraction transformation is a transformation in which some
subgraphs are simply extracted. It is achieved by direct reference of the bound
graph variable in the body of rec. Join is achieved by nesting of these extraction
transformations. Finite steps of edge traversals are expressed by this nesting.

Example 3. The following structural recursion consecutive extracts subgraphs
that can be accessible by traversing two connected edges of the same label.

consecutive($db) = rec(λ($l , $g). rec(λ($l ′, $g ′).
if $l = $l ′ then {result : $g ′}
else {} )($g))($db)

For example, we have consecutive

(
• a !!• X !!•

◦
a ""!!

b
##"" • a !!• Y !!•

)
= ◦ result !!• X !!•.

If this transformation is followed by rec(λ($l2, $t2).e2) where e2 refers to $t2,
the second condition of fusion rule applies, but it will be promoted to the first,
since the body of rec in consecutive, which corresponds to e1 in the fusion rule,
does not have output markers. We revisit this case in Example 4 in Section 4.
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&x := (&z := e) −→ &x.&z := e &x := (e1 ⊕ e2) −→ (&x := e1) ⊕ (&x := e2)

e ∪ {} −→ e {} ∪ e −→ e e ⊕ () −→ e () ⊕ e −→ e

() @ e −→ ()
e :: DBX

Y X ∩ Y = φ

cycle(e) −→ e

Fig. 4. Auxiliary Rewriting Rules

2.7 Other Prior Rewriting Rules

Apart from fusion rules, the following rewriting rules for rec are proposed in [4]
for optimizations. Type of e is assumed to be DBZ

Z . They simplify the argument
of rec and increase chances of fusions.

rec(λ($l , $t).e)({}) = 1
⊕

&z∈Z &z := {}
rec(λ($l , $t).e)({l : d}) = e[ l/$l ][d/$t ] @ rec(λ($l , $t).e)(d)
rec(λ($l , $t).e)(d1 ∪ d2) = rec(λ($l , $t).e)(d1) ∪ rec(λ($l , $t).e)(d2)
rec(λ($l , $t).e)(&x := d) = &x := 2(rec(λ($l , $t).e)(d))
rec(λ($l , $t).e)(&x ) =

⊕
&z∈Z &z := &y .&z

rec(λ($l , $t).e)() = ()
rec(λ($l , $t).e)(d1 ⊕ d2) = rec(λ($l , $t).e)(d1) ⊕ rec(λ($l , $t).e)(d2)

The first rule eliminates rec, while the second rule eliminates an edge from the
argument.

$t does not occur free in e

rec(λ($l , $t).e)(d1 @ d2) = rec(λ($l , $t).e)(d1) @ rec(λ($l , $t).e)(d2)

$t does not occur free in e

rec(λ($l , $t).e)(cycle(d)) = cycle(rec(λ($l , $t).e)(d))

Additional rules proposed by (full version of) Hidaka et al. [7] to further
simplify the body of rec are given in Fig. 4. The rules in the last line in Fig. 4
can be generalized by static analysis of the marker in the following section. And
given the static analysis, we can optimize further as described in Section 4.

3 Enhanced Static Analysis

This section proposes our enhanced marker analysis. Figure 5 shows the proposed
marker inference rules for UnCAL. Dot notation (·) between markers and sets
of markers represents “concatenation” of markers that satisfies the properties at
the top of the figure. Static environment Γ denotes mapping from variables to
their types. We assume that the types of free variables are given. Since we focus
on graph values, we omit rules for labels. Roughly speaking, DBX

Y is a type for
graphs that have X input markers exactly and have at most Y output markers,
which will be shown formally by Lemma 1.
1 Original right hand side was {} in [4], but we corrected here.
2 We overload := in &x := g to denote renaming of each input marker &z in g to &x .&z .
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(&x · &y) · &z = &x · (&y · &z) & · &x = &x · &= &x X · Y def
= {&x · &y | &x ∈ X , &y ∈ Y}

Γ ' {} :: DB∅

Γ ' l :: Label
Γ ' e :: DBY

Γ ' {l : e} :: DBY

Γ ' e1 :: DBX
Y1

Γ ' e2 :: DBX
Y2

Γ ' e1 ∪ e2 :: DBX
Y1∪Y2

Γ ' () :: DB∅
∅

Γ ' e :: DBZ
Y

Γ ' &x := e :: DB{&x}·Z
Y

Γ ' &y :: DB{&y}

Γ ' e1 :: DBX1
Y1

Γ ' e2 :: DBX2
Y2

X1 ∩ X2 = ∅
Γ ' e1 ⊕ e2 :: DBX1∪X2

Y1∪Y2

Γ ' e1 :: DBX1
Y1

Γ ' e2 :: DBX2
Y2

Γ ' e1 @ e2 :: DBX1
Y2

5 Γ ' e :: DBX
Y

Γ ' cycle(e) :: DBX
Y\X

Γ ($g) = DBX
Y

Γ ' $g :: DBX
Y

Γ ' ea :: DBX
Y

Γ{$l )→ Label , $g )→ DBY} ' eb :: DBZi
Zo

Z = Zi ∪ Zo

Γ ' rec(λ($l , $g).eb)(ea) :: DBX·Z
Y·Z

Γ ' l1 :: Label Γ ' l2 :: Label
Γ ' et :: DBX

Yt Γ ' ef :: DBX
Yf

Γ ' if l1 = l2 then et else ef :: DBX
Yt∪Yf

Γ ' e1 :: DBX1
Y1

Γ{$g )→ DBX1
Y1

} ' e2 :: DBX2
Y2

Γ ' let $g = e1 in e2 :: DBX2
Y2

Fig. 5. UnCAL Static Typing (Marker Inference) Rules: Rules for Label are Omitted

The original typing rules were provided based on the subtyping rule

Γ ) e :: DBX
Y Y ⊆ Y ′

Γ ) e :: DBX
Y′

and required the arguments of ∪, ⊕, if to have identical sets of output markers.
Unlike the original rules, the proposed type system does not use the subtyping
rule directly for inference. Combined with the forward evaluation semantics F [[]]
that is summarized in [6], we have the following type safety property.

Lemma 1 (Type Safety). Assume that g is the graph obtained by g = F [[e]]
for an expression e. Then, ) e :: DBX

Y implies both inMarker(g) = X and
outMarker(g) ⊆ Y.

Lemma 1 guarantees that the set of input markers estimated by the type infer-
ence is exact in the sense that the set of input markers generated by evaluation
exactly coincides with that of the inferred type. For the output markers, the
type system provides an over-approximation in the sense that the set of output
5 Original rule (let’s say @o) which requires Y1 = X2 is relaxed here. Our @ can be

defined by g1 @g2 = (g1 @o IdX2\Y1)@o (BotY1\X2 ⊕g2), where Bot and Id are defined
in Section 4.2.1. This particular definition in which markers Y1 \X2 are peeled off is
close to the original semantics because final output markers coincide. Extension in
which these excess output markers remain would be possible, allowing the markers
to be used later to connect to other graphs.
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markers generated by evaluation is a subset of the inferred set of output markers.
Since the treatment of the input markers are identical to that in [4], we focus
that on the output markers and prove it. The proof, which is based on induction
on the structure of UnCAL expressions, is in Sect. A.2 in the appendix.

Between the original typing rules in [4], the following property holds: for all
X and Y, e :: DBX

Y for some Y ′ ⊇ Y if and only if e has a type DBX
Y′ in the

original type system. The proof can be conducted by simple induction on the
structure of the UnCAL expressions and appears in Sect. A.3 of the appendix.

4 Enhanced Rewiring Optimization

This section proposes enhanced rewriting optimization rules based on the static
analysis shown in the previous section.

4.1 Rule for @ and Revised Fusion Rule

Statically-inferred markers enable us to optimize expressions much more. We
can generalize, for example, the rewriting rule () @ e −→ () in the last row of
Fig. 4 to the following, by not just referring to the pattern of subexpressions but
its estimated markers.

e1 :: DBX
∅

e1 @ e2 −→ e1
(2)

As we have seen in Sect. 2, we have two fusion rules (1) for rec. Although
the first rule can be used to gain performance, the second rule is more complex
so less performance gain is expected. Using (2), we can relax the first condition
of the fusion rule (1) to increase chances to apply the first rule as follows.

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))
= rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1))(e0)

if $t2 does not appear free in e2, or e1 :: DBX
∅

Here, the underlined part is added to relax the entire condition.

4.2 Further Optimization with Static Marker Information

In this section, general rules for e1 @ e2 is investigated. First to eliminate @ e2,
and then to statically compute @ by plugging e2 into e1.

4.2.1 Static Output Marker Removal Algorithm and Soundness
For more general cases of @ where connections by ε do not happen, we have the
following rule.

e1 :: DBX
Y1

e2 :: DBY2
Z Y1 ∩ Y2 = ∅ RmY1〈〈e1〉〉 = e

e1 @ e2 −→ e
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RmY〈〈e〉〉 denotes static removal of the set of output markers, i.e., if ) e :: DBX
Y ,

then ) RmW〈〈e〉〉 :: DBX
Y\W . Without this, rewriting result in spurious output

markers from e1 remained in the final result. The formal definition of RmY〈〈e〉〉
is shown below.

Rm∅〈〈e〉〉 = e RmX∪Y〈〈e〉〉 = RmY〈〈RmX 〈〈e〉〉〉〉 RmY〈〈{}〉〉 = {}
RmY〈〈()〉〉 = () Rm{&y}〈〈&y〉〉 = {} Rm{&y}〈〈&x 〉〉 = &x

RmY〈〈e1 1 e2〉〉 = RmY〈〈e1〉〉 1 RmY〈〈e2〉〉 (1 ∈ {∪,⊕})
RmY〈〈&x := e〉〉 = (&x := RmY〈〈e〉〉)
RmY〈〈{l : e}〉〉 = {l : RmY〈〈e〉〉}

RmY〈〈e1 @ e2〉〉 = e1 @ RmY〈〈e2〉〉
RmY〈〈if b then e1 else e2〉〉 = if b then RmY〈〈e1〉〉 else RmY〈〈e2〉〉

Since the output markers of the result of e1 @ e2 are not affected by those of e1,
e1 is not visited in the rule of @. In the following, IdY and BotY are respectively
defined as

⊕
&z∈Y &z := &z and

⊕
&z∈Y &z := {}.

e :: DBX
Y &y ∈ (Y \ X ) Rm{&y}〈〈e〉〉 = e′

Rm{&y}〈〈cycle(e)〉〉 = cycle(e′)
e :: DBX

Y &y /∈ (Y \ X )
Rm{&y}〈〈cycle(e)〉〉 = cycle(e)

$v :: DBX
Y &y /∈ Y

Rm{&y}〈〈$v〉〉 = $v
$v :: DBX

Y &y ∈ Y
Rm{&y}〈〈$v〉〉 = $v @ (Bot{&y} ⊕ IdY\{&y})

The first rule of $v says that according to the safety of type inference, &y is
guaranteed not to result at run-time, so the expression $v remains unchanged.
The second rule actually removes the output marker &yj , but static removal is
impossible. So the removal is deferred till run-time. The output node marked &yj

is connected to node produced by &y := {}. Since the latter node has no output
marker, the original output marker disappears from the graph produced by the
evaluation. The rest of the &yk := &yk does no operation on the marker. Since
estimation Y is the upper bound, the output maker may not be produced at run-
time. If it is the case, connection with ε-edge by @ does not occur, and the nodes
produced by the := expressions are left unreachable, so the transformation is still
valid. As another side effect, @ may connect identically marked output nodes
to single node. However, the graph before and after this “funneling” connection
are bisimilar, since every leaf node with identical output markers are bisimilar
by definition. Should the output nodes are to be further connected to other
input nodes, the target node is always single, because more than one node with
identical input marker is disallowed by the data model. So this connection does
no harm. Note that the second rule increases the size of the expression, so it
may increase the cost of evaluation.

rec(λ($l , $t).eb)(ea) :: DBX·Z
Y·Z &y ∈ Y Rm{&y}〈〈ea〉〉 = e′a

Rm{&y.&z|&z∈Z}〈〈rec(λ($l , $t).eb)(ea)〉〉 = rec(λ($l , $t).eb)(e′a)
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For rec, one output marker &y in ea corresponds to {&y} · Z = {&y .&z | &z ∈ Z}
in the result. So removal of &y from ea results in removal of all of the {&y} · Z.
So only removal of all of {&y .&z | &z ∈ Z} at a time is allowed.

Lemma 2 (Soundness of Static Output-Marker Removal Algorithm).
Assume that G = (V, E, I, O) is a graph obtained by G = F [[e]] for an expres-
sion e, and e′ is the expression obtained by RmY〈〈e〉〉. Then, we have F [[e′]] =
(V, E, I, {(v, &y) ∈ O | &y /∈ Y}).

Lemma 2 guarantees that no output marker in Y appears at run-time if RmY〈〈e〉〉
is evaluated.

4.2.2 Plugging Expression to Output Marker Expression
The following rewriting rule is to plug an expression into another through cor-
respondingly marked node.

{l : &y} @ (&y := e) −→ {l : e}

This kind of rewriting was actually implicitly used in the exemplification of
optimization in [4], but was not generalized. We can generalize this rewriting as

e @ (&y := e′) −→
{

RmY\{&y}〈〈e〉〉[e
′
/&y ] if &y ∈ Y where e :: DBX

Y
RmY〈〈e〉〉 otherwise.

where e[e′/&y ] denotes substitution of &y by e′ in e. Since nullrary constructors
{}, (), and &x 2= &y do not produce output marker &y , the substitution takes
no effect and the rule in the latter case apply. So we focus on the former case
in the sequel. For most of the constructors the substitution rules are rather
straightforward:

&y[e/&y ] = e

(e1 1 e2)[e/&y ] = (e1[e/&y ]) 1 (e2[e/&y ]) (1 ∈ {∪,⊕})
(&x := e)[e′/&y ] = (&x := (e[e′/&y ]))

{l : e}[e′/&y ] = {l : (e[e′/&y ])}
(e1 @ e2)[e/&y ] = e1 @ (e2[e/&y ])

(if b then e1 else e2)[e/&y ] = if b then (e1[e/&y ]) else (e2[e/&y ])

Since the final output marker for @ is not affected by that of e1, e1 is not visited
in the rule of @. For cycle, we should be careful to avoid capturing of marker.

cycle(e)[e′/&y ] =
{
cycle(e[e′/&y ]) if (Y ′ ∩ X ) = ∅ where e :: DBX

Y e′ :: DBY′

cycle(e)[e′/&y ] otherwise.

The above rule says that if Y ′ will be “free” markers in e, that is, the output
markers in e′, namely Y ′ will not be captured by cycle, then we can plug e′ into
output marker expression in e. If some of the output markers in Y ′ are included
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in X , then the renaming is necessary. As suggested in the full version of [3],
markers in X instead of those in Y ′ should be renamed. And that renaming can
be compensated outside of cycle as follows:

cycle(e) def= (
⊕

&x∈X
&x := &tmpx) @ cycle(e[&tmpx1/&x 1] . . . [&tmpxM/&xM ])

where &x 1, . . . , &xM = X are the markers to be renamed, and X of e :: DBX
Y

is used. Note that in the renaming, not only output markers, but also input
markers are renamed. &tmpx1 , . . . , &tmpxM are corresponding fresh (temporary)
markers. The left hand side of @ recovers the original name of the markers. After
renaming by cycle, no marker is captured anymore, so substitution is guaranteed
to succeed. For variable reference and rec, static substitution is impossible. So
we resort to the following generic “fall back” rule.

e ∈ {$v , rec( )( )} e :: DBX
Y Y = {&y1, . . . , &yj , . . . , &yn}

e[e′/&yj ] = e @

(
&y1 := &y1, . . . , &yj−1 := &yj−1, &yj := e′,
&yj−1 := &yj−1, . . . , &yn := &yn

)

The “fall back” rule is used for rec because unlike output marker removal
algorithm, we can not just plug e into ea since that will not plug e but
rec(λ($l , $t).eb)(e) in the result. We could have used the inverse rec(λ($l , $t).eb)−1

to plug rec(λ($l , $t).eb)−1(e′) instead, but the inverse does not always exist in
general.

The overall rewriting is conducted by two mutually recursive functions as
follows: a driver function first applies itself to subexpressions recursively, and
then applies a function that implements −→ and other rewriting rules recursively
such as fusions described in this paper, on the result of the driver function. The
implemented rewriting system is deterministic by imposing consistent order of
rule applications by these functions.

With respect to proposed rewriting rules in this section, the following theorem
holds.

Theorem 1 (Soundness of Rewriting). If e −→ e′, then F [[e]] is bisimilar
to F [[e′]].

It can be proved by simple induction on the structure of UnCAL expressions,
and omitted here.

Example 4. The following transformation that apply selection after consecutive
in Example 3

rec(λ($l1, $g1). if $l1 = a then {$l1 : $g1} else {})(consecutive($db))
is rewritten as follows:

= { expand definition of consecutive and apply 2nd fusion rule }
rec(λ($l , $g). rec(λ($l1, $g1). if $l1 = a then {$l1 : $g1} else {})

(rec(λ($l ′, $g ′). if $l = $l ′ then {result : $g ′} else {})($g)
@ rec(λ($l , $g). rec(λ($l ′, $g ′).

if $l = $l ′ then {result : $g ′} else {})($g))($g)))($db)
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= { (2) }
rec(λ($l , $g). rec(λ($l1, $g1). if $l1 = a then {$l1 : $g1} else {})

(rec(λ($l ′, $g ′). if $l = $l ′ then {result : $g ′} else {})($g)))($db)
= { 2nd fusion rule, (2), rec rule for if and {l : d}, static label comparison }

rec(λ($l , $g). rec(λ($l ′, $g ′).{})($g))($db)

This example demonstrates the second fusion rule promotes to the first. The
top level edges of the result of consecutive are always labeled result while the
selection selects subgraphs under edges labeled a. So the result will always be
empty, and correspondingly the body of rec in the final result is {}. &'

More examples can be found in Sect. A.4 in the appendix.
The following remark summarizes how far can we remove intermediate

graphs. Proof can be found in Section A.5 in the appendix.

Remark 1 (Removal of Intermediage Graph). Suppose we have a composition of
the form

rec(λ($l2, $t2).e2)(C[rec(λ($l1, $t1).e1)(e0)])

where C[] denotes context using constructors and if expressions. Then, (i) if $t2
does not appear free in e2, then the composition of the above form, including
the ones that are generated during fusion, are removed. (ii) if $t2 appears free
in e2 but e1 :: DB∅, and e1 consists of nested rec with context not using @ or
cycle with body of type DB∅, then the composition, including the ones that are
generated during the fusion rule application, are removed.

5 Implementation and Performance Evaluation

This section reports preliminary performance evaluations. All of the transfor-
mations in the paper are implemented in GRoundTram, or Graph Roundtrip
Transformation for Models, which is a system to build a bidirectional transfor-
mation between two models (graphs). All the source codes are available online at
www.biglab.org. The following experimental results are obtained by the system.

Performance evaluation was conducted on GRoundTram, running on MacOSX
over MacBookPro 17 inch, with 3.06 GHz Intel Core 2 Duo CPU. An UnCAL
transformation runs in time exponential to the size (number of compositions
or nesting of recs) of the transformation (and polynomial to the size of input
graph [4]). Thus, the proposed rewriting, which can reduce the size of transfor-
mation, may change the elapsed time drastically even for the small graphs (up
to a hundred of nodes) used in the experiments.

Table 1 shows the experimental results. Each running time includes time
for forward and backward6 transformations [6], and for backward transforma-
tions, algorithm for edge-renaming is used, and no modification on the target is
6 Since we are conducting research on bidirectional transformations, we are not only

interested in the performance of forward transformations, but also that of backward
transformations.
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Table 1. Summary of Experiments (running time is in CPU seconds)

direction no rewriting previous [4, 7] ours

Class2RDB
forward 1.18 0.68 0.68
backward 14.5 7.99 7.89

PIM2PSM
forward 0.08 0.77 (2*3) 0.07 (2*13)
backward 1.62 3.64 0.75

C2Osel
forward 0.04 0.04 (2*1) 0.05 (2*11)
backward 2.26 0.26 0.27

C2Osel’
forward 0.05 0.06 (2*1) 0.04 (2*11)
backward 2.53 2.58 1.26

Ex1 [4]
forward 0.022 0.016 (1*1) 0.010 (1*1)
backward 0.85 0.30 0.15

actually given. However, we suppose presence of modification would not make
much difference in the running time. Running time of forward transformation in
which rewriting is applied (last two columns) includes time for rewriting. Rewrit-
ing took 0.006 CPU seconds at the worst case (PIM2PSM, ours). Class2RDB
stands for class diagram to table diagram transformation, PIM2PSM for plat-
form independent model to platform specific model transformation, C2Osel is
for transformation of customer oriented database into order oriented database,
followed by a simple selection, and Ex1 is the example that is extracted from our
previous paper [7], which was borrowed from [4]. It is a composition of two recs.
Concrete plugging optimizations in this example can be traced in Sect. A.4 in
the appendix.

The numbers in parentheses show how often the fusion transformation hap-
pened. For example, PIM2PSM led to 3 fusions based on the second rule, and
further enhanced rewriting led to 10 more fusion rule applications, all of which
promoted to the first rule via proposed rewriting rule (2). Same promotions
happened to C2Osel. Except for C2Osel’, a run-time optimization in which un-
reachable parts are removed after every application of rec is applied. Enhanced
rewriting led to performance improvements in both forward and backward eval-
uations, except C2Osel. Comparing “previous” with “no rewriting”, PIM2PSM
and C2Osel’ led to slowdown. This slowdown is explained as follows. The fu-
sion turns composition of recs to their nesting. In the presence of the run-time
optimization, composition is more advantageous than nesting when only small
part of the result is passed to the subsequent recs, which will run faster than
when passed entire results (including unreachable parts). Once nested, interme-
diate result is not produced, but the run-time optimization is suppressed because
every execution of the inner rec traverses the input graph. C2Osel’ in which run-
time optimization is turned off, shows that the enhanced rewriting itself lead to
performance improvements.
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6 Related Work

Although some of our optimization rules were mentioned in [7], the relationship
with static marker analysis was not covered in depth. Our optimization, based on
the enhanced marker analysis in Sect. 3 , generalizes all the rules in [7] uniformly.

In our previous paper [6], an implementation of rewriting optimizations was
reported, but concrete strategies were not included in the paper.

Plugging constructor-only expressions into output marker expressions was
discussed in the full (technical report) version of [3]. Their motivation was to
express semantics of @ at the constructor expression level and not graph data
level as in [4]. It also mentioned renaming of markers to avoid capture of the
output markers in cycle expressions7. We do attempt the same thing at the
expression level but we argue here more formally.

Our rewriting rules are inspired by the technical report but the idea there
is not yet exploited fully. They discussed the semantics of rec on the cycle
expressions, even when the body refered to graph variables, although marker
environment that maps markers to connected subgraphs introduced there makes
the semantics complex. But we could use the semantics to enhance rewriting
rules for rec with cycle arguments.

The journal version [4] mentioned run-time optimization in which, assuming
top-down evaluation, only necessary components of structural recursion are ex-
ecuted. For example, only &z 1 component of rec in &z 1 @ rec( )( ) is evaluated.
It is not applicable to our bidirectional settings which rely on bulk semantics [6].

A static analysis of UnCAL was described in [1], but the main motivation
was to analyze the structure of graphs using graph schema, whereas our analysis
focus on the connectivity of graphs.

7 Conclusion

In this paper, under the context of graph transformation using UnCAL graph
algebra, enhanced static marker inference is first formalized. Fusion rule becomes
more powerful thanks to the static marker analysis. Further rewriting rules based
on this inference are also explored. Marker renaming for capture avoidance is
formalized to support the rewriting rules. Under the context of bidirectional
graph transformations [6], one of the advantage of static analysis is that we can
keep implementation of bidirectional interpreter intact. The marker analysis and
rewriting proposed can be considered as dead-code detection and elimination.
We believe this technique can be used for other graph languages that based
on graph model that have named connecting points like input/output nodes.
Preliminary performance evaluation shows the usefulness of the optimization for
various non-trivial transformations in the field of software engineering research.

Future work under this context includes reasoning about effects on the back-
ward updatability. Although rewriting is sound with respect to well-behavedness
7 In the technical report, cycle was represented by parallel equations, without cycle

operator in current UnCAL form.
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of bidirectional transformations, backward transformation before and after
rewriting may accept different update operations. Our conjecture is that sim-
plified transformation accepts more updates, but this argument requires further
discussions.
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A Appendix

A.1 UnCAL Original Static Typing Rules

a ∈ U
a : Label

y a label variable
y : Label

t a tree variable of type TreeX
t : TreeX

{} : TreeX

X ∈ X
X : TreeX

l : Label Q : TreeX
{l ⇒ Q} : TreeX

l1 : Label l2 : Label
l1 = l2 : Bool

l1 : Label . . . ln : Label p a variable
p(l1, . . . , ln) : Bool

b : Bool Q1 : TreeX Q2 : TreeX
if b then Q1 else Q2 : TreeX

Q1 : TreeY . . . Qm : TreeY

(X1 := Q1, . . . , Xm := Qm) : Tree
{X1,...,Xm}
Y

Q1 : TreeX Q2 : TreeX
Q1 ∪ Q2 : TreeX

Q1 : TreeX Q2 : TreeX
Y

Q1 @X Q2 : TreeY

y label variable t tree variable of type TreeY Q1 : TreeX
X Q2 : TreeY

gextX (λ(y, t).Q1)(Q2) : TreeX
X·Y

Fig. 6. UnCAL Original Static Typing Rules (TR ver. of [2])

Note that gext is an old notation of structural recursion rec.

A.2 Proof of Lemma 1 (Refined Type Safety)

The proof of Lemma 1 is based on induction on the structure of UnCAL expres-
sion.

Proof. Base case:
Free variables: We assume that the type of free variables such as $db (input
of the entire transformation) is available.
{} : By the definition of F [[{}]], outMarker(g) = ∅. By the type inference rule,
{} :: DB∅. Therefore, ∅ = outMarker(g) ⊆ Y = ∅.
&y : outMarker(F [[&y ]]) = {&y} and &y :: DB{{&y}. &y :: DB{&y}. Therefore,
{&y} = outMarker(g) ⊆ Y = {&y}. Another nullrary constructor () : is treated
similarly.
Inductive case:
{l : e}: Suppose e :: DBY , F [[e]] = g, and F [[{l : e}]] = g′. Then outMarker(g′) =
outMarker(g) by the definition of F [[]] and {l : e} :: DBY by the type inference
rule. Now suppose outMarker(g) ⊆ Y as an induction hypothesis. Then we have
outMarker(g) = outMarker(g′) ⊆ Y . &m := e is treated similarly.
e1 ∪ e2: Suppose e1 :: DBX

Y1
, e2 :: DBX

Y2
, F [[e1]] = g1, F [[e2]] = g2, and
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F [[e1 ∪ e2]] = g′. Then outMarker(g′) = outMarker(g1) ∪ outMarker(g2) by
the definition of F [[]] and e1 ∪ e2 :: DBY1∪Y2 by the type inference rule.
Now suppose outMarker(g1) ⊆ Y1 and outMarker(g2) ⊆ Y2 as induction hy-
potheses. Then, by the property of the set union, we have outMarker(g′) =
outMarker(g1) ∪ outMarker(g2) ⊆ Y1 ∪ Y2. ⊕ is treated similarly because type
inference and evaluation rules for the output markers are identical to those of
∪.
e1 @ e2: Suppose e1 :: DBX

Y1
, e2 :: DBZ

Y2
, F [[e1]] = g1, F [[e2]] = g2, and

F [[e1 @ e2]] = g′. Then outMarker(g′) = outMarker(g2) by the definition of F [[]]
and e1 @ e2 :: DBX

Y2
by the type inference rule. Observe that (after connect-

ing with matching input markers in g2) the output markers in g1 are ignored.
Now suppose outMarker(g2) ⊆ Y2 as an induction hypothesis. Then we have
outMarker(g′) = outMarker(g2) ⊆ Y2.
cycle(e): Suppose e :: DBX

Y , F [[e]] = g, and F [[cycle(e)]] = g′. Then
outMarker(g′) = outMarker(g) \ inMarker(g) by the definition of F [[]] and
cycle(e) :: DBY\X by the type inference rule. Now suppose outMarker(g) ⊆ Y as
an induction hypothesis. Then, since X = inMarker(g) by the exactness of input
marker inference, we have outMarker(g′) = outMarker(g) \ inMarker(g) ⊆ Y \ X .
if b then e1 else e2: Suppose e1 :: DBX

Y1
, e2 :: DBX

Y2
, F [[e1]] = g1, F [[e2]] = g2,

and F [[if b then e1 else e2]] = g′. Then, depending on the value of b,
outMarker(g′) = outMarker(g1) or outMarker(g′) = outMarker(g2) by the def-
inition of F [[]] and if b then e1 else e2 :: DBX

Y1∪Y2
by the type inference rule.

Now suppose outMarker(g1) ⊆ Y1 and outMarker(g2) ⊆ Y2 as induction hypothe-
ses and do case analysis for b. If b = true, then outMarker(g′) = outMarker(g1),
so outMarker(g′) = outMarker(g1) ⊆ Y1. For the other case, outMarker(g′) =
outMarker(g2) ⊆ Y2. For either case, by the property of the set union, we have
outMarker(g′) ⊆ Y1 ∪ Y2.
rec(λ($l , $t).eb)(ea) : Suppose ea :: DBX

Y , F [[ea]] = g, eb :: DBZi
Zo

, and
F [[rec(λ($l , $t).eb)(ea)]] = g′. Then, outMarker(g′) = {&y .&z | &y ∈ outMarker(g),
&z ∈ Z} by the definition of F [[]] where Z = Zi ∪Zo, and rec(λ($l , $t).eb)(ea) ::
DBX·Z

Y·Z by the type inference rule. Now suppose outMarker(g) ⊆ Y as induction
hypotheses. Then we have outMarker(g′) = {&y .&z | &y ∈ outMarker(g), &z ∈
Z} ⊆ {&y .&z | &y ∈ Y , &z ∈ Z}. Observe that F [[]] does not use set of markers
produced by eb at run-time. Readers may wonder how the output markers
are accessed via graph variable t, i.e., Y bound by rec affect the final result.
Buneman et al. [4] does not explicitly mention, but it is natural to interpret as
follows: Usually Y is disjoint from Zi and therefore the output nodes marked by
Y are not connected to S1 node 8. Therefore we can safely ignore such Y in eb.
Bound Variables : Variable $t is introduced by rec(λ($l , $t).eb)(ea) and $t is
bound to each of the subgraphs reachable from each edge. Similarly to [4], the
type inference rule estimates the output markers as identical to that for ea. So
assuming type safety for ea, type safety for $t immediately follows.
The above analysis covers all the expressions and thus conclude the proof. &'

8 S1 node is a sort of Hub nodes, each of which corresponds to node produced by ea
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A.3 Proof of Refinement of Marker Analysis

This section gives a proof of the property:

∀X ∀Y, ∃Y ′ ⊇ Y(e::DBX
Y ⇔ e:DBX

Y′)

that appeared in Sect. 3. Note that we write e:DBX
Y to denote e has a type DBX

Y
in the original type system.
(⇒)
Base case:
{} : According to the typing rules, {} :: DB∅ and {} : DBY . Since ∅ ⊆ Y for any
Y, the property holds.
() : Treated similarly to {}.
&y : According to the typing rules, &y :: DB{&y} and &y : DBY for any Y 4 &y .
Since {&y} ⊆ Y, the property holds.
Inductive case:
{l : e}: Suppose e::DBY , e:DBY′ , and {&y} ⊆ Y as the induction hypothesis.
Then, according to the typing rule, {l:e}::DBY , and {l:e}:DBY′ . So, the prop-
erty holds.
&m := e is treated similarly.
cycle(e): Suppose e::DBX

X∪Y , e:DBX
X∪Y′ , and {&y} ⊆ Y as the induction hy-

pothesis. We also assume X to be disjoint with Y and Y ′. Then, according to
the typing rule, cycle(e)::DBX

Y and cycle(e):DBX
Y′ . So, the property holds.

e1 ∪ e2: Suppose e1 :: DBX
Y1

and e2 :: DBX
Y2

, and suppose e1 : DBX
Y′

1
and

e2 : DBX
Y′

2
where Y1 ⊆ Y ′

1 and Y2 ⊆ Y ′
2 as induction hypotheses. Then, accord-

ing to the typing rule, (e1 ∪ e2) :: DBX
Y1∪Y2

and (e1 ∪ e2) : DBX
Y′ where Y ′

1 ⊆ Y ′

and Y ′
2 ⊆ Y ′. So Y1 ∪ Y2 ⊆ Y ′. Therefore, the property holds.

e1 ⊕ e2 and if b then e1 else e2 are treated similarly.
e1 @ e2: For e1::DBX

Y and e2::DBY′

Z , suppose e1:DBX
Y2

and e2:DBY′

Z′ s.t. Y ⊆ Y2

and Z ⊆ Z ′ as induction hypotheses. Note that we assume Y ⊆ Y ′ for compati-
bility with the original type system, which require set of output markers of first
operand and the input markers of the second operand to coincide, which means
the former should be a subset of the latter,9 i.e., Y2 ⊆ Y ′. This means we cannot
assume Y2 to be arbitrary larger than Y, but only a set that is smaller or equal
to Y ′. Then, according to the typing rule, e1 @ e2::DBX

Z and e2 @ e2:DBX
Z′ . Since

Z ⊆ Z ′, the property holds.
rec(λ($l , $t).eb)(ea) : Assume ea :: DBX

Y and ea′ : DBX
Y′ where Y ⊆ Y ′. Spe-

cial care is needed for eb: There is no use to have an output marker that is
not included in the set of input marker in eb, since such excess output node
is not connected to any other node. It is best explained by the rule of rec:
rec(λ($l , $t).eb)({l : d}) = eb[ l/$l ][d/$t ] @ rec(λ($l , $t).eb)(d). The set of cor-

9 Suppose the set of markers common to the two positions (output of the first operand
and input of the second operand) which the original type system assigns is Y ′′. Then
Y ′

2 ⊆ Y ′′ and Y ′ = Y ′′ should be satisfied, because the set of input marker does not
change by subtyping rule. Therefore, Y2 ⊆ Y ′ follows.
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responding input markers is the set of input markers of eb itself. So we as-
sume equal set of input and output markers for eb thus eb :: DBZ

Z . Then, we
have rec(λ($l , $g).eb)(ea) :: DBX·Z

Y·Z and rec(λ($l , $g).eb)(ea′) : DBX·Z
Y′·Z . Since

Y · Z ⊆ Y ′ · Z, the property holds.
The above case analysis covers all the cases by the induction and thus con-

cludes the proof. The opposite direction (⇐) can be proved similarly. &'

A.4 Concrete Rewriting Examples

This section shows input and output of optimizations used in Ex1 transformation
appeared in Sect. 5. For input transformation Q1, our system produces Q2 by
applying first fusion rule. Previously the translation from Q2 to Q3 was not
automatic, but algorithm in Sect. 4 enables deriving Q3 automatically.

Q3 can be obtained by the plugging based rewriting rules. For example,

(&z1 := (&z1 := {"name": &z2}, &z2 := {"name": &z2}))
@ (&z2 := &z1&z2, &z1 := &z1&z1)

becomes

&z1 := (&z1 := {"name": &z1&z2}, &z2 := {"name": &z1&z2}).

This pattern frequently appears after rec fusion because rec often appears in
the pattern &z @ rec( )( ) because from the UnQL surface syntax, only one
component of structural recursion is necessary and the idiom &z @ implements
this projection.

Q 1.
&z1@rec(\ ($L,$T).

if $L = "name"
then (&z1 := {"name": &z2},

&z2 := {"name": &z2})
else (&z1 := &z1, &z2 := {$L: &z2}))
(&z1@rec(\ ($L,$T).
if $L = "name"
then (&z1 := {"name": &z1},

&z2 := {"typeName": &z2})
else if $L = "primitiveDataType"

then (&z1 := {"primitiveDataType": &z2},
&z2 := {"primitiveDataType": &z2})

else (&z1 := {$L: &z1}, &z2 := {$L: &z2}))
($db))

Q 2.
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@
rec(\ ($Sa1,$T).
if $Sa1="name"
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then (&z1 := (&z1 := {"name": &z2},
&z2 := {"name": &z2})

@ (&z2 := &z1&z2, &z1 := &z1&z1),
&z2 := (&z1 := &z1,

&z2 := {"typeName": &z2})
@ (&z2 := &z2&z2, &z1 := &z2&z1))

else if $Sa1 = "primitiveDataType"
then (&z1 := (&z1 := &z1,

&z2 := {"primitiveDataType": &z2})
@ (&z2 := &z2&z2, &z1 := &z2&z1),

&z2 := (&z1 := &z1,
&z2 := {"primitiveDataType": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1))
else (&z1 := if $Sa1 = "name"
then (&z1 := {"name": &z2},

&z2 := {"name": &z2})
else (&z1 := &z1, &z2 := {$Sa1: &z2})

@ (&z2 := &z1&z2, &z1 := &z1&z1),
&z2 := if $Sa1 = "name"

then (&z1 := {"name": &z2},
&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {$Sa1: &z2})
@ (&z2 := &z2&z2, &z1 := &z2&z1)))($db)

Q 3.
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@
rec(\ ($Sa1,$T).
if $Sa1="name"
then (&z1&z1 := {"name": &z1&z2},

&z1&z2 := {"name": &z1&z2},
&z2&z1 := &z2&z1,
&z2&z2 := {"typeName": &z2&z2})

else if $Sa1 = "primitiveDataType"
then (&z1&z1 := &z2&z1,

&z1&z2 := {"primitiveDataType": &z2&z2},
&z2&z1 := &z2&z1,
&z2&z2 := {"primitiveDataType": &z2&z2}

else (&z1 := if $Sa1 = "name"
then (&z1 := {"name": &z1&z2},

&z2 := {"name": &z1&z2})
else (&z1 := &z1&z1,

&z2 := {$Sa1: &z1&z2}),
&z2 := if $Sa1 = "name"
then (&z1 := {"name": &z2&z2},

&z2 := {"name": &z2&z2})
else (&z1 := &z2&z1,

&z2 := {$Sa1: &z2&z2})
))($db)
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A.5 Proof of Remark 1 (Removal of Intermediate Graph)

The remark gives necessary condition of the removal of intermediate graphs via
fusion rule applications.

In the following, the context C with a hole ! can be defined as

C ::= ! | {a : C} | C ∪ e | e ∪ C | C ⊕ e | e ⊕ C | &x := C
| C @ e | e @ C | cycle(C)

where e denotes UnCAL expressions which consist only of constructors, and
C[e′] denotes an expression that is made by replacing the hole in C by UnCAL
expression e′.
case (i): $t2 does not appear free in e2.

The context C[] in the expression

rec(λ($l2, $t2).e2)(C[rec(λ($l1, $t1).e1)(e0)])

can be removed by the prior auxiliary rewriting rules summarized in Section 2.7
to form the following direct composition.

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))

The first fusion rule will turn it into

rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1))(e0).

If e1 contains another rec, i.e.,

rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(C ′[rec(λ($l0, $t0).e′)(. . .)]))(e0),

then, because $t2 still does not appear free in e2, this composition will also be
turned into nesting

rec(λ($l1, $t1). rec(λ($l0, $t0). rec(λ($l2, $t2).e2)(e′)(. . .)))(e0)

using the prior rewriting rule of rec (to remove the context C ′) and the first
fusion rule. In this way, the body of the downstream rec of the composition newly
introduced by the fusion comes from the downstream rec before fusion. So the
condition to apply the first fusion rule is maintained. These process of fusion are
repeated until all the generated compositions become nested. Therefore, all the
intermediate results (compositions) are removed.
case (ii): $t2 appears free in e2.

Suppose the context C[] in rec(λ($l2, $t2).e2)(C[rec(λ($l1, $t1).e1)(e0)]) does
not contain @ or cycle. Then, auxiliary rules of rec can remove the context
and turn the expression into direct composition. Suppose our proposed marker
analysis detects that e1 does not produce output markers. Then, the first fusion
rule becomes applicable. At this point, possible composition that emerge as a
result of fusion will be similar to the prior case, thus

rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(C ′[rec(λ($l0, $t0).e′)(. . .)]))(e0).
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If we can further determine that e′ does not produce output markers, then the
first fusion rule will be applied again. Therefore, the composition of rec whose
body of the upstream only contains nesting of rec via contexts that do not
include @ or cycle, can be completely removed. &'

Let us examine, within case (ii) the subcase where e1 has output markers. If
C[] does not contain @ or cycle, then C[] is removed to leave direct composition
of rec. The second fusion rule will produce, at the argument position of the inner
rec, the expression of the form e1 @ rec(λ($l1, $t1).e1)($t1), which will produce
new intermediate results. @ in the expression cannot be removed just by using
property of @. Furthermore, if we try to remove @ using auxiliary rules of rec,
it is impossible because $t2 appears free in e2. Therefore, we cannot reduce
the indirect composition to direct composition, and therefore, the composition
cannot be removed completely.


