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Abstract— Bidirectional model transformation is useful for
maintaining consistency between two models, and has many
potential applications in software development including model
synchronization, round-trip engineering, and software evolu-
tion. Despite these attractive uses, the lack of a practical
tool support for systematic development of well-behaved and
efficient bidirectional model transformation prevents it from
being widely used. In this paper, we solve this problem
by proposing an integrated framework called GRoundTram,
which is carefully designed and implemented for compositional
development of well-behaved and efficient bidirectional model
transformations. GRoundTram is built upon a well-founded
bidirectional framework, and is equipped with a user-friendly
language for coding bidirectional model transformation, a
novel tool for validating both models and bidirectional model
transformations, an optimization mechanism for improving
efficiency, and a powerful debugging environment for testing
bidirectional behavior. GRoundTram has been used by people
of other groups and their results show its usefulness in practice.

I. INTRODUCTION

Bidirectional model transformation [1–5], being an
enhancement of model transformation with bidirec-
tional capability, is an important requirement in OMG’s
Queries/Views/Transformations (QVT) standard recom-
mended for defining model transformation languages. It
describes not only a forward transformation from a source
model to a target model, but also a backward transformation
showing how to reflect the changes in the target model to
the source model so that consistency between two models
is maintained. Bidirectional model transformation has many
potential applications in software development, including
model synchronization [5–7], round-trip engineering [8],
software evolution [9], and multiple-view software devel-
opment [10,11].

Unlike (unidirectional) model transformation where lots
of tools have been developed for supporting design, valida-
tion, and test of model transformation, bidirectional model
transformation lacks such useful tools, which prevents it
from being widely used. In fact, we have to introduce new
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requirements and challenges in the context of bidirectional
model transformation.

First and most important, we should be sure that the bidi-
rectional model transformation behaves exactly as we want.
Bidirectional model transformation has more complicated
behavior than unidirectional one. It should be well-behaved
in the sense that both forward and backward transformations
are consistent with each other and satisfy the roundtrip
property [1]. As argued in [2], there exist semantic issues in
many existing tools.

Next, bidirectional model transformations should be com-
positional to reuse existing transformations and construct
bigger ones from smaller ones. As indicated in the conclu-
sion in [12], most model transformation languages based
on graph transformations are rule-based, describing direct
relationship between the source and target models. They
are not compositional in the sense that we cannot introduce
intermediate models for gluing model transformations. This
makes them hard to support systematic development of
model transformations in the large [13]. However, compo-
sition comes at the cost of efficiency; many unnecessary
intermediate models might be produced. Therefore, an op-
timization method are required to automatically eliminate
unnecessary intermediate models during execution.

Furthermore, bidirectional model transformation should
be general enough as it is used at various stages of software
development life cycle. It is applied to different models
such as UML diagrams, sequence diagrams, Petri-nets, and
even lower level control/data flow graphs. While visual
frameworks are useful in high level design, general text-
based languages play an important role in developing large-
scale transformations, say, to deal with lower level mapping
or complex code refactoring. Besides, we would expect
to have a set of language-based tools for type checking
(validating) both models and bidirectional model transfor-
mations to remove unnecessary errors before execution, an
efficient execution model, and a tool for testing/debugging
bidirectional behavior. As far as we are aware, no such
language-based modeling environments have been proposed
for bidirectional model transformation.



In this paper, we remedy this situation by proposing a
language-based modeling framework called GRoundTram,
which is carefully designed and implemented for compo-
sitional development of well-behaved and efficient bidirec-
tional model transformation at various stages of software
development. Our work is greatly inspired by recent research
on bidirectional languages and automatic bidirectionalization
in the programming language community [14–17]. In par-
ticular, it has been recently shown [18] that a graph query
algebra UnCAL can be fully bidirectionalized. Each graph
transformation in UnCAL has a clear bidirectional semantics
and is guaranteed to be well-behaved.

This paper is about a successful application of the result
of a bidirectional graph query algebra in the programming
community to the construction of a framework for devel-
oping bidirectional model transformation in the software
engineering community. Our main technical contributions
are summarized as follows.

• Well-Behavedness. We propose a novel bidirectional
graph contraction algorithm so that we can build well-
behaved bidirectional model transformations upon the
well-founded bidirectional UnCAL algebra. In fact,
there is a gap between the UnCAL graphs and the
models in model transformation: graphs in UnCAL are
edge-labeled and their equality is defined by bisimula-
tion, while models in model transformation may have
labels on both edges and nodes and their equality is
defined by unique identifiers. We close this gap so that
every UnCAL graph has a bidirectional correspondence
with a model.

• Compositional. We design a user-friendly language
UnQL+, which is the first purely functional languages
for developing large bidirectional model transforma-
tions in a compositional way. UnQL+ is an extension
of the graph query language UnQL [19] with new ad-
ditional language constructs for graph transformation.
We show that any UnQL+ program can be correctly
translated to an UnCAL construct and inefficiency
due to intermediate models in the composition can be
automatically eliminated.

• Languages-based IDE. We implement an integrated
development environment GRoundTram, which has a
novel tool for validating both models and bidirec-
tional model transformations, an automatic optimiza-
tion mechanism for improving efficiency, and a pow-
erful debugging environment for testing bidirectional
behavior. The system (including the sources, the doc-
uments, and many application examples) is available
online [20], and has been and is being used by people
of other groups for developing some nontrivial applica-
tions. Their results indicate its usefulness in practice.

The rest of the paper is organized as follows. We begin
by demonstrating how the GRoundTram system works in
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Figure 1. Overview of GRoundTram

Figure 2. Snapshot of GRoundTram

Section II. Then we briefly review the UnCAL bidirectional
framework on which GRoundTram is based in Section III.
After explaining the design architecture of the GRoundTram
system, we show in details the definition of UnQL+, the
bidirectional graph contraction algorithm, and the translation
from UnQL+ to UnCAL in Section IV. We evaluate the
system in Section V, discuss the related work in Section VI,
and conclude the paper in Section VII.

II. OVERVIEW OF GROUNDTRAM

Before proceeding with the technical details, we give a
brief overview of the GRoundTram system to give a flavor
of what it can do. Figure 1 shows the basic functions the
GRoundTram system provides.

A. Input

The input to the system is a source model together with its
schema, a transformation described in UnQL+, and a target
model schema. The target model is produced by the forward
transformation.

• Model. Models are represented by general edge-labeled
graphs, which form a general representation of various



Figure 3. A Class Diagram

Figure 4. A Class Model Represented by an Edge-Labelled Graph

models. As a running example, consider the class model
diagram in Figure 3. It consists of three classes and
two directed associations, and each class has a primary
attribute. This model can be represented by the graph
in Figure 4, where information is moved to edges. The
graph is in the standard DOT format which can be
visualized and edited by the popular Graphviz tool [21].

• Model Schema (Metamodel). Each model has a struc-
ture. For instance, a class diagram has the following
structure. A class diagram consists of classes and di-
rected associations between classes. A class is indicated
as persistent or non-persistent. It consists of one or
more attributes, at least one of which must be marked
as constituting the classes’ primary key. An attribute
type is of a primitive data type (e.g. String, Integer).
An association specifies an inheritance relation between
two classes. KM3 [22] is used to describe such a model
structure, and its definition can be found in [20].

• Model Transformation. (Forward) Model transforma-
tion is described compositionally in UnQL+ (Section
IV-A), a SQL-like graph query/transformation lan-
guage. As an example, consider extracting all persistent
classes from the class model $db, and transforming
them to tables by replacing Attributes by Columns .
This can be described compositionally as follows,
where the intermediate model $persistentClass is used
in this composition.

select{tables : $table}where
$persistentClass in

(* select classes *)
(select $class where

{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class),

$table in
(* replace Attribute *)
(replace attrs → $g

by (select{Column : $a}where
{attrs.Attribute : $a} in $persistentClass)

in $persistentClass)

B. Validation

In order to detect errors during development as early
as possible and help users to develop a correct models
and transformations, the GRoundTram system provides two
types of validation mechanisms.

• Model Validation. Conformance of the source and the
target model to their associated schemas can be verified
by the system. In particular after editing the models, it
is important to check that they are in valid states.

• Model Transformation Validation. Correct model
transformations should always generate a target model
conforming to the target schema from any source model
satisfying the source schema.

While the model validation is quite standard, a general
model transformation validation is more challenging but
more useful in developing correct model transformation.
As an instance of simple erroneous transformation, sup-
pose the user made an error writing select $a instead of
select {Column : $a} in the previous example. Its outputs
do not conform to the schema and hence reported by the
system. The check is automatic and static. Users neither
have to provide any test cases by hand nor execute the
transformation for testing; the system automatically finds out
and displays an example of a source model that reveals the
problem (in this case, a class model containing at least one
persistent class).

C. Bidirectional Transformation

The GRoundTram system is unique in its execution of
well-behaved bidirectional transformation, as seen in the
lower part of Figure 1.

• Forward Transformation. After the user specified the
source model and the UnQL+ model transformation,



by running the transformation with the model set to
$db variable, the target model is computed. Like the
source model, the target model can also be exported in
the standard DOT format and be edited.

• Backward Transformation. The most distinct fea-
ture of GRoundTram is the automatic derivation of
backward transformations that appropriately propagate
modifications on target models to source graphs. There
is no need to maintain two separate transformations
and to worry about their consistency. Users just write
a forward transformation from one model to another
in a compositional way, and a corresponding backward
transformation is automatically derived.

D. Graphic User Interface

The GRoundTram system combines all the functions as an
integrated framework with a user-friendly GUI (Figure 2).
The user loads a source graph (displayed in the left pane)
and a bidirectional transformation written in UnQL+. Once
they are loaded, forward transformation can be conducted
by pushing the “forward” button (right arrow icon). The
target graph appears on the right pane. User can graphically
edit the target graph and apply backward transformation by
pushing the “backward” button (left arrow icon). Source
graph can be edited as well, of course. User can optionally
specify the source schema and the target schema, and can
run validation by pushing the check button on both panes.
The transformation itself can also be checked.

For ease of debugging/understanding behavior of bidirec-
tional computation between two models, trace information
is instantly displayed between source and target (red part in
Figure 2). If subgraphs on either pane are selected, corre-
sponding subgraphs on the other pane are also highlighted.
This helps users to understand how modification on the
target affects that on the source, and vice versa.

III. BACKGROUND: BIDIRECTIONAL UNCAL

The GRoundTram system is built upon the recent
work [18] on bidirectionalization of UnCAL, a graph algebra
known in the database community for graph querying [19]. It
has been shown that any unidirectional graph transformation
written in UnCAL can be fully bidirectionalized with a back-
ward transformation such that both forward and backward
transformations are consistent and well-behaved. We briefly
explain the basic results that will be used in this paper.

A. Graph Data Model

Graphs in UnCAL are rooted and directed cyclic graphs
with no order between outgoing edges. They are edge-
labeled in the sense that all information is stored as labels
on edges and labels on nodes serve as unique identifiers
and have no particular meaning. Figure 5(a) gives a small
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Figure 5. Graph Equivalence Based on Bisimulation

example of a directed cyclic graph with six nodes and seven
edges. In text, it is represented by

g = {a : {a : g1}, b : {a : g1}, c : g2}
g1 = {d : {}}
g2 = {c : g2}

where the notation {l1 : g1, . . . , ln : gn} denotes a set
representing a graph which contains n edges with labels
l1, . . . , ln, each edge pointing to a graph gi, and the empty
set {} denotes a graph with a single node. Two graphs g1

and g2 can be merged using set union operation g1 ∪ g2. In
addition, the ε-edge is allowed to represent shortcut of two
nodes, and works like ε-transition in automata.

Two graphs in UnCAL are considered to be equal if they
are bisimilar. Intuitive understanding of bisimulation is that
unfolding of cycles and duplication of equivalent subgraphs
do not affect equivalence of graphs, and unreachable parts
from the root are ignored. For instance, the graph in Figure
5(b) is equivalent to the graph in Figure 5(a); the new
graph has an additional ε-edge (denoted by the dotted line),
duplicates the graph rooted at node 5, and unfolds and splits
the cycle at node 4.

It is worth noting that bisimulation equivalence plays
an important role in bidirectionalization [18], query opti-
mization [19], and verification of graph transformation [23].
However, bisimulation equivalence is different from our
usual equivalence of models whose element has a unique
identifier. We will show how to bridge this gap in Section
IV-B.

B. UnCAL

The most important feature of UnCAL is that any graph
transformation in UnCAL is described by structural recur-
sions or their composition.

Structural recursive function f in UnCAL is a recursive
computation scheme on graphs defined by

f ({}) = {}
f ({l : g}) = (l, g) ⊙ f(g)
f (g1 ∪ g2) = f(g1) ∪ f(g2)

where ⊙ is a given binary operator. Different choices of
⊙ define different recursive functions. For simplicity, the



definition above is abbreviated to

sfun f ({l : g}) = (l, g) ⊙ f(g).

Note that even for a graph g having cycles, the computation
of f(g) always terminates under the usual recursive seman-
tics where all recursive calls are memorized and their results
are reused to avoid entering infinite loops.

As a simple example, we may use the following recursive
function a2d xc to replace all edges labeled a by d and skip
all edges labeled c for the graph in Figure 5(a).

sfun a2d xc ({l : g}) = if l = a then {d : a2d xc(g)}
else if l = c then a2d xc(g)
else {l : a2d xc(g)}

We naturally extend the structural recursion above so that
it allows mutual recursion. Any mutually recursive functions
can be merged into one by the standard tupling method [24].

C. Bidirectional Semantics of UnCAL

A query in UnCAL is usually run in forward direction:
under an environment (a mapping from variables to graphs)
ρ, a query Q generates a result graph denoted by F [[Q]]ρ.

Let g = F [[Q]]ρ be a result graph. Assume that a user
has edited it into g′. For example, one may add a new
subgraph, modify some labels, and delete several edges.
In our previous work [18], we gave a backward semantics
that properly reflects back the editing to the original inputs.
Formally speaking, given the modified result graph g′ and
the original input environments ρ, we presented a method
which computes the modified environment ρ′ = B[[Q]](ρ, g′).

By “properly reflecting back” (or well-behaved), we mean
the following two properties to hold:

F [[Q]]ρ = g

B[[Q]](ρ, g) = ρ
(GETPUT)

B[[Q]](ρ, g′) = ρ′

B[[Q]](ρ,F [[Q]]ρ′) = ρ′
(WPUTGET)

The (GETPUT) property says that if no change is made
on the output g, then there should occur no change on
the input environment. The (WPUTGET) property is an
unrestricted version of (PUTGET) property appeared in [14],
which requires g′ ∈ Range(F [[Q]]) and B[[Q]](ρ, g′) = ρ′ to
imply F [[Q]]ρ′ = g′. The (PUTGET) property states that if
a result graph is modified to g′ which is in the range of the
forward evaluation, then this modification can be reflected
to the source such that a forward evaluation will produce the
same result g′. In contrast, the (WPUTGET) property allows
the modified result to be different from the result obtained
by backward evaluation followed by forward evaluation, but
require both to have the same effect on the original source if
backward evaluation is applied again. This property enables
us to make flexible modifications on the result graphs.

Figure 6. GRoundTram Implementation on Bidirectional UnCAL Engine

IV. DESIGN AND IMPLEMENTATION OF GROUNDTRAM

Let us now turn to show the technical details in design and
implementation of the GRoundTram system, whose basic
functions have been demonstrated in Section II.

Figure 6 depicts the architecture of the system. We
provide a new user-friendly model transformation language
UnQL+ which is functional (rather than rule-based as in
many existing tools) and compositional with high modularity
for reuse and maintenance, and we accept models that
are described by edge-labeled graphs which are general
enough to capture various kinds of models. We imple-
ment the GRoundTram system upon the powerful engine
of bidirectional UnCAL, where a set of language-based
tools have been developed: a bidirectional interpreter [18], a
graph and graph transformation verifier [23], an optimizer to
improve efficiency [25], and a checker of valid updates in the
backward transformation [26]. The key contributions in this
implementation are (1) a translation of UnQL+ to UnCAL
to enable use of the engine of bidirectional UnCAL, and (2)
a bidirectional graph contraction algorithm for contracting
bisimilar UnCAL graphs so that a usual model can have a
bidirectional correspondence with an UnCAL graph.

In the rest of this section, we will focus on the exploration
of UnQL+, the bidirectional graph contraction algorithm,
and the translation from UnQL+ to UnCAL.

A. Model Transformation in UnQL+

UnQL+ is the language the GRoundTram system provides
for users to describe (bidirectional) model transformations.
It is an extension of the well-known UnQL [19], a graph
querying language, which is compositional and can be
implemented by FO (TC) (first order with transitive closure)
with time complexity of PTIME for graph querying.

Figure 7 gives the core syntax of UnQL+. A graph
transformation is described by a template expression to
construct a graph from graphs that are bound by graph



(template) T ::= {L : T, . . . , L : T} | T ∪ T | $g
| if BC then T else T
| select T where B, . . . , B
| replace Rp → $G by T in T where B, . . . , B
| extend Rp → $G with T in T where B, . . . , B
| delete Rp → $G in T where B, . . . , B

(binding) B ::= Gp in $G | BC
(condition) BC ::= not BC | BC and BC | BC or BC

| isEmpty($G) | L = L | L ̸= L | L < L | L ≤ L
(label) L ::= $l | a
(label pattern) Lp ::= $l | Rp
(graph pattern) Gp ::= $G | {Lp : Gp, . . . , Lp : Gp}
(regular path pattern) Rp ::= a | | Rp.Rp | (Rp|Rp) | Rp? | Rp∗ | Rp+

Figure 7. Syntax of UnQL+

variables. The expression {l1 : t1, . . . , ln : tn} creates a
new node having n outgoing edges labeled li and pointing
to the root of the graph computed from ti. The union g1∪g2

constructs a graph with a root sharing the roots of g1 and
g2. The variable expression $g returns the graph that are
bound by $g in the environment (i.e., the mapping from
variables to graphs). The conditional expression has the
usual meaning, choosing different branch according to the
(binding) condition B.

Like other query languages, UnQL+ has a convenient
template expression select t where bs, which is to
select the subgraphs satisfying the condition sequence bs,
bind them to variables, and construct a result according
to the template expression t. For instance, the following
query extracts all persistent classes from the class model
in Figure 4, which is assumed to be bound by $db.

select $class where
{Association.(src|dest).Class : $class} in $db,
{is persistent : {Boolean : true}} in $class

This query returns all bindings of variable $class satisfying
the two conditions in the where clause. The first condition
is to find bindings of $class by matching the regular path
pattern Association.(src|dest).Class with the graph bound
by $db, while the second condition is to ensure that the class
is persistent.

In model transformation, one often wants to replace a
subgraph satisfying certain condition by another graph, and
it is onerous to describe these kinds of graph transfor-
mations using select-where because some context structure
is required to be copied and propagated. To this end, we
introduce three new template expressions, namely, replace-
where, with later extend-where and delete-where.

• The replace-where expression is to replace a subgraph
by a new graph. Consider the class model again,
prefixing every name of the class by “class ” can be
specified as follows. Note that ”ˆ” is a built-in function

for string concatenation.

replace ∗ .Class.name.string → $u
by {(”class ”̂ $name) : {}} in $db
where {$name : {}} in $u

• The delete-where expression is used to describe the
deletion of a part of the graph. For instance, we may
eliminate all persistent classes by

delete Association.(src|dest).Class → $class in $db
where {is persistent.Boolean : true} in $class

where the subgraph matched with $class will be deleted
from its original graph $db.

• The extend-where expression is to extend a graph with
another graph. For example, we write the following
transformation to add date information to each class.
extend ∗ .class → $c with {date : ”2008/8/4”}
in $db

Unlike most rule-based model transformation languages
where model transformation composition is not straightfor-
wardly supported [12], UnQL+ is functional and composi-
tional; smaller model transformations can be composed to
form a bigger one as demonstrated in Section II and will be
seen in Section V.

B. Bidirectional Graph Contraction

As explained in Section III, our graph model is based
on bisimulation equivalence, which means bisimilar graphs
cannot be distinguished. Moreover, since UnCAL is based on
bisimulation, transformation may introduce redundant nodes
that are bisimilar to each other. Therefore, a normalization
phase after transformation is required when such redundancy
has to be eliminated.

Fortunately, it is known that for any set of graphs that
are bisimilar with each other, there exists a unique normal
form up to isomorphism and we can obtain the normal form
after transformation using the partition refinement algorithm
by Paige and Tarjan [27]. It’s complexity is O(|E| log |V |)
where |E| and |V | are the number of edges and nodes,
respectively, and we consider that it is acceptable in practice.



Although this algorithm works on node-labeled graphs,
we lift the algorithm to our edge-labeled graph model as
described in [19]. After contraction, no pairs of nodes are
bisimilar to each other. In particular, leaf nodes (nodes that
have no outgoing edges) are bisimilar to each other, so they
all shrink to one node.

We carefully design our contraction algorithm so that
it forms a well-behaved bidirectional transformation that
satisfies (GETPUT) and (WPUTGET) properties explained
in Section III-C. For example, if an edge is inserted between
a pair of contracted nodes, then the edge is uncontracted
to multiple edges connecting corresponding bisimilar nodes.
If the origin and the destination of the edge are both
multiple, then only connections between pair of edges that
was originally connected are established, although all-to-all
connection also satisfies well-behavedness.

C. Translating UnQL+ to UnCAL

UnQL+ is different from UnCAL in that it uses four
important template expressions, namely select, replace, ex-
tend, delete, to describe graph transformation rather than
using structural recursion. In this section, we show that all
these template expressions can be translated to structural
recursions in UnCAL.

The select expression, which is inherited from UnQL, can
be translated to structural expression in [19], whose expla-
nation is omitted here. The delete and extend expressions
can be defined in terms of the replace expression as:

delete Rp → $v in e1 where bs
⇒ replace Rp → $v by {} in e1 where bs

extend Rp → $v with e1 in e2 where bs
⇒ replace Rp → $v by $v ∪ e1 in e2 where bs

Therefore, what we need to show is how the replace expres-
sion is translated into structural recursion.

Our idea for this translation is to use structural recursion
to simulate the behavior of deterministic finite automaton
(DFA) for finding the nodes in the graph where the replace
operation is to be applied. Now, consider the following
general form of the replace expression.

replace Rp → $v by e1 in e2 where bs

First, we translate the regular path pattern Rp into a DFA
(Q, Σ$l , δ, q0, F ), where Q = {q0, . . . , qN} is a finite set of
states, Σ$l = Σ ∪ {$l} (where Σ = {l0, . . . , lK}) is a finite
set of labels used in Rp, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the start state, and F ⊆ Q is a set of
accept states. We use special label $l to denote a label other
than labels used in Rp.

Then, we introduce N + 1 functions hq0 , . . . , hqN , where
function hqi corresponds to state qi, and define each function
hqi as a structural recursion in the following way. For each
label l ∈ Σ$l , we define

hqi({l : $v}) = eij

replace ∗ .(a|c)− > $v
by $v ′

in $db
where {g : $u} in $v ,

{ ∗ .d : $v ′} in $v

(a) A replace expression (b) DFA for ∗ .(a|c)

let sfun hs0({a : $v}) = if isEmpty(e1) then {a : hs1($v)}
else {a : e2}

| hs0({c : $v}) = if isEmpty(e1) then {c : hs1($v)}
else {c : e2}

| hs0({$l : $v}) = {$l : hs0($v)}
sfun hs1({a : $v}) = if isEmpty(e1) then {a : hs1($v)}

else {a : e2}
| hs1({c : $v}) = if isEmpty(e1) then {c : hs1($v)}

else {c : e2}
| hs1({$l : $v}) = {$l : hs0($v)}

in hs0($db)
where e1 ≡ select {“found” : {}}

where ({g : $u} in $v), ({ ∗ .d : $v ′} in $v)
e2 ≡ select $v ′

where ({g : $u} in $v), ({ ∗ .d : $v ′} in $v)

(c) Translated structural recursion

Figure 8. A Translation Example

and construct a graph with expression eij by considering
two cases. If δ(qi, l) /∈ F (i.e., transition from state qi

through label l does not reach to an accept state), then we
keep the context by propagating l and continue the recursive
computation by defining

eij = {l : hδ(qi,l)($v)}.

Otherwise we check whether $v satisfies condition bs, and
if it is, we replace the graph with the query result of e1

satisfying bs:

eij = if isEmpty (select {“found”} where bs)
then {l : hδ(qi,l)($v)}
else {l : (select e1 where bs)}.

The condition isEmpty(...) in the if -expression checks
whether the condition bs holds. Note that since e1 might
be evaluated to {}, the checking expression should not be
select e1 where bs.

Example 1. Our algorithm maps a replace expression shown
in Figure 8(a) to the structural recursion in Figure 8(c) via
the DFA obtained from ∗ .(a|c) in Figure 8(b).

V. EVALUATION AND APPLICATIONS

In this section, we demonstrate the power (expressive-
ness and efficiency) of the GRoundTram system through
development of a known nontrivial (bidirectional) model
transformation between UML class diagrams and relational
databases, and highlight its usefulness in practice by giving
a list of important applications developed by other groups
using the GRoundTram system.



Figure 9. An RDB Model

A. Developing Bidirectional Class2RDB

Class2RDB is a known model transformation, which
was proposed at [28] as a common benchmark example
to all the participants of the workshop for comparing and
contrasting various kinds of approaches to model transfor-
mations. Class2RDB maps Class models to RDB models.
For instance, it transforms the Class model in Figure 3 into
an RDB model in Figure 9. Simply speaking, Class2RDB
maps each persistent class in a Class model to a table in a
RDB model. All attributes of the class or its subclasses are
mapped to columns in the corresponding table. If a primary
attribute belongs to the class, a pkey pointing from the table
to the corresponding column is established. If an attribute
belongs to its subclass which is persistent, a foreign key to
the corresponding table is established.

We show that UnQL+ is powerful enough to (composi-
tonally) describe the forward transformation (from class
diagrams to relational databases) while achieving the back-
ward transformation for free in our framework. Figure 10
gives the whole transformation in UnQL+. Let us briefly
explain how this UnQL+ program is developed by splitting
the transformation into two steps. In the first step, every
persistent class is mapped to a table which is connected
with its columns according to attributes of the class and
its subclasses. All subclasses are collected by regular path
patterns as shown in Section IV-A. If necessary, references
pkey and fkeys are added by an extend construct in
UnQL+, provided that references refs of Fkey do not
point to the referring table because the table may not have
been constructed yet. They point to the name of the referring
table instead. In the second step, each name pointed by
refs is replaced by the corresponding table by using a
replace construct.

B. Optimization and Efficiency

Next, we show that both forward and backward transfor-
mations can be run efficiently in a scalable manner, while
the inefficiency due to composition can be automatically
removed though our fusion optimization.

Table I summarizes performance of bidirectional transfor-
mations on various compositional transformations, running
on MacOSX over MacBookPro 17 inch, with 3.06 GHz Intel

Table I
SUMMARY OF EXPERIMENTS (RUNNING TIME IS IN CPU SECONDS)

direction no rewriting rewriting

Class2RDB forward 1.18 0.68
backward 14.5 7.90

PIM2PSM forward 0.08 0.07 (13)
backward 1.62 0.75

C2Osel forward 0.04 0.05 (11)
backward 0.26 0.27

C2Osel’ forward 0.05 0.04 (11)
backward 2.56 1.27

UnQL forward 0.036 0.007 (1)
backward 0.83 0.69
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Figure 11. Transformation Time v.s. Source Graph Size

Core 2 Duo CPU. Algorithm for edge-renaming is used
for the measurement, and no modification is actually given,
since the presence of modification does not significantly
affect the running time. Last column shows running time
with rewriting optimization applied. PIM2PSM stands for
Platform Independent Model to Platform Specific Model
transformation, C2Osel for transformation of customer ori-
ented database into order oriented database, followed by
a simple selection, and UnQL for the example that is
extracted from our previous paper [29], which was borrowed
from [19]. It is a composition of two structural recursions.
The numbers in parentheses show how often the fusion
transformation happened. Our rewriting led to performance
improvements in both directions. As the run-time optimiza-
tion, unreachable parts are removed after every application
of UnCAL structural recursion operator. For C2Osel’, this
optimization is turned off. This run-time optimization is ef-
fective when each composed transformation has high selec-
tivity (generates small output from large input) while fusion
is effective when the selectivity is low. Slowdown in C2Osel
after rewriting accounts for this trade-off. For the principles
of this rewriting optimization, please refer to our separate
paper [25]. You can test other optimization like subgraph
computation optimization in our project website [20]. Fig-
ure 11 shows how the size of the source model affects time
to execute a2d xc transformation introduced in Section III,
in both directions. Lattice-like regularly shaped strongly-
connected graphs are used as the source. These execution



select $tables_step2 where
$tables_step1 in

(select $tables where
{Class:$class} in (select $assoc where {Association.(src|dest):$assoc} in $db),
{is_persistent.Boolean:true} in $class,
$dests in (select {Class:$dest} where {(src_of.Association.dest.Class)+:$dest} in $class),
$related in ({Class:$class} U $dests),
$cols in (select {cols:{Column:{name:$n,type:$t}}} where {Class.attrs.Attribute:{name:$n,type:$t}} in $related),
$tables in (select {Table:{name:$cname} U $cols} where {name:$cname} in $class),
$tables in (extend Table -> $table with $pkeys U $fkeys in $tables where

{cols:$cols} in $table,
{Column.name.String:{$cname:{}}} in $cols,
$pkeys in (select {pkey:$cols} where

{attrs.Attribute: {is_primary.Boolean:true, name.String:{$pname:{}}}} in $class,
$cname = $pname),

$fkeys in (select {fkeys:{Fkey:{cols:$cols, ref:$ref}}} where
{Class:{is_persistent.Boolean:true,

attrs.Attribute.name.String:{$aname:{}}, name:$ref}} in $dests,
$cname = $aname))),

$tables_step2 in (replace Table.fkeys.Fkey.ref -> $ref by {Table:$table} in $tables where
{Table:$table} in $tables_step1,
{String:{$rname:{}}} in $ref,
{name.String:{$tname:{}}} in $table,
$tname = $rname)

Figure 10. Class2RDB in UnQL+

times match the complexity of PTIME that is mentioned in
Section IV-A, up to relatively large size (several thousands
of nodes) of graphs.

C. Other Applications

The GRoundTram website [20] provides a bunch of
examples, big and small, and all the examples presented in
this paper can be tried through the demo website. In addition,
we would like to give a rough idea about the status of current
uses of the GRoundTram system by listing applications that
have been or are being developed with GRoundTram by
other groups: Bidirectional Feature Model Transformation
(Peking University), Bidirectional Transformation between
VDM Specification and Java Implementation (another group
in National Institute of Informatics), Bidirectional Trans-
formation between Simulink Diagrams and UML Diagrams
(Waseda University), Bidirectionalizing ATL with GRound-
Tram (Shibaura Institute of Technology), and Bidirectional
Refactoring of Java Codes (Open University & Shanghai
Jiao Tong University). All these indicate the promise of
GRoundTram in practice.

VI. RELATED WORK

Besides the related work in the introduction, we highlight
some others related to graph-based model transformation and
linguistic approach to bidirectional transformation.

Our work is much related to research on model transfor-
mation based on graph transformation. AGG [30] is a well-
known rule-based visual tool that supports typed (attributed)
graph transformations including type inheritance and mul-
tiplicities. Triple Graph Grammars (TGG) [7,31] aims at
the declarative specification of model to model integration
rules. Different from these rule-based ones, our approach
is functional in which model transformation composition

for systematic development and its automatic optimization
are supported. As far as we are aware, this is the first
nontrivial functional and algebraic framework for model
transformation.

This work has been inspired by recent work on linguistic
approach to bidirectionalization of tree transformation [14–
17] for tree data synchronization. One important feature of
these systems is a clear bidirectional semantics, which does
not exist in most existing bidirectional model transformation
systems [2]. Although some attempts have been made [5,6],
it remains as a challenge to provide a general bidirectional
framework for graphs which are more complicated than
trees, and this work is a big step to this direction.

This work grows out of our two-year effort in realizing the
emerging idea presented in a short paper [32]. The UnQL+

is based on the graph query language UnQL [19] but it is
significantly extended with a powerful language construct
replace that can handle transformation context. It is also
worth noting that a simple replace expression was studied
in [29] but it can neither deal with regular path expressions
nor treat multiple graph databases.

VII. CONCLUSIONS

In this paper, we propose a novel algebraic framework
to support systematic development of bidirectional model
transformation. Different from many existing frameworks
that are rule-based, our framework is functional and alge-
braic, which is based on a graph algebra and structural recur-
sion. Our new framework supports systematic development
of model transformations in a compositional manner, has a
clear semantics for bidirectional model transformation, and
can be efficiently implemented.

This work is our first step towards bidirectional model
programming, a linguistic framework to support systematic



development of model transformation programs. In the fu-
ture, we wish to look more into relation between the rule-
based approach and the algebraic and functional approach,
and see how to integrate them to have a more powerful
framework for bidirectional model transformation.
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