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Abstract

In the research of software reuse, feature models have been widely adopted
to capture, organize and reuse the requirements of a set of similar applications
in a software domain. However, the construction, especially the refinement,
of feature models is a labor-intensive process, and there lacks an effective
way to aid domain engineers in refining feature models.

In this paper, we implement a tool named FMView to support interactive
refinement of feature models based on the view updating technique. The pro-
cedure of our tool is to first extract features and relationships of interest from
a possibly large and complicated feature model, then organize them into a
comprehensible view, and finally refine the feature model through modifica-
tions on the view. We successfully apply FMView to refine the web store
domain which shows the feasibility of the feature model refinement.

1 Introduction

In domain engineering, feature models [1][2][3] are widely used to capture, orga-
nize and reuse the requirements of applications in the same domain. An important
step of constructing a feature model is to refine a big, abstract feature into small,
concrete features. Different approaches have been proposed to guide the refinement
of features. For example, in FODA [1], a set of guiding principles are proposed to
help refine feature models. In FORM [2], features are refined in four layers ac-
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cording to the feature hierarchy, i.e. capabilities, operating environments, domain
technologies and implementation techniques.

Feature models grow large during refinement. Reports [4][5][6] show that real-
would feature models often grow beyond a thousands of features, and the largest
one reported [7] has more than 5000 features. On the other hand, feature model re-
finement becomes more and more difficult when the feature model grows. For one
thing, it becomes more difficult to find all features related to the current refinement
task. For another, it is difficult to locate a specific feature in the large model.

In this paper, we implement a tool FMView1 supporting interactive refinement
of feature models. In our tool, first, domain engineers choose features of interest
in the marking phase; Second, all the marked features and relationships are auto-
matically organized into an annotated feature model (updatable view); and finally,
after domain engineers refine the view, we transform all view updates into updates
on the feature model using the bidirectional transformation technique [8].

We successfully apply FMView to refine the web store domain, which shows
that our approach to feature model refinement via modification on updatable view
is promising and potentially useful in practice.

The rest of this paper is organized as follows. Section 2 gives some prelim-
inary knowledge on feature model refinement. Section 3 introduces bidirectional
transformation mechanism used in FMView tool. Section 4 gives the overview of
FMView tool. Section 5 describes the implementation details of the FMView tool.
Section 6 concludes the paper and highlights the future work.

2 Feature Model Refinement

Another technique report [9] presents the basic knowledge on the feature models
and the approach details of feature model refinement using updatable view.

3 Bidirectional Transformation

The aim of GRoundTram is to solve this problem by providing a linguistic frame-
work for bidirectional model transformation [10]. The framework includes (1)
a new model transformation language with clear bidirectional semantics, being
equipped with a powerful bidirectional inference mechanism and a virtual machine
on which bidirectional transformation model can be efficiently realized; (2) an en-
vironment for supporting programming, debugging and maintaining bidirectional
model transformation; and (3) a set of application examples and domain-specific
libraries that can be used in practice. Figure 1 depicts an architecture (the ba-
sic idea) of the compositional framework. A model transformation is described
in UnQL+, which is functional (rather than rule-based as in many existing tools)
and compositional with high modularity for reuse and maintenance. The model

1See http://sei.pku.edu.cn/˜ wangbo07/ for the detail.
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Figure 1: Architecture of GRoundTram Algebraic Framework

transformation is then desugared to a core algebra which consists of a set of con-
structors for building graphs and a powerful structural recursion for manipulating
graphs. This graph algebra can have clear bidirectional semantics and be efficiently
evaluated in a bidirectional manner.

Besides the easy implementation of the updatable view, another two advan-
tages of using GRoundTram in our approach is that: 1) GRoundTram maintains
the history of the modifications caused by backward transformation, so that we can
easily implement an undo functionality to cancel a refinement; 2) GRoundTram
records the traceability links between nodes in the source graph and nodes in the
target graph, so that we can easily support tracing back from features on the view
back to the features in the original model.

For example, Figure 2 shows a snapshot of GRoundTram system, the source
graph model and target graph model are displayed in the left and right part, respec-
tively. Suppose that in the target graph model, we first delete the feature account
and perform the backward transformation. And then, we add the feature cash and
perform the backward transformation again. History of these changes is reflected
to the source graph model (left in Figure 2). In this modified source graph model,
the feature deleted is represented by a set of dash nodes and edges and the feature
added is colored with purple. In addition, when we select the feature submitorder
on the target graph model, the selected feature can be traced back to the source
graph model with red highlight.
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Figure 2: Snapshot of GRoundTram System

4 Overview of FMView

We have developed a tool (FMView) to support our idea of refining feature model
with updatable view. FMView is a prototypical implementation and we are devel-
oping it within Eclipse as a Plug-In. Figure 3 illustrate the tool and the basic idea
of our approach.

The feature model can be constructed in FMView. In this demo, a feature
model with 18 features are built using our tool, as shown in the figure. The marked
features are filled with green. Based on the marked features, the updatable view is
built, as shown in the right part of the figure. Annotations, artificial features and
artificial refinements are added to help domain engineer understand the view.

In FMView, modifications on the view can be reflected to the original feature
model automatically. In this demo, feature O, P and the require constraint be-
tween features K and L are deleted in the view. The corresponding features and
constraints in the original feature model are deleted (colored with orange) auto-
matically. Two new features, S and T ,are added as the children of feature K in the
view, these modifications are reflected to the original feature model (colored with
purple) automatically. In the view, feature R is renamed with R’. In the original
feature model, the corresponding feature is also renamed (colored with blue) auto-
matically. To make the refined original feature model more clear, FMView can hide
the deleted features in the refined original feature model. In this demo, the deleted
feature S and T are hidden in FMView, as shown in the left part of the figure.
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5 Implementation of FMView

5.1 Framework Structure of FMView

FMView can be divided into two layers. The fist layer is graphical user interface
that makes it easy for domain engineers to design the source model and refine the
source model with the view. The second layer is GRoundTram API that makes the
view undatable and keep the traceability between the source model and view.

We employ the graphical modeling framework to implement the GUI of FMView.
The graphical modeling framework (GMF) is a framework within the Eclipse plat-
form. It provides a generative component and runtime infrastructure for developing
graphical editors based on the Eclipse Modeling Framework (EMF) and Graphical
Editing Framework (GEF). The project aims to provide these components, in addi-
tion to exemplary tools for select domain models which illustrate its capabilities.

GMF has a set of models to create to generate a graphical editor. Figure 4 dis-
plays the process involved in creating these models. The first model is the graphical
definition, which defines the visual aspects of generated editor. Next is the tooling
definition, which comprises things related to editor palettes, menus, etc. Finally,
the last model we need is the mapping definition that defines the mapping between
the business logic (EMF model) and visual model (graphical and tooling defini-
tion).

The feature model is represent by EMF model in the GUI layer. We represent,
in GRoundTram, a feature model by a source graph model, and an updatable view
by a target graph model. A forward UnQL+ query is automatically created by
analyzing the result of marking phase. Once a forward query is provided, the
backward transformation comes for free by the GRoundTram system. In this way
we only need to implement a forward query that extracts a view from the feature
model, and do not have to write code to reflect the updates back into the source. In
the first layer, we have to synchronized two representations of the feature model as
illustrated in Figure 5.

5.2 Graph Representation of Feature Model

In order to convert the feature model to its edged-labeled graph representation, a
feature model should be divided into some small parts. Each part corresponds to
one element of the feature model. The kinds of the feature model element are listed
as follows:

• Feature

• Feature Group

• Refinement Relationship: (1) Decomposition; (2) Characterization; (3) Spe-
cialization; (4) None.

• Simple Constraints: Require and Exclude
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• Complex Constraints: Complex Require and Complex Exclude

A graph segment is a tuple (E, V, IN,OUT ), where:

• E is an edge set;

• V is a node set;

• IN is the input node;

• OUT is the output node.

Each graph segment has only one input node and one output node. Two graph
segment can be composed by merging the input node and output node.

One feature model element can be translated into a certain graph segment and
vice versa. Figure 6 illustrates the corresponding relationship between the feature
model elements and the graph segments. The node filled with blue color represents
input node and the node filled with yellow color represents output node.

The composition of the feature model elements corresponds to the composition
of the graph segments.

Feature Group. Because the feature group not including one feature is mean-
ingless. One feature group has at least one feature. The feature group associates
with the features through the edges labeled with member. Figure 7 illustrates that
the feature group contains the feature f1, f2, ..., fn.

Refinement Relationship. Figure 8 illustrates that two features are composed
by refinement relationships.

Simple Constraints. Figure 9 illustrates that two features are composed by
simple constraints.

Complex Constraints. Figure 10 illustrates that two feature groups are com-
posed by complex constraints.

5.3 Operations on View

Table 1: Valid Operations on View
Feature Feature Group RR SC CC Others

Add Valid Valid Valid Valid Valid Invalid
Delete Valid Valid Valid Valid Valid Invalid
Rename Valid - - - - Invalid
Change Predicate - Valid - - - Invalid

The updatable view is defined by a view and a set of valid operations on it.
Domain engineers can refine the feature model by using these valid operations to
modify the view. These modifications on the view can be automatically trans-
formed back to the original feature model. The valid operations are provided to
facilitate the feature model refinement.
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All the valid operations are described in Table 1. The first column lists the
types of operations. The rest columns form the classification of the feature model
elements in the updatable view. RR, SC and CC represent refinement relationship,
simple constraints and complex constraints respectively. The infeasible operations
are marked with ”-”.

5.4 UnQL Generation

In GRoundTram, graphs are edged-labeled in the sense that all information is
stored as labels on edges rather than on nodes (the labels on nodes have no partic-
ular meaning). It can be directly used to represent model. UnQL, like other query
languages, has a convenient select-where structure for extracting information from
a graph.

There are three phases in UnQL generation: marking phase, organization phase
and generation phase.

Marking Phase. To obtain the view, domain engineers are requested to select
some features they want to focus on. The domain engineer may want to refine these
features, or they may want to use the feature to help refine other features. FMView
helps the domain engineers find more features and relationships during marking
phase. These features and relationships can help domain engineers to refine the
feature model.

Organization Phase. To make the results of the extraction more compre-
hensible, we organize marking features and relationships into a view, which has
additional annotations and maintains the relative level relations among the these
features.

In our approach, we organize the results of the extraction by computing the
lowest common ancestor (LCA) of them. For any two features, their LCA is their
shared ancestor that is located farthest from the root feature. With LCAs, artificial
features, annotations and artificial relationships are created to organize the results
of the extraction.

The view is built by an organizing algorithm that adopts a bottom up tree con-
struction strategy, as illustrated as follows. This algorithm takes the marking fea-
tures as inputs and builds the view as output.

1 p u b l i c s t a t i c A r t i F e a t u r e bu i ldView ( HashSet<F e a t u r e> s e l e c t e d S e t )
2 {
3 HashSet<F e a t u r e> workSet = new HashSet<F e a t u r e >() ;
4 / / i n i t i a l i z e workSe t
5 / / s e l e c t e d S e t c o n t a i n s marking f e a t u r e s
6 workSet . a dd Al l ( s e l e c t e d S e t ) ;
7 / / i n i t i a l i z e LCATable
8 LCATable . in iLCATableForWorkSet ( workSet ) ;
9 / / o r g a n i z a t i o n body

10 / / main Loop
11 whi le ( workSet . s i z e () >1)
12 {
13 F e a t u r e P a i r fp = findMaxDepthForLCA ( ) ;
14 F e a t u r e l c a = LCATable . g e t ( fp ) ;
15 F e a t u r e a = fp . getA ( ) ;
16 F e a t u r e b = fp . getB ( ) ;
17 i f ( l c a == a )
18 {
19 i f ( ! s e l e c t e d ( l c a ) )
20 {
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21 a d dC h i l d ( l c a , b ) ;
22 }
23 remove ( workSet , b ) ;
24 }
25 e l s e i f ( l c a == b )
26 {
27 i f ( ! s e l e c t e d ( l c a ) )
28 {
29 a d dC h i l d ( l c a , a ) ;
30 }
31 remove ( workSet , a ) ;
32 }
33 e l s e
34 {
35 i f ( ! workSet . c o n t a i n s ( l c a ) )
36 add ( workSet , l c a ) ;
37 i f ( ! s e l e c t e d ( l c a ) )
38 {
39 a d dC h i l d ( l c a , a ) ;
40 a d dC h i l d ( l c a , b ) ;
41 }
42 remove ( workSet , a ) ;
43 remove ( workSet , b ) ;
44 }
45 }
46 F e a t u r e f = ( F e a t u r e ) workSet . t o A r r a y ( ) [ 0 ] ;
47 A r t i F e a t u r e r o o t = r e f e r e n c e . g e t ( f ) ;
48 / / A d j u s t R e l a t i v e L e v e l
49 i f ( r o o t != n u l l )
50 a d j u s t ( r o o t ) ;
51 e l s e
52 {
53 r o o t = S t a p F a c t o r y . eINSTANCE . c r e a t e A r t i F e a t u r e ( ) ;
54 r o o t . setName ( ” anonymous ” ) ;
55 r o o t . g e t F e a t u r e s ( ) . add ( f ) ;
56 }
57 re turn r o o t ;
58 }

Generation Phase. This phase takes the view as input and generate UnQL
query. The query consists two part: select clause and where clause. The select
clause is generated according to the tree structure of the view. Each feature in
where clause is accessed by it path in the graph representation of the feature model.
For example, the following UnQL query is generated automatically by a given
view.
s e l e c t {

A r t i F e a t u r e :{name :{ O n l i n e s h o p :{}} , r e l a t i o n s :{
Ref inemen t :{

d e s t i n a t i o n :{
A r t i F e a t u r e :{

name :{ anonymous :{}} ,
r e l a t i o n s :{ Ref inemen t : $G98f9c2}

}
}

} ,
Re f inemen t : $G1a30706}

}
}
where

$ s r c i n $db ,
$G98f9c2 i n

( s e l e c t $G where
{ r o o t . F e a t u r e . r e l a t i o n s . Mandatory . Decompos i t i on . d e s t i n a t i o n .

F e a t u r e . r e l a t i o n s . Mandatory . C h a r a c t e r i z a t i o n . d e s t i n a t i o n .
F e a t u r e . r e l a t i o n s . O p t i o n a l . S p e c i a l i z a t i o n : $G} i n $s r c ,

{ d e s t i n a t i o n :{ F e a t u r e :{name :{Account : $g}}}} i n $G ) ,
$G1a30706 i n

( s e l e c t $G where
{ r o o t . F e a t u r e . r e l a t i o n s . Mandatory . Decompos i t i on . d e s t i n a t i o n .

F e a t u r e . r e l a t i o n s . Mandatory . Decompos i t i on : $G} i n $s r c ,
{ d e s t i n a t i o n :{ F e a t u r e :{name :{ S u b m i t o r d e r : $g}}}} i n $G )

The UnQL sentence can be executed by GRoundTram to perform the forward
transformation which will produce more additional files that are necessary in the
backward transformation. The ei file that contains more editing information and
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the xg file that represents the result graph being attached to the abstract syntax
tree.

6 Conclusion

In this paper, we present the implementation issues on applying bidirectional trans-
formation to feature model refinement. With the view updating technique, we are
able to refine large and complicated feature models. The updatable view allows
domain engineers to refine feature models in an effective way; they can get the
extracted and organized information, and refine the feature model by directly mod-
ifying the view. FMView shows the feasibility of this approach.
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(a) Feature Model Construction (b) Marking Phase

(c) View Generation (d) Reflecting the View Modifications On the Orig-
inal Feature Model

(e) Feature Model After Refinement

Figure 3: FMView Tool Demo
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