
ISSN 1884-0760

GRACE TECHNICAL REPORTS

Marker-directed Optimization of UnCAL
Graph Transformations

Soichiro Hidaka Zhenjiang Hu Kazuhiro Inaba
Hiroyuki Kato Kazutaka Matsuda Keisuke Nakano

Isao Sasano

GRACE-TR 2011–02 June 2011

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Marker-directed Optimization of UnCAL Graph
Transformations?

Soichiro Hidaka1, Zhenjiang Hu1, Kazuhiro Inaba1, Hiroyuki Kato1, Kazutaka
Matsuda2, Keisuke Nakano3, and Isao Sasano4

1 National Institute of Informatics, Japan,
{hidaka, hu, kinaba, kato}@nii.ac.jp

2 The University of Electro-Communications, Japan,
ksk@cs.uec.ac.jp

3 Tohoku University, Japan,
kztk@kb.ecei.tohoku.ac.jp

4 Shibaura Institute of Technology, Japan,
sasano@sic.shibaura-it.ac.jp

Abstract. Buneman et al. proposed a graph algebra called UnCAL (Un-
structured CALculus) for compositonal graph transformations based on
structural recursion, and we have recently applied to model transfor-
mations. The compositional nature of the algebra greatly enhances the
modularity of transformations. However, intermediate results generated
between composed transformations cause overhead. Buneman et al. pro-
posed fusion rules that eliminate the intermediate results, but auxiliary
rewriting rules that enable the actual application of the fusion rules are
not apparent so far. UnCAL graph model includes the concept of mark-
ers, which correspond to recursive function call in the structural recur-
sion. We have found that there are many optimization opportunities at
rewriting level based on static analysis, especially focusing on markers.
The analysis can safely eliminate redundant function calls. Performance
evaluation shows its practical effectiveness for non-trivial examples in
model transformations.
Keywords: program transformations, graph transformations, UnCAL

1 Introduction

Graph transformation has been an active research topic [8] and plays an impor-
tant role in model-driven engineering [5, 10]; models such as UML diagrams are
represented as graphs, and model transformation is essentially graph transfor-
mation. We have recently proposed a bidirectional graph transformation frame-
work [6] based on providing bidirectional semantics to an existing graph transfor-
mation language UnCAL [4], and applied it to bidirectional model transforma-
tion by translating from existing model transformation language to UnCAL [9].
Our success in providing well-behaved bidirectional transformation framework
? This is a full version of the paper to apper in Proc. of The 21st International Sym-

posium on Logic-Based Program Synthesis and Transformation (LOPSTR 2011).

2

was due to structural recursion in UnCAL, which is a powerful mechanism of
visiting and transforming graphs. Transformation based on structural recursion
is inherently compositional, thus facilitates modular model transformation pro-
gramming.

However, compositional programming may lead to many unnecessary inter-
mediate results, which would make a graph transformation program terribly in-
efficient. As actively studied in programming language community, optimization
like fusion transformation [11] is desired to make it practically useful. Despite
a lot of work being devoted to fusion transformation of programs manipulating
lists and trees, little work has been done on fusion on programs manipulating
graphs. Although the original UnCAL has provided some fusion rules and rewrit-
ing rules to optimize graph transformations [4], we believe that further work and
enhancement on fusion and rewriting are required.

The key idea presented in this paper is to analyze input/output markers,
which are sort of labels on specific set of nodes in the UnCAL graph model and
are used to compose graphs by connecting nodes with matching input and output
markers. By statically analyzing connectivity of UnCAL by our marker analysis,
we can simplify existing fusion rule. Consider, for instance, the following existing
generic fusion rule of the structural recursion in UnCAL:

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))
= rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1 @ rec(λ($l1, $t1).e1)($t1)))(e0)

where rec(λ($l , $t).e) denotes a structural recursive function which is an impor-
tant computation pattern and will be explained later. The graph constructor @

connects two graphs by matching markers on nodes, and in this case, result of
transformation e1 is combined to another structural recursion rec(λ($l1, $t1).e1).
If we know by static analysis that e1 creates no output markers, or equiva-
lently, rec(λ($l1, $t1).e1) makes no recursive function call, then we can eliminate
@ rec(λ($l1, $t1).e1)($t1) and further simplify the fusion rule. Our preliminary
performance analysis reports relatively good evidence of usefulness of this opti-
mization.

The main technical contributions of this paper are two folds: a sound and
refined static inference of markers and a set of powerful rewriting rules for op-
timization using inferred markers. All have been implemented and tested with
graph transformations widely recognized in software engineering research. The
source code of the implementation can be downloaded via our project web site
at www.biglab.org.

The rest of this paper is organized as follows. Section 2 reviews UnCAL
graph model, graph transformation language and existing optimizations. Sec-
tion 3 proposes enhanced static analysis of markers. In Section 4, we build en-
hanced rewriting optimization algorithm based on the static analysis. Section 5
reports preliminary performance results. Section 6 reviews related work, and
Section 7 concludes this paper.

3

1

2

a

3

 b

4

c

5

a

a

c

6

d

(a) A Simple Graph

0

1

2

a

3

 b

4

 c

51

a

61

52

a

62

41

c

42

c

d

d

c

(b) An Equivalent Graph (c) Result of a2d xc on Fig. 1(a)

Fig. 1. Graph Equivalence Based on Bisimulation

2 UnCAL Graph Algebra and Prior Optimizations

In this section, we review the UnCAL graph algebra [3, 4], in which our graph
transformation is specified.

2.1 Graph Data Model

We deal with rooted, directed, and edge-labeled graphs with no order on outgoing
edges. They are edge-labeled in the sense that all information is stored on labels
of edges while nodes have no labels. UnCAL graph data model has two prominent
features, markers and ε-edges. Nodes may be marked with input and output
markers, which are used as an interface to connect them to other graphs. An
ε-edge represents a shortcut of two nodes, working like the ε-transition in an
automaton. We use Label to denote the set of labels and M to denote the set of
markers.

Formally, a graph G, sometimes denoted by G(V,E,I,O), is a quadruple
(V, E, I, O), where V is a set of nodes, E ⊆ V × (Label ∪ {ε}) × V is a set of
edges, I ⊆ M × V is a set of pairs of an input marker and the corresponding
node, and O ⊆ V ×M is a set of pairs of nodes and associated output markers.
For each marker &x ∈ M, there is at most one node v such that (&x , v) ∈ I. The
node v is called an input node with marker &x and is denoted by I(&x). Unlike
input markers, more than one node can be marked with an identical output
marker. They are called output nodes. Intuitively, input nodes are root nodes of
the graph (we allow a graph to have multiple root nodes, and for singly rooted
graphs, we often use default marker & to indicate the root), while an output
node can be seen as a “context-hole” of graphs where an input node with the
same marker will be plugged later. We write inMarker(G) to denote the set of
input markers and outMarker(G) to denote the set of output markers in a graph
G.

Note that multiple-marker graphs are meant to be an internal data struc-
ture for graph composition. In fact, the initial source graphs of our trans-
formation have one input marker (single-rooted) and no output markers (no
holes). For instance, the graph in Fig. 1(a) is denoted by (V, E, I, O) where

4

V = {1, 2, 3, 4, 5, 6}, E = {(1, a, 2), (1, b, 3), (1, c, 4), (2, a, 5), (3, a, 5), (4, c, 4),
(5, d, 6)}, I = {(&, 1)}, and O = {}. DBX

Y denotes graphs with sets of input

markers X and output markers Y. DB{&}
Y is abbreviated to DBY .

2.2 Notion of Graph Equivalence

Two graphs are value equivalent if they are bisimilar. Please refer to [4] for the
complete definition. Informally, graph G1 is bisimilar to graph G2 if every node
x1 in G1 has at least a bisimilar counterpart x2 in G2 and vice versa, and if
there is an edge from x1 to y1 in G1, then there is a corresponding edge from
x2 to y2 in G2 that is a bisimilar counterpart of y1, and vice versa. Therefore,
unfolding a cycle or duplicating shared nodes does not really change a graph.
This notion of bisimulation is extended to cope with ε-edges. For instance, the
graph in Fig. 1(b) is value equivalent to the graph in Fig. 1(a); the new graph has
an additional ε-edge (denoted by the dotted line), duplicates the graph rooted
at node 5, and unfolds and splits the cycle at node 4. Unreachable parts are also
disregarded, i.e., two bisimilar graphs are still bisimilar if one adds subgraphs
unreachable from input nodes.

This value equivalence provides optimization opportunities because we can
rewrite transformation so that transformation before and after rewriting produce
results that are bisimilar to each other [4]. For example, optimiser can freely cut
off expressions that is statically determined to produce unreachable parts.

2.3 Graph Constructors

Figure 2 summarizes the nine graph constructors that are powerful enough to
describe arbitrary (directed, edge-labeled, and rooted) graphs [4]. Here, {} con-
structs a root-only graph, {a : G} constructs a graph by adding an edge with
label a ∈ Label ∪ {ε} pointing to the root of graph G, and G1 ∪ G2 adds two
ε-edges from the new root to the roots of G1 and G2. Also, &x := G associates
an input marker, &x , to the root node of G, &y constructs a graph with a single
node marked with one output marker &y , and () constructs an empty graph that
has neither a node nor an edge. Further, G1 ⊕G2 constructs a graph by using a
componentwise (V,E, I and O) union. ∪ differs from ⊕ in that ∪ unifies input
nodes while ⊕ does not. ⊕ requires input markers of operands to be disjoint,
while ∪ requires them to be identical. G1 @ G2 composes two graphs vertically
by connecting the output nodes of G1 with the corresponding input nodes of G2

with ε-edges, and cycle(G) connects the output nodes with the input nodes of G
to form cycles. Newly created nodes have unique identifiers. The definition here
is based on graph isomorphism (identical graph construction expressions results
in identical graphs up to isomorphism), and they are, together with other oper-
ators, also bisimulation generic [4], i.e., bisimilar result is obtained for bisimilar
operands.

5

{} {a : G}

G

a

G1 ∪ G2

G1 G2 G

&z := G

&z

&z ()

&x1 ... &xm

&y1 ... &yn

&x1’ ... &xm’

&y1 ... &yn

G1 G2

G1 G2 G1@G2

&x1 ... &xm

&y1 ... &yn

G1

&z1 ... &zp

&y1 ... &yn

G2

ε ε

cycle (G)

&x1 ... &xm

&x1 ... &xm

&x1 ... &xm

ε εG

&z

ε ε

&x1 ... &xm

G ::= {} { single node graph }
| {a : G} { an edge pointing to a graph }
| G1 ∪ G2 { graph union }
| &x := G { label the root node with an input marker }
| &y { a node graph with an output marker }
| () { empty graph }
| G1 ⊕ G2 { disjoint graph union }
| G1 @ G2 { append of two graphs }
| cycle(G) { graph with cycles }

Fig. 2. Graph Constructors

Example 1. The graph equivalent to that in Fig. 1(a) can be constructed as
follows (though not uniquely).

&z @ cycle((&z := {a : {a : &z1}} ∪ {b : {a : &z1}} ∪ {c : &z2})
⊕ (&z1 := {d : {}})
⊕ (&z2 := {c : &z2})) ut

For simplicity, we often write {a1 : G1, . . . , an : Gn} to denote {a1 : G1} ∪
· · · ∪ {an : Gn}, and (G1, . . . , Gn) to denote (G1 ⊕ · · · ⊕ Gn).

2.4 UnCAL Syntax

UnCAL (Unstructured Calculus) is an internal graph algebra for the graph query
language UnQL, and its core syntax is depicted in Fig. 3. It consists of the graph
constructors, variables, variable bindings, conditionals, and structural recursion.
We have already detailed the data constructors, while variables, variable bind-
ings and conditionals are self explanatory. Therefore, we will focus on structural
recursion, which is a powerful mechanism in UnCAL to describe graph transfor-
mations.

A function f on graphs is called a structural recursion if it is defined by the
following equations

6

e ::= {} | {l : e} | e ∪ e | &x := e | &y | ()
| e ⊕ e | e @ e | cycle(e) { constructor }
| $g { graph variable }
| let $g = e in e { variable binding }
| if l = l then e else e { conditional }
| rec(λ($l , $g).e)(e) { structural recursion application }

l ::= a | $l { label (a ∈ Label) and label variable }

Fig. 3. Core UnCAL Language

f({}) = {}
f({$l : $g}) = e @ f($g)
f($g1 ∪ $g2) = f($g1) ∪ f($g2),

And f can be encoded by rec(λ($l , $g).e). Despite its simplicity, the core UnCAL
is powerful enough to describe interesting graph transformation including all
graph queries (in UnQL) [4], and nontrivial model transformations [7].

Example 2. The following structural recursion a2d xc replaces all labels a with
d and removes edges labeled c.

a2d xc($db) = rec(λ($l , $g). if $l =a then {d : &}
else if $l =c then {ε : &}
else {$l : &}) ($db)

The nested ifs correspond to e in the above equations. Applying the function
a2d xc to the graph in Fig. 1(a) yields the graph in Fig. 1(c). ut

2.5 Revisiting Original Marker Analysis

There were actually previous work on marker analysis by original authors of
UnCAL. Figure 6 of Sect. A.1 in the appendix shows typing rules from the
technical report version of [2]. Note that we call type to denote sets of input and
output markers. Compared to our analysis, these rules are provided declaratively.
For example, the rule for if says that if sets of output markers in both branches
are equal, then the result have that set of output markers. It is not apparent how
we obtain the output marker of if if the branches have different sets of output
markers.

Buneman et al. [4] did mention optimization based on marker analysis, to
avoid evaluating unnecessary subexpressions. But it was mainly based on run-
time analysis. As we propose in the following sections, we can statically compute
the set of markers and further simplify the transformation itself.

7

2.6 Fusion Rules and Output Marker Analysis

Buneman et al. [3, 4] proposed the following fusion rules that aim to remove
intermediate results in successive applications of structural recursion rec.

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))

=


rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1))(e0)

if e2 does not depend on t2
rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1 @ rec(λ($l1, $t1).e1)($t1)))(e0)

for arbitrary e2

(1)
If you can statically guarantee that e1 does not produce any output marker,
then the second rule is promoted to the first rule, opening another optimization
opportunities.

Non-recursive Query. Now questions that might be asked would be how often
do such kind of “non-recursive” queries appear. Actually it frequently appears as
extraction or join. Extraction transformation is a transformation in which some
subgraph is simply extracted. It is achieved by direct reference of the bound
graph variable in the body of rec. Join is achieved by nesting of these extraction
transformations. Finite steps of edge traversals are expressed by this nesting.

Example 3. The following structural recursion consecutive extracts subgraphs
that can be accessible by traversing two connected edges of the same label.

consecutive($db) = rec(λ($l , $g). rec(λ($l ′, $g ′).
if $l = $l ′ then {result : $g ′}
else {})($g))($db)

For example, we have consecutive

(
• a //• X //•

◦
a 88rr
b

&&LL • a //• Y //•

)
= ◦ result //• X //•.

If this transformation is followed by rec(λ($l2, $t2).e2) where e2 referes to $t2,
the second condition of fusion rule applies, but it will be promoted to the first,
sice the body of rec in consecutive, which corresponds to e1 in the fusion rule,
does not have output markers. We revisit this case in Example 4 in Sect. 4.

2.7 Other Prior Rewriting Rules

Apart from fusion rules, the following rewriting rules for rec are proposed in [4]
for optimizations. Type of e is assumed to be DBZ

Z . They simplify the argument
of rec and increases chances of fusions.

rec(λ($l , $t).e)({}) = 1
⊕

&z∈Z &z := {}
rec(λ($l , $t).e)({l : d}) = e[l/$l][d/$t] @ rec(λ($l , $t).e)(d)
rec(λ($l , $t).e)(d1 ∪ d2) = rec(λ($l , $t).e)(d1) ∪ rec(λ($l , $t).e)(d2)
rec(λ($l , $t).e)(&x := d) = &x := 2(rec(λ($l , $t).e)(d))
rec(λ($l , $t).e)(&x) =

⊕
&z∈Z &z := &y .&z

rec(λ($l , $t).e)() = ()
rec(λ($l , $t).e)(d1 ⊕ d2) = rec(λ($l , $t).e)(d1) ⊕ rec(λ($l , $t).e)(d2)

8

&x := (&z := e) −→ &x.&z := e &x := (e1 ⊕ e2) −→ (&x := e1) ⊕ (&x := e2)

e ∪ {} −→ e {} ∪ e −→ e e ⊕ () −→ e () ⊕ e −→ e

() @ e −→ ()
e :: DBX

Y X ∩ Y = φ

cycle(e) −→ e

Fig. 4. Auxiliary rewriting rules

The first rule eliminates rec, while the second rule eliminates an edge from the
argument.

$t does not occur free in e

rec(λ($l , $t).e)(d1 @ d2) = rec(λ($l , $t).e)(d1) @ rec(λ($l , $t).e)(d2)

$t does not occur free in e

rec(λ($l , $t).e)(cycle(d)) = cycle(rec(λ($l , $t).e)(d))

Additional rules proposed by (full version of) Hidaka et al. [7] to further
simplify the body of rec are given in Fig. 4. The rules in the last line in Fig. 4
can be generalized by static analysis of the marker in the following section. And
given the static analysis, we can optimize further as described in Sect. 4.

3 Enhanced Static Analysis

This section proposes our enhanced marker analysis. Figure 5 shows the proposed
marker inference rules for UnCAL. Static environment Γ denotes mapping from
variables to their types. We assume that the types of free variables are given.
Since we focus on graph values, we omit rules for labels. Roughly speaking,
DBX

Y is a type for graphs that have X input markers exactly and have at most
Y output markers, which will be shown formally by Lemma 1.

The original typing rules were provided based on the subtyping rule

Γ ` e :: DBX
Y Y ⊆ Y ′

Γ ` e :: DBX
Y′

and required the arguments of ∪, ⊕, if to have identical sets of output markers.
Unlike the original rules, the proposed type system does not use the subtyping
rule directly for inference. Combined with the forward evaluation semantics F [[]]
that is summarized in [6], we have the following type safety property.

1 Original right hand side was {} in [4], but we corrected here.
2 We overload := in &x := g to denote renaming of each input marker &z in g to &x .&z .
5 Allowing output marker of e1 in e1@e2 that is not included in the input marker of e2

is actually our extension, for various reasons, but we believe this removal technique
is important for other purposes.

9

X · Y def
= {&x · &y | &x ∈ X , &y ∈ Y} & · &x = &x · &= &x (&x · &y) · &z = &x · (&y · &z)

Γ ` {} :: DB∅

Γ ` l :: Label
Γ ` e :: DBY

Γ ` {l : e} :: DBY

Γ ` e1 :: DBX
Y1

Γ ` e2 :: DBX
Y2

Γ ` e1 ∪ e2 :: DBX
Y1∪Y2

Γ ` () :: DB∅
∅

Γ ` e :: DBZ
Y

Γ ` &x := e :: DB
{&x}·Z
Y

Γ ` &y :: DB{&y}

Γ ` e1 :: DBX1
Y1

Γ ` e2 :: DBX2
Y2

X1 ∩ X2 = ∅
Γ ` e1 ⊕ e2 :: DBX1∪X2

Y1∪Y2

Γ ` e1 :: DBX1
Y1

Γ ` e2 :: DBX2
Y2

Γ ` e1 @ e2 :: DBX1
Y2

5
Γ ` e :: DBX

Y

Γ ` cycle(e) :: DBX
Y\X

Γ ($g) = DBX
Y

Γ ` $g :: DBX
Y

Γ ` ea :: DBX
Y

Γ{$l 7→ Label , $g 7→ DBY} ` eb :: DBZi
Zo

Z = Zi ∪ Zo

Γ ` rec(λ($l , $g).eb)(ea) :: DBX·Z
Y·Z

Γ ` l1 :: Label Γ ` l2 :: Label
Γ ` et :: DBX

Yt Γ ` ef :: DBX
Yf

Γ ` if l1 = l2 then et else ef :: DBX
Yt∪Yf

Γ ` e1 :: DBX1
Y1

Γ{$g 7→ DBX1
Y1

} ` e2 :: DBX2
Y2

Γ ` let $g = e1 in e2 :: DBX2
Y2

Fig. 5. UnCAL Static Typing (Marker Inference) Rules: Rules for Label are Omitted

Lemma 1 (Type Safety). Assume that g is the graph obtained by g = F [[e]]
for an expression e. Then, ` e :: DBX

Y implies both inMarker(g) = X and
outMarker(g) ⊆ Y.

Lemma 1 guarantees that the set of input markers estimated by the type infer-
ence is exact in the sense that the set of input markers generated by evaluation
exactly coincides with that of the inferred type. For the output markers, the
type system provides an over-approximation in the sense that the set of output
markers generated by evaluation is a subset of the inferred set of output mark-
ers. Since the statement on the input marker is a direct consequence of the rules
in [4], we focus that on the output markers and prove it. The proof, which is
based on induction on the structure of UnCAL expression, is in Sect. A.2 in the
appendix.

4 Enhanced Rewiring Optimization

This section proposes enhanced rewriting optimization rules based on the static
analysis shown in the previous section.

4.1 Rule for @ and Revised Fusion Rule

Statically-inferred markers enables us to optimize expressions much more. We
can generalize the rewriting rules in the last row of Fig. 4 by not just referring
to the pattern of subexpressions but its estimated markers, such as

10

() @ e −→ () ⇒ e1 :: DBX
∅

e1 @ e2 −→ e1
(2)

As we have seen in Sect. 2, we have two fusion rules for rec. Although the
first rule can be used to gain performance, the second rule is more complex so
less performance gain is expected. Using (2), we can relax the condition of the
first condition of the fusion rule (1) to increase chances to apply the first rule as
follows.

rec(λ($l2, $t2).e2)(rec(λ($l1, $t1).e1)(e0))
= rec(λ($l1, $t1). rec(λ($l2, $t2).e2)(e1))(e0)

if e2 does not depend on $t2, or e1 :: DBX
∅

Here, the underlined part is changed.

4.2 Further Optimization with Static Marker Information

For more general cases of @, we have the following rule.

e1 :: DBX
Y1

e2 :: DBY2
Z Y1 ∩ Y2 = ∅ RmY1〈〈e1〉〉 = e

e1 @ e2 −→ e

RmY〈〈e〉〉 denotes static removal of the set of output markers. It’s definition will
be given in the next subsection. It is necessary for correctness of the optimization
transformation.

4.2.1 Static Output-Marker Removal Algorithm and Soundness
The formal definition of RmY〈〈e〉〉 is shown below.

Rm∅〈〈e〉〉 = e RmX∪Y〈〈e〉〉 = RmY〈〈RmX 〈〈e〉〉〉〉 Rm{&y}〈〈{}〉〉 = {}
Rm{&y}〈〈()〉〉 = () Rm{&y}〈〈&y〉〉 = {} Rm{&y}〈〈&x 〉〉 = &x

Rm{&y}〈〈e1 � e2〉〉 = Rm{&y}〈〈e1〉〉 � Rm{&y}〈〈e2〉〉 (� ∈ {∪,⊕})
Rm{&y}〈〈&x := e〉〉 = (&x := Rm{&y}〈〈e〉〉)
Rm{&y}〈〈{l : e}〉〉 = {l : Rm{&y}〈〈e〉〉}

Rm{&y}〈〈e1 @ e2〉〉 = e1 @ Rm{&y}〈〈e2〉〉
Rm{&y}〈〈if b then e1 else e2〉〉 = if b then Rm{&y}〈〈e1〉〉 else Rm{&y}〈〈e2〉〉

Since the output markers of the result of @ are not affected by that of e1, e1

is not visited in the rule of @. In the following, IdYY and BotY∅ is respectively
defined as

⊕
&z∈Y &z := &z and

⊕
&z∈Y &z := {}.

e :: DBX
Y &y ∈ (Y \ X)

Rm{&y}〈〈cycle(e)〉〉 = cycle(Rm{&y}〈〈e〉〉)
e :: DBX

Y &y /∈ (Y \ X)
Rm{&y}〈〈cycle(e)〉〉 = cycle(e)

$v :: DBX
Y &y /∈ Y

Rm{&y}〈〈$v〉〉 = $v
$v :: DBX

Y &y ∈ Y

Rm{&y}〈〈$v〉〉 = $v @ (Bot
{&y}
∅ ⊕ Id

Y\{&y}
Y\{&y})

11

The first rule of $v says that according to the safety of type inference, &y is
guaranteed not to result at run-time, so the expression $v remains unchanged.
The second rule actually removes the output marker &yj , but static removal is
impossible. So the removal is deferred till run-time. The output node marked &yj

is connected to node produced by &y := {}. Since the latter node has no output
marker, the original output marker disappears from the graph produced by the
evaluation. The rest of the &yk := &yk does no operation on the marker. Since
estimation Y is the upper bound, the output maker may not be produced at run-
time. If it is the case, connection with ε-edge by @ does not occur, and the nodes
produced by the := expressions are left unreachable, so the transformation is still
valid. As another side effect, @ may connect identically marked output nodes
to single node. However, the graph before and after this “funneling” connection
are bisimilar, since every leaf node with identical output markers are bisimilar
by definition. Should the output nodes are to be further connected to other
input nodes, the target node is always single, because more than one node with
identical input marker is disallowed by the data model. So this connection does
no harm. Note that the second rule increases the size of the expression, so it
may increase the cost of evaluation.

rec(λ($l , $t).eb)(ea) :: DBX·Z
Y·Z &y ∈ Y

Rm{&y.&z|&z∈Z}〈〈rec(λ($l , $t).eb)(ea)〉〉 = rec(λ($l , $t).eb)(Rm{&y}〈〈ea〉〉)

For rec, one output marker &y in ea corresponds to {&y} · Z = {&y .&z | &z ∈ Z}
in the result. So removal of &y from ea results in removal of all of the {&y} · Z.
So only removal of all of {&y .&z | &z ∈ Z} at a time is allowed.

Lemma 2 (Soundness of Static Output-Marker Removal Algorithm).
Assume that G = (V, E, I, O) is a graph obtained by G = F [[e]] for an expres-
sion e, and e′ is the expression obtained by RmY〈〈e〉〉. Then, we have F [[e′]] =
(V, E, I, {(v, &y) ∈ O | &y /∈ Y}).

Lemma 2 guarantees that no output marker in Y appers at run-time if RmY〈〈e〉〉
is evaluated.

4.2.2 Plugging Expression to Output Marker Expression
The following rewriting rule is to plug an expression into another through cor-
respondingly marked node.

{l : &y} @ (&y := e) −→ {l : e}

This kind of rewriting was actually implicitly used in the exemplification of
optimization in [4], but was not generalized. We can generalize this rewriting as

e @ (&y := e′) −→
{

RmY\&y〈〈e〉〉[e
′
/&y] if &y ∈ Y where e :: DBX

Y
RmY〈〈e〉〉 otherwise.

where e[e′/&y] denotes substitution of &y by e′ in e. Since nullrary constructors
{}, (), and &x 6= &y do not produce output marker &y , the substitution takes

12

no effect and the rule in the latter case apply. So we focus on the former case
in the sequel. For most of the constructors the substitution rules are rather
straightforward:

&y[e/&y] = e

(e1 � e2)[e/&y] = (e1[e/&y]) � (e2[e/&y]) (� ∈ {∪,⊕})
(&x := e)[e′/&y] = (&x := (e[e′/&y]))

{l : e}[e′/&y] = {l : (e[e′/&y])}
(e1 @ e2)[e/&y] = e1 @ (e2[e/&y])

(if b then e1 else e2)[e/&y] = if b then (e1[e/&y]) else (e2[e/&y])

Since the final output marker for @ is not affected by that of e1, e1 is not visited
in the rule of @. For cycle, we should be careful to avoid capturing of marker.

cycle(e)[e′/&y] =
{
cycle(e[e′/&y]) if (Y ′ ∩ X) = ∅ where e :: DBX

Y e′ :: DBY′

cycle(e)[e′/&y] otherwise.

The above rule says that if &y will be a “free” marker in e, that is, the output
markers in e′, namely Y ′ will not be captured by cycle, then we can plug e′ into
output marker expression in e. If some of the output markers in Y ′ are included
in X , then the renaming is necessary. As suggested in the full version of [3],
markers in X instead of those in Y ′ should be renamed. And that renaming can
be compensated outside of cycle as follows:

cycle(e) def= (
⊕
&x∈X

&x := &tmpx) @ cycle(e[&tmpx1/&x 1] . . . [&tmpxM/&xM])

where &x 1, . . . , &xM = X are the markers to be renamed, and X of e :: DBX
Y

is used. Note that in the renaming, not only output markers, but also input
markers are renamed. &tmpx1 , . . . , &tmpxM are corresponding fresh (temporary)
markers. The left hand side of @ recovers the original name of the markers. After
renaming by cycle, no marker is captured anymore, so substitution is guaranteed
to succeed. For variable reference and rec, static substitution is impossible. So
we resort to the following generic “fall back” rule.

e ∈ {$v , rec()()} e :: DBX
Y Y = {&y1, . . . , &yj , . . . , &yn}

e[e′/&yj] = e @

(
&y1 := &y1, . . . , &yj−1 := &yj−1, &yj := e′,
&yj−1 := &yj−1, . . . , &yn := &yn

)
The “fall back” rule is used for rec because unlike output marker removal
algorithm, we can not just plug e into ea since that will not plug e but
rec(λ($l , $t).eb)(e) in the result. We could have used the inverse rec(λ($l , $t).eb)−1

to plug rec(λ($l , $t).eb)−1(e′) instead, but the inverse does not always exist in
general.

The overall rewriting is conducted by two mutually recursive functions as
follows: driver function P first apply itself to subexpressions recursively, and

13

then apply function F that implements −→ and other rewriting rules recursively
such as fusions described in this paper, on the result of P .

With respect to proposed rewriting rules in this section, the following theorem
hold.

Theorem 1 (Soundness of Rewriting). If e −→ e′, then F [[e]] is bisimilar
to F [[e′]].

It can be proved by simple induction on the structure of UnCAL expressions,
and omitted here.

Example 4. The following transformation that apply selection after consecutive
in Example 3

rec(λ($l1, $g1). if $l1 = a then {$l1 : $g1} else {})(consecutive($db))
is rewritten as follows:

{ expand definition of consecutive and apply 2nd fusion rule }

=

rec(λ($l , $g). rec(λ($l1, $g1). if $l1 = a then {$l1 : $g1} else {})
(rec(λ($l ′, $g ′). if $l = $l ′ then {result : $g ′} else {})($g)

@ rec(λ($l , $g). rec(λ($l ′, $g ′).
if $l = $l ′ then {result : $g ′} else {})($g))($g)))($db)

{ (2) }

=
rec(λ($l , $g). rec(λ($l1, $g1). if $l1 = a then {$l1 : $g1} else {})

(rec(λ($l ′, $g ′). if $l = $l ′ then {result : $g ′} else {})($g)))($db)

{ 2nd fusion rule, (2), rec rule for if and {l : d}, static label comparison }
= rec(λ($l , $g). rec(λ($l ′, $g ′).{})($g))($db)

This example demonstrates the second fusion rule promotes to the first. The
top level edges of the result of consecutive are always labeled result while the
selection selects subgraphs under edges labeled a. So the result will always be
empty, and correspondingly the body of rec in the final result is {}.

More examples can be found in Sect. A.3 in the appendix.

5 Implementation and Performance Evaluation

This section reports preliminary performance evaluations.

5.1 Implementation in GRoundTram

All of the transformation in the paper are implemented in GRoundTram, or Graph
Roundtrip Transformation for Models, which is a system to build a bidirectional
transformation between two models (graphs). All the source codes are available
online at www.biglab.org. The following experimental results are obtained by
the system.

14

Table 1. Summary of experiments (running time is in CPU seconds)

direction no rewriting previous [4, 7] ours

Class2RDB
forward 1.18 0.68 0.68
backward 14.5 7.99 7.89

PIM2PSM
forward 0.08 0.77 (2*3) 0.07 (2*13)
backward 1.62 3.64 0.75

C2Osel
forward 0.04 0.04 (2*1) 0.05 (2*11)
backward 2.26 0.26 0.27

C2Osel’
forward 0.05 0.06 (2*1) 0.04 (2*11)
backward 2.53 2.58 1.26

UnQL
forward 0.022 0.016 (1*1) 0.010 (1*1)
backward 0.85 0.30 0.15

5.2 Performance Results

Performance evaluation was conducted on GRoundTram, running on MacOSX
over MacBookPro 17 inch, with 3.06 GHz Intel Core 2 Duo CPU. Time com-
plexity is PTIME for the size of input graph[4], and exponential in the size
(number of compositions or nesting of recs) of the transformation. In the ex-
periments, the size of input data (graph) is not very large (up to a hundred of
nodes).

Table 1 shows the experimental results. Each running time includes time
for forward and backward transformations [6], and for backward transforma-
tions, algorithm for edge-renaming is used, and no modification on the target is
actually given. However, we suppose presence of modification would not make
much difference in the running time. Running time of forward transformation in
which rewriting is applied (last two columns) includes time for rewriting. Rewrit-
ing took 0.006 CPU seconds at the worst case (PIM2PSM, ours). Class2RDB
stands for class diagram to table diagram transformation, PIM2PSM for plat-
form independent model to platform specific model transformation, C2Osel is
for transformation of customer oriented database into order oriented database,
followed by a simple selection, and UnQL is the example that is extracted from
our previous paper [7], which was borrowed from [4]. It is a composition of two
recs. Concrete plugging optimizations in this example can be traced in Sect. A.3
in the appendix.

The numbers in parentheses show how often the fusion transformation hap-
pened. For example, PIM2PSM led to 3 fusions based on the second rule, and
further enhanced rewriting led to 10 more fusion rule applications, all of which
promoted to the first rule via proposed rewriting rule (2). Same promotions
happened to C2Osel. Except for C2Osel’, a run-time optimization in which un-
reachable parts are removed after every application of rec is applied. Enhanced
rewriting led to performance improvements in both forward and backward eval-
uations, except C2Osel. Comparing “previous” with “no rewriting”, PIM2PSM
and C2Osel’ led to slowdown. These slowdown are explained as follows. The

15

fusion turns composition of recs to their nesting. In the presence of the run-
time optimization, composition is advantageous than nesting when only small
part of the result is passed to the subsequent recs, which will run faster than
when passed entire results (including unreachable parts). Once nested, interme-
diate result is not produced, but the run-time optimization is suppressed because
every execution of the inner rec traverses the input graph. C2Osel’ in which run-
time optimization is turned off, shows that the enhanced rewriting itself lead to
performance improvements.

6 Related Work

Some optimization rules were mentioned in [7], but relationship with static
marker analysis was not covered in depth. By enhanced marker analysis and
rewriting rules in present paper, all the rules in [7] can be generalized uniformly.

An implementation of rewriting optimizations was reported in [6] but con-
crete strategies were not included in the paper.

Full (technical report) version of [3] dealt with plugging constructor-only
expressions into output marker expressions. It was motivated by authors need
to express semantics of @ at the constructor expression level and not graph data
level as in [4]. It also mentioned renaming of markers to avoid capture of the
output markers in the cycle expressions6. We do attempt the same thing at the
expression level but we argue here more formally.

The technical report also mentioned the semantics of rec on the cycle con-
structor expressions, even when the body expressions refer to graph variables,
although marker environment that maps markers to connected subgraphs in-
troduced there makes the semantics complex. The journal version [4] did not
include this semantics on the cycle constructor expressions. But we could use
the semantics to enhance rewriting rules for rec with cycle arguments.

The journal version mentioned run-time evaluation strategy in which only
necessary components of strucural recursion is executed. For example, only &z 1

component of rec in &z 1 @ rec()() is evaluated.
A static analysis of UnCAL was described in [1], but the main motivation

was to analyze structure of graphs using graph schema.

7 Conclusion

In this paper, under the context of graph transformation using UnCAL graph
algebra, enhanced static marker inference is first formalized. Fusion rule becomes
more powerful thanks to the static marker analysis. Further rewriting rules based
on this inference are also explored. Marker renaming for capture avoidance is
formalized to support the rewriting rules.

6 In the technical report, cycle was represented by parallel equations, without cycle
operator in current UnCAL form.

16

Preliminary performance evaluation shows the usefulness of the optimiza-
tion for various non-trivial transformations in the field of software engineering
research.

Under the context of bidirectional graph transformations [6], one of the ad-
vantage of static analysis is that we can keep implementation of bidirectional in-
terpreter intact. Future work under this context includes reasoning about effects
on the backward updatability. Although rewriting preserves well-behavedness of
bidirectional transformations, backward transformation before and after rewrit-
ing may accept different update operations. Our conjecture is that simplified
transformation accepts more updates, but this argument requires further discus-
sions.

Acknowledgments We thank reviewers and Dr. Kazuyuki Asada for their thor-
ough comments on earlier versions of the paper. The research was supported in
part by the Grand-Challenging Project on “Linguistic Foundation for Bidirec-
tional Model Transformation” from the National Institute of Informatics, En-
couragement of Young Scientists (B) of the Grant-in-Aid for Scientific Research
No. 20700035.

References

1. A. A. Benczúr and B. Kósa. Static analysis of structural recursion in semistructured
databases and its consequences. In ADBIS, pages 189–203, 2004.

2. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to un-
structured data. In ICDT, volume 1186 of LNCS, pages 336–350, 1997.

3. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization techniques for unstructured data. In SIGMOD, pages 505–516, 1996.

4. P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query language and algebra
for semistructured data based on structural recursion. VLDB J., 9(1):76–110, 2000.

5. K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange,
G. Taentzer, D. Varró, and S. Varró-Gyapay. Model transformation by
graph transformation: A comparative study. Presented at MTiP 2005.
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/mtip05.pdf, 2005.

6. S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirection-
alizing graph transformations. In ACM SIGPLAN International Conference on
Functional Programming, pages 205–216. ACM, 2010.

7. S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards a compositional approach
to model transformation for software development. In SAC 2009, pages 468–475,
2009.

8. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

9. I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano. Toward bidirec-
tionalization of ATL with GRoundTram. In ICMT, June 2011. To appear.

10. P. Stevens. Bidirectional model transformations in QVT: Semantic issues and open
questions. In MoDELS 2007, pages 1–15, 2007.

11. P. Wadler. Deforestation: Transforming programs to eliminate trees. In
Proc. ESOP (LNCS 300), pages 344–358, 1988.

17

A Appendix

A.1 UnCAL Original Static Typing Rules

a ∈ U
a : Label

y a label variable

y : Label

t a tree variable of type TreeX
t : TreeX

{} : TreeX

X ∈ X
X : TreeX

l : Label Q : TreeX
{l ⇒ Q} : TreeX

l1 : Label l2 : Label

l1 = l2 : Bool

l1 : Label . . . ln : Label p a variable

p(l1, . . . , ln) : Bool

b : Bool Q1 : TreeX Q2 : TreeX
if b then Q1 else Q2 : TreeX

Q1 : TreeY . . . Qm : TreeY

(X1 := Q1, . . . , Xm := Qm) : Tree
{X1,...,Xm}
Y

Q1 : TreeX Q2 : TreeX
Q1 ∪ Q2 : TreeX

Q1 : TreeX Q2 : TreeX
Y

Q1 @X Q2 : TreeY

y label variable t tree variable of type TreeY Q1 : TreeX
X Q2 : TreeY

gextX (λ(y, t).Q1)(Q2) : TreeX
X·Y

Fig. 6. UnCAL Original Static Typing Rules (TR ver. of [2])

Note that gext is an old notation of structural recursion rec.

A.2 Proof of Lemma 1 (Refined Type Sefety)

The proof of Lemma 1 is based on induction on the structure of UnCAL expres-
sion.

Proof. Base case:
Free variables: We assume that the type of free variables such as $db (input
of the entire transformation) is available.
{} : By the definition of F [[{}]], outMarker(g) = ∅. By the type inference rule,
{} :: DB∅. Therefore, ∅ = outMarker(g) ⊆ Y = ∅.
&y : outMarker(F [[&y]]) = {&y} and &y :: DB{{&y}. &y :: DB{&y}. Therefore,
{&y} = outMarker(g) ⊆ Y = {&y}. Another nullrary constructor () : is treated
similarly.
Inductive case:
{l : e}: Suppose e :: DBY , F [[e]] = g, and F [[{l : e}]] = g′. Then outMarker(g′) =
outMarker(g) by the definition of F [[]] and {l : e} :: DBY by the type inference
rule. Now suppose outMarker(g) ⊆ Y as an induction hypothesis. Then we have
outMarker(g) = outMarker(g′) ⊆ Y . &m := e is treated similarly.
e1 ∪ e2: Suppose e1 :: DBX

Y1
, e2 :: DBX

Y2
, F [[e1]] = g1, F [[e2]] = g2, and

18

F [[e1 ∪ e2]] = g′. Then outMarker(g′) = outMarker(g1) ∪ outMarker(g2) by
the definition of F [[]] and e1 ∪ e2 :: DBY1∪Y2 by the type inference rule.
Now suppose outMarker(g1) ⊆ Y1 and outMarker(g2) ⊆ Y2 as induction hy-
potheses. Then, by the property of the set union, we have outMarker(g′) =
outMarker(g1) ∪ outMarker(g2) ⊆ Y1 ∪ Y2. ⊕ is treated similarly because type
inference and evaluation rules for the output markers are identical to those of
∪.
e1 @ e2: Suppose e1 :: DBX

Y1
, e2 :: DBZ

Y2
, F [[e1]] = g1, F [[e2]] = g2, and

F [[e1 @ e2]] = g′. Then outMarker(g′) = outMarker(g2) by the definition of F [[]]
and e1 @ e2 :: DBX

Y2
by the type inference rule. Observe that (after connect-

ing with matching input markers in g2) the output markers in g1 are ignored.
Now suppose outMarker(g2) ⊆ Y2 as an induction hypothesis. Then we have
outMarker(g′) = outMarker(g2) ⊆ Y2.
cycle(e): Suppose e :: DBX

Y , F [[e]] = g, and F [[cycle(e)]] = g′. Then outMarker(g′) =
outMarker(g)\ inMarker(g) by the definition of F [[]] and cycle(e) :: DBY\X by the
type inference rule. Now suppose outMarker(g) ⊆ Y as an induction hypothesis.
Then, since X = inMarker(g) by the exactness of input marker inference, we
have outMarker(g′) = outMarker(g) \ inMarker(g) ⊆ Y \ X .
if b then e1 else e2: Suppose e1 :: DBX

Y1
, e2 :: DBX

Y2
, F [[e1]] = g1, F [[e2]] = g2,

and F [[if b then e1 else e2]] = g′. Then, depending on the value of b,
outMarker(g′) = outMarker(g1) or outMarker(g′) = outMarker(g2) by the def-
inition of F [[]] and if b then e1 else e2 :: DBX

Y1∪Y2
by the type inference rule.

Now suppose outMarker(g1) ⊆ Y1 and outMarker(g2) ⊆ Y2 as induction hypothe-
ses and do case analysis for b. If b = true, then outMarker(g′) = outMarker(g1),
so outMarker(g′) = outMarker(g1) ⊆ Y1. For the other case, outMarker(g′) =
outMarker(g2) ⊆ Y2. For either case, by the property of the set union, we have
outMarker(g′) ⊆ Y1 ∪ Y2.
rec(λ($l , $t).eb)(ea) : Suppose ea :: DBX

Y , F [[ea]] = g, eb :: DBZi

Zo
, and

F [[rec(λ($l , $t).eb)(ea)]] = g′. Then, outMarker(g′) = {&y .&z | &y ∈ outMarker(g), &z ∈
Z} by the definition of F [[]] where Z = Zi ∪ Zo, and rec(λ($l , $t).eb)(ea) ::
DBX·Z

Y·Z by the type inference rule. Now suppose outMarker(g) ⊆ Y as induction
hypotheses. Then we have outMarker(g′) = {&y .&z | &y ∈ outMarker(g), &z ∈
Z} ⊆ {&y .&z | &y ∈ Y , &z ∈ Z}. Observe that F [[]] does not use set of markers
produced by eb at run-time. Readers may wonder how the output markers
are accessed via graph variable t, i.e., Y bound by rec affect the final result.
Buneman et al. [4] does not explicitly mention, but it is natural to interpret as
follows: Usually Y is disjoint from Zi and therefore the output nodes marked by
Y are not connected to S1 node 7. Therefore we can safely ignore such Y in eb.
Bound Variables : Variable $t is introduced by rec(λ($l , $t).eb)(ea) and $t is
bound to each of the subgraphs reachable from each edge. Similarly to [4], the
type inference rule estimates the output markers as identical to that for ea. So
assuming type safety for ea, type safety for $t immediately follows.
The above analysis covers all the expressions and thus conclude the proof. ut

7 S1 node is a sort of Hub nodes, each of which corresponds to node produced by ea

19

A.3 Concrete Rewriting Examples

This section shows input and ouput of optimizations used in “UnQL” trans-
formation appeared in Sect. 5. For input transformation Q1, our system pro-
duces Q2 by applying first fusion rule. Previously the translation from Q2 to Q3
was not automatic, but algorithm in Sect. 4 enables deriving Q3 automatically.

Q3 can be obtained by the plugging based rewriting rules. For example,

(&z1 := (&z1 := {"name": &z2}, &z2 := {"name": &z2}))
@ (&z2 := &z1&z2, &z1 := &z1&z1)

becomes

&z1 := (&z1 := {"name": &z1&z2}, &z2 := {"name": &z1&z2}).

This pattern frequently appears after rec fusion because rec often appears in
the pattern &z @ rec()() because from the UnQL surface syntax, only one
component of structural recursion is necessary and the idiom &z @ implements
this projection.

Q 1.
&z1@rec(\ ($L,$T).

if $L = "name"

then (&z1 := {"name": &z2},

&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {$L: &z2}))

(&z1@rec(\ ($L,$T).

if $L = "name"

then (&z1 := {"name": &z1},

&z2 := {"typeName": &z2})

else if $L = "primitiveDataType"

then (&z1 := {"primitiveDataType": &z2},

&z2 := {"primitiveDataType": &z2})

else (&z1 := {$L: &z1}, &z2 := {$L: &z2}))

($db))

Q 2.
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@

rec(\ (Sa1,$T).

if Sa1="name"

then (&z1 := (&z1 := {"name": &z2},

&z2 := {"name": &z2})

@ (&z2 := &z1&z2, &z1 := &z1&z1),

&z2 := (&z1 := &z1,

&z2 := {"typeName": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1))

else if Sa1 = "primitiveDataType"

then (&z1 := (&z1 := &z1,

20

&z2 := {"primitiveDataType": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1),

&z2 := (&z1 := &z1,

&z2 := {"primitiveDataType": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1))

else (&z1 := if $Sa1 = "name"

then (&z1 := {"name": &z2},

&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {$Sa1: &z2})

@ (&z2 := &z1&z2, &z1 := &z1&z1),

&z2 := if $Sa1 = "name"

then (&z1 := {"name": &z2},

&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {$Sa1: &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1)))($db)

Q 3.
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@

rec(\ ($Sa1,$T).

if $Sa1="name"

then (&z1&z1 := {"name": &z1&z2},

&z1&z2 := {"name": &z1&z2},

&z2&z1 := &z2&z1,

&z2&z2 := {"typeName": &z2&z2})

else if $Sa1 = "primitiveDataType"

then (&z1&z1 := &z2&z1,

&z1&z2 := {"primitiveDataType": &z2&z2},

&z2&z1 := &z2&z1,

&z2&z2 := {"primitiveDataType": &z2&z2}

else (&z1 := if $Sa1 = "name"

then (&z1 := {"name": &z1&z2},

&z2 := {"name": &z1&z2})

else (&z1 := &z1&z1,

&z2 := {$Sa1: &z1&z2}),

&z2 := if $Sa1 = "name"

then (&z1 := {"name": &z2&z2},

&z2 := {"name": &z2&z2})

else (&z1 := &z2&z1,

&z2 := {$Sa1: &z2&z2})

))($db)

