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Abstract

View updating problem is concerned with translating a view update into a cor-
responding update against the base data source. In our previous work, we solve
the view updating problem in which both sources and views are represented by
graph-structured data for general purposes. Since the solution is based on a sort
of program inversion techniques, it often requires expensive computation to find
the translation of view updating. The problem is that the expensive computation
may be in vain when the updated view is invalid in the sense that either there is no
candidate of corresponding sources or the corresponding source does not conform
to user’s intention. In this paper, we present a method for checking view updata-
bility in order to know whether the updated view is valid or not before computing
the corresponding sources. To achieve a simple computation of view updatabil-
ity checking, we introduce a new graph schema whose conformance is defined by
graph simulation. Although the idea of our schema comes from the simulation-
based graph schema proposed by Buneman et al., our schema can describe neces-
sity of out-going edges, which was impossible in their schema. This improvement
helps us to give a precise solution for view updatability checking.

1 Introduction

View updating problem is concerned with translating a view update into a correspond-
ing update against a base data source. The problem has been extensively studied for
decades, but it remains as a big challenge [2, 9, 11, 10, 17, 3], particularly when we
want to treat graph structured data instead of relational database. It is, however, natural
to adopt graph structured data to represent compound information in which their com-
ponents are related in a complicated manner. For instance, in model-driven software



(a) UnCAL schema S, (b) Graph data G

Figure 1: UnCAL graph schema of Buneman et al. and graph data

development, a relation between software components forms a graph as in UML [1]
and MOF [20]. View updating on graph structures assists a bidirectional software de-
velopment in which we can consistently manage multiple components.

Our previous work [13] gave a solution to the view updating problem in which both
sources and views are represented by graph structures. In our solution, we employed
a graph query language UnCAL [6] to describe view definitions which are transforma-
tions (queries) over graph structured data. One of the main advantages of UnCAL is
its solid semantics foundation and efficient implementation. We do not have to care
either termination or evaluation order even if an input graph data has cycle and shared
nodes. Another advantage of UnCAL is that it provides a user-friendly interface lan-
guage UnQL in which one can use the select-where syntax like SQL to query to graph
data with regular path patterns. We solved the view updating problem for UnCAL by
using trace information and an automatic inversion technique [13].

One limitation of the current view updating for UnCAL is its inefficieny in dealing
with invalid view updates; it tries to propagate any view updates to the source. Since
view updating often requires expensive computation, the attempt may fail and be in
vain. Some updated view may have no corresponding updates. Some updated view
may induce undesirable updates. These invalid view updates had better be detected
before running the procedure.

In this paper, we propose a method for checking whether view updatability is valid
or not before running view update translation. Our idea is to reduce the view updata-
bility checking problem to computation of the range of a graph query followed by
validation whether the updated view is in this range. Our contributions are two-fold.
First, we introduce new graph schema, called VU-schema, to specify a set of graph data
of desirable sources. Second, we show how to compute the range of a given UnCAL
query for the source graphs conforming to such schema. Since the computed range is
also represented by an analogous form to our schema, we can check view updatability
by inspecting if an updated view conforms to the range.

More concrerely, our graph schema is simulation-based, where the schema con-
formance is checked through the existence of a graph simulation. The idea has been
proposed by Buneman et al. [4] who themselves invented the graph algebra UnCAL.
Figure 1 shows their graph schema S;, which we call UnCAL schema, and a graph
G pp conforming to Sy, which represents a part of some phonebook data. The Un-
CAL schema is edge-labeled, similarly to UnCAL graph data. The difference between
schemas and graphs is that edge labels in a schema are predicates on edge labels in
graph data. In the schema Sp, regular languages are used as the predicates: for in-
stance, [ 0—9] + is satisfied by any sequence of numeral characters and tel |[mobile
is satisfied by both tel and mobile. The schema conformance is checked by finding
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Figure 2: Examples of VU-schemas

a simulation, that is, informally, a relation from nodes in the data to those in the schema
with checking the predicates on their outgoing edges.

The problem of the UnCAL schema is that they cannot force existence of some
specific edges. For example, suppose that G, does not have the edge labeled with 03.
The graph still conforms to S even though it is strange as a database for phone books.
In extreme case, even the graph obtained by removing all edges except entry edges
conforms to S;. The problem has already been pointed out in [4], which is caused by
the unidirectionality of the simulation that is a basis of their schema conformance. It is
not desirable to use the UnCAL schema in the context of view updating.

Our graph schema, VU-schema, overcomes the weakness of the UnCAL schema
so that it can enforce the existence of specific edges. VU-schema is represented by a
graph which has labels at not only edges but also nodes. Figure 2 shows two examples
So and S5 of the VU-schemas. While each every label is a predicate like that of Un-
CAL schemas, every node label is a finite set of predicates each of which requires the
existence of an outgoing edge satisfying it in data graphs. The schema conformance of
a data graph against a VU-schema is checked by finding a simulation between the data
graph and the schema after assigning a set of labels of its outgoing edges to each node
in the data graph. For example, the second node from the top in the VU-schema Ss has
a single predicate tel |mobile as its label. It requires for the corresponding node
to have an outgoing edge labeled with either tel or mobile, while the node is not
required to have an area edge. On the other hand, the second node from the top in the
VU-schema S3 has a set of two predicates (tel|mobile) and (area|mobile).
It requires for the corresponding node to have outgoing edges, one of which is la-
beled with either tel or mobile and another of which is labeled with either area
or mobile. Therefore, the node must have both tel and area edges when it has
no mobile edge. The UnCAL schema of Buneman’s et al. can be regarded as a spe-
cial one of VU-schema in which every node is labeled with an empty set of predicates.
Note that all the schemas S, So and S5 have the same graph structure. In VU-schemas,
we can represent various sorts of constraints by varying a set of predicates at the node
label.

The rest of this paper is organized as follows. After explaining the graph models
of UnCAL in Section 2, including the basic concepts of graph simulation and a known
algorithm for finding a simulation, we briefly review UnCAL, the graph algebra being
used to write graph queries whose updatability is to be checked, in Section 3. Then, we
move to our framework, introducing a new graph schema, VU-schema, for describing



richer constraints that can enforce existence of specific edges in Section 4, and showing
how the range of a graph query can be efficiently computed in Section 5. Finally, we
discuss the related work in Section 6 and concludes the paper in Section 7.

2 UnCAL graphs and simulation

We start with introducing the notion of edge-labeled graphs, called UnCAL graph [6].
In this section, we present the UnCAL graphs and a simulation on them. Throughout
the paper, let £ denote a finite set of edge labels in data graphs and let M denote a set
of markers used for connecting UnCAL graphs. Every marker is written as a symbol
starting with & and the set M forms a monoid (&, -) with a unit element & which is
called default marker.

2.1 UnCAL graphs

An UnCAL graph is a quadruple (V, E, I, O) where V is aset of nodes, E C V' x (LU
{e}) x V is a set of edges, I is a partial function from M to V', and O C V x M. When
v = I(&x) is defined for some &z € M, we call v input node; When (v, &y) € O
for v € V, we call v output node. These nodes play an important role to synthesize
graphs as shown later. Intuitively, an input node is seen as a root node of graphs and an
output node is used to connect with an input node of the same marker. Every UnCAL
graph has at least one input node. We write u — v for an edge (u,a,v). For a € L,
Ela] denotes a subset of E whose edge has label a. An edge labeled with the special
symbol ¢, called € edge, behaves like empty transition in automata theory and is written
as u —-» v. We write 1 -3 v € E when there exist edges u --+ v1, v1 —--» vy, and

. .. . e*x.a %
v, --+ v in K for some vy, ...,v,. Similarly, we write v — v when u --» ¢ and
a .
t — v with some t.

2.2 Extended simulation and bisimulation

The notion of simulation on UnCAL graphs is defined as extended simulation which is
aware of markers and ¢ edges. Let G; = (V1, E1, I1,01) and Go = (Va, Es, I3, 03)
be UnCAL graphs. A relation < C Vj x V; is called extended simulation if it satisfies
all the following conditions:

(a) if w1 < wg and uy 2% 01, then there exists vo € Vi such that v; < vo and
£%*

.a
U2 — V23

d) ifug < ug and uy = Il(&l‘), then us = IQ(&J}),

(¢) if uy < ua, ug 5 vy and (uq1, &y) € Oq, then us 5 vy and (ug, &y) € Oq;
(d) if I (&z) is defined, then [; (&) < Ir(&x).

We write G1 < G2 when there exists an extended simulation between their nodes.
Henzinger et al. proposes a procedure to find a simulation between nodes of
graphs [12]. Figure 3 shows the procedure which is specialized for UnCAL graphs
to find an extended simulation. We use pre,(S) (i = 1, 2) for a function which returns
{u-*veE |acL ve S}if Sisasetofnodesand {u € V; | u - v € S}
if S is a set of edges. The procedure assumes that input UnCAL graphs have no ¢



input: two UnCAL graphs G1 = (V1, E1, I1,01) and Gy = (Va, Ea, I, O2) with no
€ edge

output: a partition IT of V; U F; and a simulating function r : IT — 2V2 U 272,
II:={Vi} U{E1[a] | a € L}.

r(Vy) :== Va.

r(Erla]) :== Esla] (a € L).

while there exists P, Q € II such that P N pre,(Q) # () and r(P) Z pre,(r(Q)) do
let (P, P") = (PNpre;(Q), P\ pre,(Q)) in

IT:= (IT\ {P}) U {P'}

r(P') :=r(P) N prey(r(Q))

if P # (Qthen Il :=TTU{P"}; r(P") := r(P).

Figure 3: Procedure FindSim for a simulation

edge since all £ edges can be eliminated in a way similar to ¢ transition removal for
automata. See [12] for further detail of the procedure itself. For partition I and func-
tion 7 which are an output of the procedure, we define a simulation by {(v1,v2) | U €
I, v € UNVy, vy € 7(U)}. Although the procedure FindSim does not consider
conditions (b),(c) and (d) on markers, they can be checked in the body of the while
loop to find an extended simulation.

When both relation R and its inverse relation R~1 are extended simulations, we
call R extended bisimulation. The reader may recall weak bisimulation [18] as an anal-
ogous definition of bisimulation of graphs containing empty transitions like ¢ edges
of UnCAL graphs. Note that the notions of extended bisimulation and weak bisimu-
lation are incomparable. The detailed comparison is found in [6]. In the rest of the
paper, we say just simulation and bisimulation for extended simulation and extended
bisimulation, respectively.

We say that a graph query f is bisimulation-generic when f(G1) and f(G>) are
bisimilar for any bisimilar UnCAL graphs GG; and G5. Every graph queries represented
in the graph algebra UnCAL is bisimulation-generic. UnCAL identifies graphs with
any bisimilar graphs.

2.3 Finding a simulation over infinite graphs

Henzinger et al. originally presents the aforementioned procedure for finding a simu-
lation over infinite graphs [12]. This is because that the termination of the procedure
does not require finiteness of graphs. When we have a finite representation of infinite
graphs with some conditions mentioned later, we can apply the procedure FindSim for
infinite graphs. Following Henzinger et al., we introduce the notion of ‘effectiveness’
of graphs.

First let us define effectiveness of classes. For a set S, a class C C 2° is called
effective representation over S when

(1) Sec;
(2) a € T is decidable for any a € S and any T' € C;
(3) T = () is decidable for any T' € C;

(4) C is effectively closed under boolean operations.



For instance, a set of all regular languages is an effective representation over a set of
strings, and a set of finite number of intervals of real numbers is an effective represen-
tation over real numbers.

Now we define effectiveness of UnCAL graphs. We say that an UnCAL graph
G = (V, E, 1,0) is effective when there exists an effective representation C over VUFE
such that V' € C, Efa] € C for all a € £, and C is effectively closed under the
pre; operation in the procedure FindSim. The procedure FindSim always terminates
when both GG; and G> are effective UnCAL graphs as shown in [12]. We can observe
that it is not necessary for G2 to be exactly effective. We introduce pseudo-effective
representation for classes by replacing condition (4) into

(4)" C is effectively closed under union and intersection, and P C (@ is decidable for
PQeC.

Since it only requires decidability of subsumption instead of effective closedness under
complement, we can claim that pseudo-effectiveness has a relaxed form of effective-
ness. As we define pseudo-effective graphs in a way similar to effective graphs, the
observation above leads the following theorem as shown in [12].

Theorem 2.1 For an effective UnCAL graph G and a pseudo-effective UnCAL graph
G, the procedure FindSim terminates when a finite simulation exists between them.

3 UnCAL: graph algebra

We present a graph algebra UnCAL [5, 6] used for specifying graph queries on UnCAL
graphs. In this section, we introduce eight constructors for UnCAL graphs and syntax
and semantics of UnCAL algebra.

Every UnCAL graph can be constructed by the following eight constructors:

{} a single node graph with no edge;

{l: G} a graph with a single input node whose out-going edge is labeled with [
and points to a graph G;

G1 UG,  a graph consisting of input nodes each of which points to the corre-
sponding input node of G; and G2 with € edges;

&z := G  agraph obtained by replacing input markers &z in G with &z - &z;
&y a graph of a single output node whose marker is &y;

G1 © G2  a graph consisting of two graphs GG; and G5 whose input markers are
disjoint;

G1 @ G5 agraph obtained by gluing each output node in G; with the correspond-
ing input node in G;

cycle(G)  a graph obtained by connecting each output node in G with the corre-
sponding input node in G using € edges.



A graph algebra UnCAL is defined by adding two constructs, a conditional branch
and structural recursion to the graph constructors above. The syntax of UnCAL is given
by

M:={} |{L:M} | MUM | &x:=M | &y

| Mo M | M@M | cycle(M) (CONSTRUCTORS)
| if P(L) then M else M (CONDITIONAL)
| $¢ (GRAPH VARIABLE)
| rec(A\($1,8g).M)(M) (RECURSION)
L:= §$l (LABEL VARIABLE)
| C (LABEL CONSTANT)
| L+ L (LABEL CONCATENATION)

where M and L range over UnCAL expressions and label expressions, respectively.
The symbol P ranges over effectively representable predicates on £. For example,
it includes the predicate p—, that “whether the label equals to a” and the predicate
Dasp« that “whether the label matches a regular expression axb+”. Although we re-
strict label operations to only concatenation in the syntax above, it is easy to introduce
other simple string operation or arithmetics. An expression rec(A($1, $¢).M7)(M>) is
a structural recursion on UnCAL graphs obtained by evaluation of M5. The function
part rec(A\($1,$g). M) represents a function f satisfying

4y = {4
fHL:G}) = MSl:=L,8g:=G]@ f(G)
f(G1UG2) = f(G1)U f(G2)

where M;[$! := L,$g := G] denotes a substitution of L and G for $/ and $g in M.
Since all UnCAL graphs can be expressed in the form of {l; : G1}U...U{l,, : G}, the
expression f(Ms) can be evaluated using the three rules no matter what is obtained by
evaluation of Ms. The second clause shows that each output node of graphs obtained
from M;[$! := L,$g := G] is glued with the corresponding input node of graphs
obtained from f(G) with its succeeding subgraph G. This recursive function can be
implemented through memoizing the result for each subgraph even for the case where
input graphs are circular because the function should return the same result for the same
subgraph. Indeed, it is known that there is more efficient way to implement structural
recursions of UnCAL as mentioned later. It is easy to write mutual recursive functions
by using multiple input nodes.

We present the formal semantics of UnCAL expressions in Fig.4, where [M],
denotes a result of evaluation of an UnCAL expression M under an environment p. An
environment p is a function mapping from label variables and graph variables to labels
and graphs, respectively, and the initial environment maps from a special variable $db
to the source graph. dom(f) denotes the domain of function f and sub(G, u) denotes
a subgraph of G’ whose root is u. We use p and v for Skolem functions to generate
new nodes associated with their arguments. The conditions on input/output markers
described in the definition of the semantics are statically inferred [6]. Hence, a set Z in
the definition for rec can be statically computed from M; .

Here, we give a brief explanation only for the rec construct which shows a char-
acteristic feature of the semantics of UnCAL in Fig.4. This semantics is called bulk
semantics [6], which differs from the semantics described by the informal explanation



[{Hpe = ({v},0,{& — v},0) where v is fresh

{L:MYp=({v}UV,{v-u|u=I&)}UE,{&+— v},0)
where (V,E,I1,0)=[M]p, !=][L]p, andwv isfresh
[[Ml UMQ]]p: ({Um |m€ Z}leu‘/Q,
{Vm -=» ug | up, = Ix(m), k=1,2} U Ey U Es,
{mw— v, |meZ},0,U0)
where (VlvEl,Ilvol) = ﬂMl]]P, (V23E2712a02) = HMQ]];O’
Z = dom(I;) = dom(Iz), and vy, withm € Z are fresh
[&z := M]p = (V,E,{&z -m > v |m € dom(I),I(m) =v},O)
where (V,E,I,0) = [M]p
[&z]p = (v,0,{& — v}, {(v,&2)}) where v is fresh
[[Ml D MQHp = (Vl UVe, By UFEy 11 U .[2,01 U 02)
where (‘/17E1711701) = [[Ml]]p’ (V27E2712702) = [[M2ﬂp7
and dom(I,) and dom(I;) are disjoint
[My @ Ma]p = (Vi U Va,{v1 -=» va | (v1,m) € O1, Ia(m) =vo} U Ey U E, I1,02)
Where (‘/17E17-[1701) - HMl]]p’ (V27E2712702) = IIMQ]]pa
[eycle(M)]p = ({vm | I(m) = u} UV,
{vm -=»u | I(m)=u}U{v-->u|(v,m) €O, I(m)=u}UE,
{m = vy | m € dom(I)},{(v,m) € O|m¢& dom(I)})

where (V,E,I,0)=[M]p withv,, € dom(I) are fresh

[if P(L) then M, else M2]]P:{ %%ﬁz I)ftliggﬂe)t
[$91p = p(89)

[[rec(/\<$l7$g>M1)(M2)]]p = (‘/a EfTOmE U EfrovalaO)
where G2 = (‘/Q,EQ,IQ,OQ) = [[Mgﬂp,
(VeaEmIe?Oe) = [[Mlﬂ(pu {$l = d7$g = SUb(G27u)})
fore:,LueEg,
Z =1.UO.,
V={p(u,e)|u€V,,e€ B3} U{v(m,v) | me ZveVp},
Efromp = {pu(u,€) 5 p(v,e) | u —5 v € B},
EfmmV* {V(mv)77+#(ue)|e*’04) € ks, I ( )*u}
U{p(u,e) --» v(m,v) |e=_— v € Ey, (u,m) € O.},
E. ={v(m,v) --» v(m,u) | m € Z,v --» u € Es},
I={n-m— Z/(m,v) | Iy(n) =v,m € Z},
O ={(v(m,v),n-m) | (v,n) € Oz,m € Z}

8o =p8)  [Clo=C  [f(L,. s Ladlp = F([Lalps- . [Lalp)

Figure 4: Bulk semantics of UnCAL algebra



above, called recursive semantics. In the bulk semantics, we can evaluate a rec expres-
sion by two steps: first we compute a ‘local result’ for each edge of the input graph
independently, then we combine those results to obtain the output graph. Buneman
et al. showed the bulk semantics coincides with the recursive semantics. We adopt the
bulk semantics because it makes the range computation easier.

In the bulk semantics, an UnCAL expression rec(A\($1, $g).M;)(Ms) is evaluated
in the following way, where 1 and v are used for Skolem functions to generate a new
node: (1) obtain a graph G5 by evaluating Ms; (2) for each edge e in G, evaluate
M, with binding $/ and $g to the edge label and the succeeding graph, respectively.
Replace each node v with p(v,e) in the graph to obtain a graph G.; (3) generate a
node v(m,v) for each node v and marker m in Go; (4) for each edge e = v — _in
G4, connect node v(m, v) with input nodes of marker m using ¢ edges; (5) for each
edge e = - — v in G2, connect output nodes of marker m with node v(m, v) using
¢ edges; (6) for each input/output node of marker n in G, a node v(m,v) becomes
input/output node of marker n - m in the result of the rec expression.

Example 3.1 An UnCAL expression

X($1,8g). if P—.(31) then {d : &}
rec else if P_.($1) then & ($db)
else {$7: &}

replaces every a edge into a d edge and contract all c edges. When the variable $db
b
b € o/\\o_ e
binds a graph oioogg the expression returns a graph e->-e_ “eLe which is
oy
c € o @ ¢
-

g

b
bisimilar to .g./\\.\g. which do not have ¢ edges.
b

4 Simulation-based Graph Schema

Validity of view updating depends on whether the corresponding source satisfies con-
straints specified by users. We introduce a new kind of graph schema, VU-schema, to
represent the constraints. Since our graph schema has a structure analogous to UnCAL
graphs, the range of an UnCAL query corresponding to a source schema is easily com-
puted as shown in the next section. In this section, we first review the UnCAL graph
schema [4] and its limitation. After that, we shall define our graph schema which
compensates the drawback.

Both the UnCAL schema and VU-schema are given using predicates on a set £
of labels. As we use subsets of L as the predicates, a € A means that a satisfies a
predicate A. We fix an effective representation C over £ and consider predicates that
are elements of C in the rest of the paper.

4.1 UnCAL Schema

An UnCAL schema developed by Buneman et al. is given by an edge-labeled graph,
denoted by a quadruple (V, E, I, O), as same as UnCAL graphs. Each label is a pred-
icate on L, that is an element of C. The schema conformance of an UnCAL graph G



against an UnCAL schema S is checked by the presence of simulation from the nodes
of G to those of S. Since the definition of simulation assumes that the domains of edge
labels of two graphs are the same, we modify the UnCAL schema S for its edge labels
to range over L through the expansion procedure below before finding a simulation.

Definition 4.1 The expansion S of an UnCAL schema S = (V,E,I,O) is given
by an UnCAL graph (V, E> I, O) with a possibly infinite number of edges, where
E* ={u-%v|u AveR ac A)}. We say an UnCAL graph G conforms to .S
ifG < S%. O

From the finiteness of a set of edges of an UnCAL schema S and the effectiveness
of predicates on .S, we can check the schema conformance by the procedure FindSim.
Note that we can use a finite representation of expansion of the UnCAL schema for
implementation. We do not have to take into account its infiniteness.

We may directly compute a simulation G < .S by replacing the condition (a) with
the following one as shown in [4]:

. . . A
(@)’ if u1 < ug and uq =9 v1, then there exists v such that v; < vg, us =4 Vg, and
a € A.

It is obvious that this definition is equivalent to the schema conformance based on
expansion.

One of major advantages of the UnCAL schema is that we can easily compute the
range of an UnCAL expression for a given schema. The range is obtained by the eval-
uation of UnCAL expressions on the UnCAL schema in a way similar to that on Un-
CAL graphs because the UnCAL schema has the same structure as an UnCAL graph.
UnCAL schema has another advantage that we can check subsumption between two
UnCAL schemas using the same simulation algorithm as the conformance checking.

Even though it has these nice properties, UnCAL Schema is not suitable to check
view updatability. Buneman et al. themselves pointed out that UnCAL schema cannot
enforce the presence of some label [4]. This comes from the definition of the schema
conformance of a graph G against an UnCAL schema S, which requires the existence
of the corresponding node of (expansion of) S for all nodes of G, but not the other
way around. In this sense, all edges in the UnCAL schema are optional. UnCAL
schema cannot describe necessary edges. Since a node with no edge is simulated by any
node according to the condition (a) (or (a)’), even the single-node graph with no edge
conforms to any UnCAL schema. It is not desirable for view updatability checking
because we always have to allow for the source graph to be updated into the single
node graph that has no information at all.

4.2 VU-schema

To solve the problem that the UnCAL schema cannot describe necessity of edges, we
revise the definition of the graph schema and its conformance. Our schema, called VU-
schema, is represented by a graph in which not only edges but also nodes are labeled.
A VU-schema is formally represented by a quintuple (V, E, 1,0, [—]), where V, E, I
and O are the same as the UnCAL schema and | —] is a labeling function from the set
V of nodes to the powerset 2¢(C 226) of predicates.

Each edge label of a VU-schema is a predicate in C like UnCAL schema. Each
node label of a VU-schema is a finite set of predicates in C each of which requires
the corresponding node of a data graph to have an outgoing edge whose label satisfies

10



the predicate. The schema conformance for VU-schema is defined by preprocessing
both the data graph and the schema though that for the UnCAL schema is defined
by preprocessing the schema only. In the following definition, for predicates (that is,
subsets of C) Ay, ..., Ay, A, we write {A1,..., A} E Awhen (ANA; #D)A---A
(ANA, #0).

Definition 4.2 The look-ahead graph of an UnCAL graph G = (Vg, Eg, Ig,Og) is
given by an UnCAL graph (Vg U VS, E°, Ig,O¢), where VS = {v° | v € Vg} and
EO:{vi»vo|v€VG,A:{a€£|vi>u€EG}}U{v°i>u|vi>
u € Eg}. The expansion of a VU-schema S = (Vs, Eg,Is,Og, [—]) is given by an
UnCAL graph (Vs U VS®, EZ, I, Og) with a possibly infinite number of nodes and
edges, where V§° = {v>® | v € Vg} and EF = {v A,y | [v] E A, Ais finite} U
{vooiwt\viwhaeA}. We say G conforms to S if G° < S°°. O

Informally, simulation is checked after transforming the UnCAL graph so that each
of its nodes conveys the information of all labels of the outgoing edges in one additional
edge. For a node with no outgoing edge, the empty set is assigned as an edge label in

the look-ahead graph. For example, the look-ahead graph of an UnCAL graph < :
b

. {a,b} 2a_ e L °
is represented by o —>'e Z°0 .
b o — 0

The relation |= in the definition above is used to enforce the presence of edges
whose label satisfies a predicate of node labels of the VU-schema. The advantage of
VU-schema is that we can specify both necessity and optionality of some edges. Even
if an edge label does not satisfy all predicates at the corresponding node in the VU-
schema, the edge is allowed to exist as far as it satisfies the label of the corresponding
edge in the VU-schema.

If §°° is pseudo-effective for any VU-schema S, we can employ the procedure
FindSim to check the schema conformance from the effectiveness of G° and The-
orem 2.1. In order for S* to be pseudo-effective, it is necessary that for any fi-
nite sets P, C C, the subsumption between {A C L | P = A, Aisfinite} and
{ACL|QE A, Aisfinite} is decidable. It is shown by the following lemma.

Lemmad4.3 Let P = {Py,..., P} and Q = {Q1,...,Q,} be a finite subset of C.
The following two statements are equivalent and both are decidable:

(I) For any finite set A C £, P = A implies Q = A.
(II) Forany 1 <14 < n, there exists 1 < j < m such that P; C Q;.

PROOF. Since (I) immediately implies (I), it suffices to show that (I) implies (IT). We
prove it by contradiction. Suppose that (I) holds but (IT) does not. From the negation
of (II), we can take 1 < ig < n such that P; N Q;, # 0 forall 1 < j < m. When A
is a finite set obtained by selecting an element of P; N Qin for each j, it is obvious that
P = Aand @ = A. This contradicts (I). We can conclude the equivalence between
(I) and (II). Since (IT) is decidable from the effectiveness of C, (I) is also decidable. W

From the discussion above, we can claim that S is pseudo-effective for all VU-
schema S. It implies that the schema conformance of an UnCAL graph G against a
VU-schema S can be checked by using the procedure FindSim. From these facts and
Theorem 2.1, the termination of the procedure depends on the existence of a finite
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simulation between G° and S°°. It is easy to see the existence of the finite simulation
because it suffices to consider a finite subgraph of S whose edge label occurs in G°,
which is finite. Therefore, we obtain the termination of the procedure FindSim for the
schema conformance against VU-schemas.

Theorem 4.4 It is decidable whether a finite UnCAL graph conforms to a VU-schema.

5 Range computation of UnCAL

The range of an UnCAL expression e for a VU-schema S is a set of possible results of
the evaluation of e where the source graph conforms to S. We compute the range in
a way similar to the method for the UnCAL schema presented by Buneman et al [4].
The basic idea is that we almost directly evaluate an UnCAL expression for a given
VU-schema S by exploiting the fact that the schema has an analogous structure to an
UnCAL graph. In this section, we present a method for computing the range as a VU-
schema in order to check the view updatability by the schema conformance. Since the
current definition of VU-schema is less expressive to represent the precise range, we
extend VU-schema following the method of Buneman et al.

5.1 Extension of VU-schema

Even though VU-schema is enough expressive to describe a specification of UnCAL
graphs, VU-schema cannot represent the precise range of an UnCAL expression. This
is because VU-schema cannot describe dependencies between subgraphs. It may re-
mind the readers that the range of tree transformations for a regular tree language can-
not be generally represented by any regular tree language [23]. For example, consider a
VU-schema for the source ) ——=> () and an UnCAL expression rec(A($/, $g) {31 :

{$7 : {}}})(8db). The schema is conformed to by a graph of a single edge labeled

with numeral sequences; the UnCAL expression duplicates each edge from the root,

1

[ ] .
e.g., for UnCAL graphs e < and e T o’ the expression returns o Tee and
2

1 1
L : : : , respectively. The exact range should be “a set of graphs in which the first
2
2
and the second edge from the root have the same label of a numerical sequence. There
is no VU-schema representing the range, however. A naive method may overestimate

the range by the VU-schema () ST 0 ST () , which is not precise because it

contains an impossible view e e, This problem has already been pointed out
by Buneman et al. [4]. They also gave a (partial) solution to it by introducing scoped
variables, which is applicable to our VU-schema.

Dependency among edge labels can be represented by shared variables. In the
example above, the range is represented by

0 0 0

[0-91+ N {ala=x} [0-91+ N {ala==z}

using a shared variable x. It accepts graphs in which the first and the second edge have
the same label. We can introduce multiple variables in an extended VU-schema. Each
variable z in the extended VU-schema S = (V, E, I, O, [—]) has a scope, denoted by
a VU-schema S, = (V,, E,, I;, O, [—]), which obeys the following rule:
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) ifu % v e B, thenu,v € V;

3) ifu - veE ugV,andv € V,, thenv € dom(I,);
4) if m € M and I(m) € V,, then I,(m) = I(m);

5) ifuiwjeE,uer andv € V., (u,m) € O, for some m € M;

6) ifu A, v € F,, then x may be used as a label constant in the set A;
(7) ifv € V, and A € [v], then x may be used as a label constant in the set A;
(8) the scopes of two distinct variables are either related by subsumption or disjoint.

We call k-variable VU-schema for an extended VU-schema with k scoped variables.
The ordinary VU-schemas presented in Section 4 can be seen as (O-variable VU-
schemas. The schema conformance against a k-variable VU-schema is defined by
expansion and simulation in the same way as that against the ordinary VU-schema.
While we expand schemas for each edge in Definition 4.1 and Definition 4.2, we
expand a k-variable VU-schema for each scope at the same time. The expansion of
k-variable VU-schema is inductively defined as follows.

Definition 5.1 Let S = (V, E,I,0,[—]) be a k-variable VU-schema with scoped
variables xg, ..., zr_1. The expansion S of S is a (possibly infinite) UnCAL graph
given by S}, in the following procedure:

(i) Elimination of node labels: a VU-schema Sy is given by the expansion S of
S as shown Definition 4.2, where xq, ..., x)_1 are regarded as label constants.
For each variable x;, all node labels are eliminated in a scope S,;, and (Sp), is
naturally defined.

(ii) Elimination of variables: S;11 = (V;41, E;y1,1, O) is obtained by removing a
variable z; from S; = (V;, E;, I, O), where

Vier = (Vi\ (Vi)z,) U{va | v € (Vi)a,, a € L (va = viorv € (Ii)z,)},
Eiy1 = (B \ (Ei)z;) U{uag

in which {[x := a] denotes a label obtained by replacing  with a in {.

lz;:=a

—>}va|uL>vGExi,a€£}

We say a UnCAL graph G conform to S if G° < §°°.

The expanded schema S for k-variable VU-schema is pseudo-effective since the
number of steps for the expansion is finite. The order of variables does not affect
the result of the expansion because of the scope rule (8).

Another improvement for computing of precise ranges is the introduction of € edges
labeled with predicates in C. This will be used for the range of if expressions in Un-
CAL. Since the expansion of these ¢ edges replaces each predicate of their labels with
labels that satisfies it, ¢ edges labeled with the empty set are removed and the other ¢
edges are left. We will show their usage in the next subsection.

We have to remark that these improvements are not sufficient for the computation
of the exact range, unfortunately. A k-variable schema can describe dependencies be-
tween edge labels but not between structures of subgraphs. This problem is inevitable
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because of the expressiveness of (k-variable) VU-schema, which is similar to the well-
known problem as a forward typechecking of XML transformation [23]. Hence, we
just show the soundness of view updatability checking that “the view is in the com-
puted range if there exists the corresponding source” in this paper. We compromise the
completeness which is the opposite. Since Buneman et al. have shown “the computed
range is the best approximation in UnCAL schema” instead of the completeness [4,
Theorem 16], we expect the same result for our VU-schema. This is left as our future
work.

5.2 Range computation

We can compute the range of an UnCAL expression for a given VU-schema in the same
way as the evaluation of the expression because the VU-schema has an analogous struc-
ture to an UnCAL graph. Though it can be seen as a kind of abstract interpretation [8],
we do not require a complicated domain such as CPO or complete lattices employed by
general abstract interpretation since recursion in UnCAL can be evaluated in a simple
bulk semantics as shown in Section 3.

The range of an UnCAL expression is computed as a k-variable VU-schema where
k depends on the number of rec constructs in the expression. In Fig. 5 and Fig. 6, we
define the range computation function Z,, and the label function £, with a variable
environment p. The environment p is a function which maps label variables and graph
variables to labels and VU-schema, respectively. The initial environment is a function
{$db — S, } with a VU-schema S, for the specification of source graphs. 7, is a
function from UnCAL expressions to k-variable VU-schemas. £, is a function from
label expressions to labels. Skolem functions p and v in the definition of Z, which are
used in that of [—] in Fig.4. Note that the function Z does not compute node labels
which stands for necessity of edges in VU-schema. We put them for the k-variable
VU-schema of the computed range after removal of ¢ edges, which will be explained
later.

Since the ranges of most of UnCAL expressions are computed in a way similar to
their semantics, we explain the range computation only for if and rec constructs. Our
range computation follows the method presented in [4]* except that necessity of edges
has to be concerned.

The range of UnCAL expression if P(L) then M; else M, depends on the
result of the condition P(L). If we simply compute it by union of the ranges for
M and M>, the computed range can easily be imprecise. For example, consider an
UnCAL expression rec(A($7,3g).if P—,($]) then & else {$! : &})($db) which
represents a graph query which contracts all a edges. If we take union of ranges for
then- and else clauses as the range of the whole expression, we lose information which
edges are labeled with a in the source. Therefore, we introduce special € edges labeled
with predicates corresponding the condition for the if expression. Informally, when P
is a predicate (that is, a set of labels) for the conditional branch, the range of the if

o P__ the range of M;
expressionis ) < .
P the range of My

The range of UnCAL expression rec(A($1, $g).M;)(Mz) is computed through the
bulk semantics presented in Section 3. We first compute the range Sy, of the argument
My, evaluate the expression M, for each of the edge of Sys,, and combine all the
results. For each edge e of Sys,, we introduce a scoped variable z., whose scope is

*The concrete range computation for UnCAL schemas is found their technical report of the same title.

14



Z,{}) = ({v},0,{& — v},0,—) where v is fresh
T,({L: M}) = ({v} UV, {v 5 u| u € dom(I)} UE, {& > v},0, -)
where (V,E,I,0,—)=71Z,(M), A=L,(L), anduv isfresh
Z,(MyUDMs;) = ({vm |meM}UV; UV,
{vm 5 up | up = Ix(m), k=1,2} U By U By,
{m— vy, |meM},0,UO,,—)

where (V17E17]17017_) :Ip(Ml)
(‘/27E2712a027_) :IP(M2)
M = dom(Iy) = dom(Is)
U With m € M are fresh

I,(&z:=M) = (V,E,{&z - mw—v|I(m)=v},0,—)
where (V,E,I,0,—) =1,(M)

I,(&z) = ({v},0,{& — v},{(v,&z)},—) where v is fresh

T,(My & My) = (Vi UVa, By U By, I; ULy, 01 U Oy, —)

where (‘/17E17117017_) :IP(MI)
(‘/27E27]2a027_) :IP(MQ)
I, and I, are disjoint

I,(My @ My) = (Vi U Vs,
c
{v1 ==+ va | (v1,m) € O1,12(m) = v} UE; UEs, I1,09,—)

where (Vi, By, 11,01, —) = Z,(M;)
(‘/2,E27]25027_) :IP(MQ)

Z,(cycle(M)) = ({vm | I(m) = u}j UV,

{vm Eiu | I(m) =u}U{v —l—:+u| (v,m) € 0,I(m) =u}UE,
{m — vy | I(m) = u}, {(v,m) € O | m ¢ dom(I)},—)

where (V,E,I1,0,—)=71I,(M)
Z,(89) = p(39)

Figure 5: Range computation of UnCAL expressions (except if and rec)
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Z,(if P(L) then M; else Ms) =
({vm | me MUV UV,

P{L, (L)} Pn{c,(L)}
{Um -—> Ul | Ul zfl(m)}U{Um -2 U2 |U2 :I2(m)}UE1UE2a

{m — vy, |me M}, 0,UO,, —)
where (V1, By, 11,01, —) = T,(M)
(Va, Ba, 12,02, —) = I,(Mz)
M = dom(I,) = dom(Is)
vy With m € M are fresh
Z,(rec(A($1,89).M1)(M2)) = (V, Efrome U Efromv, 1,0, —)
where G = (Va, By, 1,02, —) = I,(My),
Ge = (Vev Ee, I, Oe, _) = IpU{$l>—>(ze:A),$g>—>sub(Gz7u)}(Ml)
with scoped variables z, fore = _ A, _E€ Fy
Z =1, U0,
V ={w(u,e) |u€V,e € E3}U{v(m,v) | me ZveVa}
Efrome = {m(u, e) 4, p(v,e) | u 4, vE L}

ANz,
Efromv = {v(m,v) rj£+ ' wlu,e) le=wv A, e Es, I.(m) =u}

L
U{p(u,e) -=» v(m,v) |e=_— v € Ea,(u,m) € O.}
with fresh variables v, .y form € Z and e € Ey,

E. = {v(m,v) i vim,u) | mée Z,v Aue Es}
I={n-m—v(mv)|I(n)=v,me 7},
O ={(v(m,v),n-m) | (v,n) € Oyy;m e Z}

Ly(31) =p(8l), L(C)=C. Ly(f(L1,...,Ln)) = f(Lp(La), .., Lp(Ln))

Figure 6: Range computations for if, rec and label expressions
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G., to compute the range of M;. Intuitively, z. corresponds to an edge label of a graph
conforming to Sjy,, which is bound to $I. This scoped variable is used to share the
edge label on computing the range G, that is a ‘local’ result of M at the edge e.

The procedure of the range computation explained so far is the same as the original
one for UnCAL schemas [4]. For the range computation on VU-schema, we have to
take into account node labels for necessary edges. They are put after removal of €
edges for the computed range.

. A
We remove ¢ edges by replacing all occurrence of © --» uy --» ... -=» u,, — v

. A Lo ... - .
with v — v, which is a traditional way for ¢ transition removal in automata theory.

Since an ¢ edge in VU-schemas is labeled with a subset of £, we integrate all con-
. . A A An A .
cerning labels in the replacement. For a path u S S S w, = vin

VU-schema, we replace it with A v where A’ = {aec Al AL #0,..., A, #0}.
This replacement may be applied in multiple times for the same non-c edge like ¢
transition removal in automata theory.

Now we are ready to put node labels on the VU-schema after the ¢ edge removal.
Let v be a node in the VU-schema and E,, a set of all outgoing edges of u. For a scoped
variable z., we know that it comes from a non-¢ edge e from the procedure of the range
computation. When P, denotes a set of predicates labeled for a source node of e, the
label [u] contains a predicate

A\{acAlze () P}

PeP,

for each edge ¢/ = u A, e E,,. The predicate forces to have an edge which is
originated from some necessity edges. Since these kinds of predicates is defined for
each edge in E,,, the cardinality of [u] coincides with that of E,,.

Let ZT be a range computing function which returns VU-schemas after adding
node labels to the result of the function Z. The definition of 7 basically follows that
of [—]. It can be shown by simple induction on the structure of UnCAL expression
that [M], conforms to I;(M ) conforms to for any UnCAL expression M and any
environments p and p’ such that p'($g) conforms to p($g) for all graph variables $g
and p’($1) = p($1) for all label variables $/. Therefore we have the following theorem.

Theorem 5.2 Let .S be a VU-schema, G be a finite UnCAL graph conforming to S,
and @ be an UnCAL expression. Then the UnCAL graph [[Qﬂ{g dbq) conforms to

I{+$dbn—>5'} (Q)

From the decidability of the schema conformance on k-variable VU-schema, this
theorem shows that it is decidable whether there exists the corresponding source for
the updated view. Note that our view updatability checking is sound but not complete,
however. Since the computed range is just an approximation, there can be the case
where no source graph corresponds to an updated view in the range. As aforemen-
tioned, it is impossible to compute the exact range in the present VU-schema.

6 Related work

Many models of graph transformation have been proposed in the literature [22, 16].
The reason why we choose UnCAL to describe graph queries is that UnCAL has a
solution to the view updating problem [13].
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We introduce a simulation-based graph schema, VU-schema, following UnCAL
schema [4]. It helps us to easily compute the range of graph queries. We improve
UnCAL schema so that it can describe both necessity and optionality of edges.

There exists other work to describe a specification of graphs. Klarlund and
Schwartzbach [15] proposed graph types to describe a shape of graphs for the same
purpose as ours. A graph type is represented by a tree with pointers which is analogous
to a rooted graph we deal with. However, we cannot use graph types in the context of
view updatability checking of UnCAL graph queries because two bisimilar graphs that
UnCAL regards as equivalent ones can have different graph types.

Computing the image of graph transformation as a VU-schema can be considered
as a kind of type inferences. It reminds us of a relation with a type inference for poly-
morphic records [21, 19] by identifying edge labels with fields of records (or objects).
Major difference is that none of them can deal with dynamically evaluated values for
the names of fields. In contrast, VU-schema allows edge labels to have any kind of val-
ues, e.g., strings, integers and reals which can be a result of evaluation. Additionally,
their record types have the same problem on graph equivalence in UnCAL as graph
types.

Another possible approach to describing graph structures is to use monadic second-
order logic (MSO). Although MSO formulae can describe more flexible constraints
on the shape of graphs than VU-schema, we must carefully choose an appropriate
subclass of MSO theory to be decidable. Inaba et al.[14] attack the validation problem
of UnCAL by reducing it into decidable MSO formulae. They cannot deal with all
expressions (of UnCAL) as we can tackle, however, because that graph transformation
defined by an MSO formula is linear-size increase from the definition [7], i.e., the size
of outputs is linearly bounded with that of inputs. It is easy to define quadratic-size
increase transformation through nested structural recursion.

7 Conclusion

We have proposed a new graph schema, VU-schema, and a novel method for com-
puting the range of a graph query for sources conforming to a schema in order to
check view updatability for the query. VU-schema is simulation-based in the sense
that the schema conformance is checked by finding simulation relation between a given
schema and graph. The idea is borrowed from UnCAL schema of Buneman et al., but
have improved their schema so that it can enforce necessity and optionality of certain
edges. Our framework presented in this report will be implemented as a part of our sys-
tem, GRoundTram (http://www.biglab.org/), which involves view updating
on graph queries.
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