
ISSN 1884-0760

GRACE TECHNICAL REPORTS

Context-Preserving XQuery Fusion

Hiroyuki Kato Soichiro Hidaka Zhenjiang Hu
Keisuke Nakano Yasunori Ishihara

GRACE-TR 2010–07 September 2010

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/



The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.



Context-Preserving XQuery Fusion

H. Kato1, S. Hidaka1, Z. Hu1, K. Nakano2, and Y. Ishihara3

1 National Institute of Informatics, Japan,
{kato, hidaka, hu}@nii.ac.jp

2 The University of Electro-Communications, Japan,
ksk@cs.uec.ac.jp

3 Osaka University, Japan,
ishihara@ist.osaka-u.ac.jp

Abstract. XQuery is a DBPL for querying XML databases. The semantics of
XQuery is context sensitive and requires preservation of document order. In this
paper, we propose, as far as we are aware, the first XQuery fusion that can deal
with both the document order and the context of XQuery expressions. More
specifically, we carefully design a context representation of XQuery expressions
based on the Dewey order encoding, develop a context-preserving XQuery fusion
for ordered trees by static emulation of the XML store, and prove that our fusion
is correct. Our XQuery fusion has been implemented, and all the examples in this
paper have passed the system.

1 Introduction

Fusion [21, 2, 5] is a well-known technique for improving efficiency by removing un-
necessary intermediate data from the computation. Although it has been applied to op-
timize query languages such as SQL [3] and object query languages [5], it remains a
challenge to implement fusion for XQuery optimization. This is because XQuery has
more complicated semantics [12]; it is context sensitive and requires preservation of
document order. One may consider, for example, the following naive fusion transfor-
mation4 (as studied in [4]).

〈e〉E1, . . . , En〈/e〉/c 7→ σc(E1), . . . , σc(En) 5 (F)

This transformation works correctly only if the order of the XML document and the
context can be ignored. However, order is an important issue in XML documents [6, 1],
and various index structure for ordered trees have been developed for XML documents
[20, 14, 24]. When we view an XML document as an ordered tree, an existing fusion
transformation like (F) by naive elimination of element constructors does not work cor-
rectly because the context, which is a navigation of newly constructed trees, is missing
during the transformation.

4 Analogous to relational algebra operators, σc is used as a selection, which extracts data with
their element name being c.

5 We use ”narrow” angle brackets for XML tags. For example, we use 〈e〉 instead of <e>.



<na>
  <lhs>
    <item><a/></item>
    <item><b/></item>
  </lhs>
  <rhs>
    <item><c/></item>
    <item><d/></item>
  </rhs>
</na>

<sa>
  <lhs>
    <item><c/></item>
    <item><d/></item>
  </lhs>
  <rhs>
    <item><a/></item>
    <item><b/></item>
  </rhs>
</sa>

<sa>

    (<lhs>/na/rhs/item</lhs>,

     <rhs>/na/lhs/item</rhs>)

</sa>

Fig. 1. Source XML: S (left). XQuery expression: em (middle) and the serialized result: T (right).

Consider the simple case illustrated in Figure 1, where the query em (the middle) is
applied to the source S (the left), and the target T (the right) is obtained as the serialized
result. Let us apply the following query e1 to the serialized T ,

e1 : let $v := (/sa/rhs, /sa/lhs) return $v/item.

Since the semantics of “axis access” by using “/” in XQuery (and XPath) requires sort-
ing without duplicates in the document order, the correct result is the following se-
quence of “item” elements:

〈item〉〈c/〉〈/item〉, 〈item〉〈d/〉〈/item〉, 〈item〉〈a/〉〈/item〉, 〈item〉〈b/〉〈/item〉.

However, for the composite query e1 ◦ em, by unfolding the expression em, we can get

let $t := 〈sa〉{(〈lhs〉/na/rhs/item〈/lhs〉, 〈rhs〉/na/lhs/item〈/rhs〉)}〈/sa〉
return let $v := ($t/rhs, $t/lhs) return $v/item.

Now if we perform the calculation according to the context-insensitive fusion rule (F):

e1 ◦ em

→ {(variable expansion for $t); (F)}
let $v := (〈rhs〉/na/lhs/item〈/rhs〉, 〈lhs〉/na/rhs/item〈/lhs〉)
return $v/item

→ {(variable expansion for $v); (F)}
(/na/lhs/item, /na/rhs/item)

then evaluating the transformed query (/na/lhs/item, /na/rhs/item) on S gives

〈item〉〈a/〉〈/item〉, 〈item〉〈b/〉〈/item〉, 〈item〉〈c/〉〈/item〉, 〈item〉〈d/〉〈/item〉

whose order of “item” elements is different from the expected result. Furthermore, if
we consider the query e2 on T :

e2 : let $v := /sa/rhs/item return $v/..



then although the expected result of e2 to T is the “rhs” element, the result of the
transformed query from e2 ◦ em via similar steps above is the “lhs” element. In both
examples, the problem is caused by not having the context, which is a tree navigation
over the newly constructed XML fragment using 〈sa〉...〈/sa〉 in em.

The problem of the existing fusion transformation lies in that the naive elimination
of element constructors during the transformation does not preserve the (computation)
context because element constructors construct ordered trees. This implies that elimi-
nating element constructors in XQuery expressions and preserving the context of the
expressions are conflicting requirements. The purpose of our work is to propose a new
fusion mechanism to meet these two requirements. To this end, we should find a way to
manage the context of the original expressions in developing a correct fusion transfor-
mation.

While we will show the concrete solution to both examples at the end of this paper,
we shall give an intuitive idea of our solution to the first example here. For two step
expressions /na/rhs/item and /na/lhs/item in em which constructs the ordered tree
T , there is a fact that the items of the sequence generated by /na/rhs/item always
precede ones generated by /na/lhs/item in the ordered tree T for an arbitrary XML
store. By adding this information to these two step expressions, for given e1 ◦ em, we
can formulate the correct XQuery expression (/na/rhs/item, /na/lhs/item) from this
information. We call this information, context.

We propose a novel context-preserving XQuery fusion for when an XML document
is modeled as an ordered tree. Our basic idea is to lift dynamic operations on XML store
to the static level of expression. Our main contributions can be summarized as follows.

– To keep track of context, we carefully design the context representation of XQuery
expressions to reflect the properties of element constructions. This enable us to stat-
ically emulate newly created XML fragments — created by element constructors
— in the XML store.

– We develop a context-preserving fusion for XQuery by partial evaluation and prove
the correctness of our fusion. Our fusion introduces an annotated XQuery, which
is an XQuery expression with the context as an annotation, to preserve the context
of the input expressions even when the element constructors are eliminated during
our fusion transformation.

The paper proceeds as follows. Section 2 reviews the XQuery semantics and in-
troduces value equivalent expressions to show our fusion concisely. In Section 3, we
carefully design the context of XQuery expressions by extending Dewey code and its
order to suite the semantics of XQuery expressions. Section 4 presents the algorithm
of context-preserving fusion using the extended Dewey code and its order. We discuss
related work in Section 5 and conclude the paper in Section 6.

2 XQuery Semantics

To show our XQuery fusion concisely and that it is semantics-preserving, we briefly
review the semantics of the core part of XQuery that is based on [12]. Our target XQuery
expressions, a subset of XQuery, are as follows.



e ::= $v | (e, e, ..., e) | () | e/α::τ | for $v in e return e
| let $v := e return e | 〈t〉e〈/t〉

A query expression can be a variable $v, a sequence expression (e1, . . . , en) where
each subexpression ei is not a sequence expression, an empty sequence (), a location
step expression e/α::τ where α is an axis which can be child, self, parent (..), and τ is a
name test which can be a tag name t or ∗ (an arbitrary tag), a “for”-expression, a “let”-
expression, or an element construction expression 〈t〉e〈/t〉. Since we focus on newly
constructed trees that consist of XML nodes, to simplify the presentation, a constant c
is represented by “empty-element tags” like 〈c /〉. Although constants themselves are
not nodes, they become a (text) node when they occur in an element constructor. For
example, a constant “abc” is not a node i.e., this constant does not populate any ordered
trees. On the other hand, consider 〈a〉“abc”〈/a〉; in this expression, the constant “abc” is
a text node because the constant occurs in the element construction of 〈a〉(...)〈/a〉, i.e.,
this constant is a child node of the element node of a. We could define the semantics
of constants with such behavior, but this would make our presentation unnecessarily
complex.

2.1 Sequence: Data Model in XQuery

The data model of XQuery is sequences [22]. A sequence is an ordered collection of
zero or more items. One important characteristic of the data model is that sequences
are flat in the sense that a sequence never contains other sequences; if sequences are
combined, the result is always a flattened sequence. In addition, there is no distinction
between an item and a singleton sequence containing that item, i.e., we often write [a]
as a or vice versa.

We denote the empty sequence as [], non-empty sequences for example as [a,b,c],
and the concatenation of two sequences s1 and s2 as s1 ++s2. We use ∈ for sequence
containment in addition to set containment and [d|d ∈ D ∧ φ(d)] for a sequence of d
obtained by selecting them from D, all items that satisfy φ(d).

2.2 Dewey Order Encoding and XML Store

An XML document is modeled as an ordered tree. Document order in an XML docu-
ment is a total order defined over the nodes in a tree, and this order is determined by
a preorder traversal of the tree. This order plays an important role in the semantics of
XQuery, especially in node creation and axis accesses. An XQuery expression is evalu-
ated against an XML store which contains XML fragments with their document order.
This store contains fragments that are created as intermediate results, in addition to the
initial XML documents [12].

Dewey order encoding of XML nodes is a lossless representation of a position in
the document order [14, 20]. In Dewey order, each node is represented by a path from
a root using ‘.’ : (1) a root node is encoded by r ∈ R, where R is a countably infinite
set of special codes; (2) say that a node a is the n-th child of a node b; then the Dewey
code of a, did(a), is did(b).n. The fact that the relative order of nodes in distinct trees
is implementation-dependent leads to nondeterminism in XQuery. Therefore, if two



Dewey codes begin with different codes, it implies that the two nodes are in different
ordered trees. By using Dewey order encoding, one can easily compute axis relations.
For example, ancestor(d1, d2) holds when d1 has the form d2.n1.n2. · · · .nk.

Let T be a set of symbols for element names, and D be a countably infinite set of
Dewey codes on which a strict partial order < and the equality = is defined.

Definition 1 (Simple XML Store). A simple XML store is a pair St = (D, ν), where
(a) D is a finite subset of D and (b) ν is a partial function ν : D 7→ T that maps a
Dewey code to its element name.

For instance, the store of the source S in Figure 1 is defined as St0 = (D0, ν0),
where D0 = {s, s.1, s.1.1, s.1.1.1, s.1.2, s.1.2.1, s.2, s.2.1, s.2.1.1, s.2.2, s.2.2.1} and
ν0(s) = na, ν0(s.1) = lhs, ν0(s.2) = rhs, ν0(s.1.1) = ν0(s.1.2) = ν0(s.2.1) =
ν0(s.2.2) = item, ν0(s.1.1.1) = a, ν0(s.1.2.1) = b, ν0(s.2.1.1) = c, ν0(s.2.2.1) =
d. In what follows, we will refer to a simple XML store as an XML store. We denote
the disjoint union of two stores St1 and St2 as St1 ∪ St2 (combining D and ν indepen-
dently).

Definition 2 (Value Equivalence, ≡(St1,St2)). Given two stores St1, St2, and two
nodes, d1 in St1 and d2 in St2, d1 and d2 are said to be value equal, denoted as
d1 ≡(St1,St2) d2, if d1 and d2 refer to two isomorphic trees, i.e., there is a one-to-one
function h : D1 7→ D2 with D1 = {d|d ∈ DSt1 ∧ ancestor-or-self(d, d1)}
and D2 = {d|d ∈ DSt2 ∧ ancestor-or-self(d, d2)}, such that for each d and
d′ ∈ D1, it holds that (1) h(d) ∈ D2, (2) ν(d) = ν(h(d)), and (3) d < d′ iff
h(d) < h(d′). This definition can be extended to the value equivalence over two se-
quences, straightforwardly.

2.3 Formal Semantics

The formal semantics of XQuery established by W3C is defined over XQuery Core,
which is a subset of XQuery [23]. While XQuery Core does not have a location step
expression, the reason why our target has is that (1) evaluating path expressions is
more efficient than “for”-expressions [8, 18], although theoretically, it can be trans-
lated into “for”-expressions; and (2) previous work on XQuery dealt with location steps
[13, 10, 9]. Figure 2 shows the semantics of our target XQuery using a set of infer-
ence rules. In these rules, a judgment of the form St ;En ` e ⇒ (St ′, s) indicates
that the evaluation of expression e against the store St and environment En (mapping
variables to values) results in a (new) store St ′ and value s. The semantics of sequence
expressions, “let”-expressions and variables are straightforward. The semantics of a
“for”-expression (for $v in e1 return e2) is the concatenation of the results of e2

evaluated N times for each item in the result of e1 but with v in the environment bound
to the item in question in the result of e1, where N is the length of the sequence of
the result of e1. The semantics of the element constructor (〈t〉e〈/t〉) and location step
(e/α :: τ ) are worth futher attention because they are evaluated using the document or-
der. The semantics of 〈t〉e〈/t〉 is as follows. A new store St2 that contains a new root
node having t as its name and having contents is created. The contents are the value-
equivalent sequence to the result of e. St2 is added to the input store, and the newly



St ;En ` () ⇒ (St , [])
St ;En ` e1 ⇒ (St1, s1) · · · StN−1;En ` eN ⇒ (StN , sN )

St ;En ` (e1, . . . , eN ) ⇒ (StN , s1 ++ . . . ++sN )

St ;En ` e1 ⇒ (St0, [d1, · · · , dN ])
St0;En + {$v 7→ d1} ` e2 ⇒ (St1, s1)

· · ·
StN−1;En + {$v 7→ dN} ` e2 ⇒ (StN , sN )

St ;En ` for $v in e1 return e2 ⇒ (StN , s1 ++ · · · ++sN )

St ;En ` e1 ⇒ (St1, s1)
St1;En + {$v 7→ s1} ` e2 ⇒ (St2, s2)

St ,En ` let $v := e1 return e2 ⇒ (St2, s2)
St ;En ` $v ⇒ (St ,En($v))

St ;En ` e ⇒ (St1, s1) a fresh r ∈ R
d ∈ DSt2 ⇒ d begins with r νSt2(r) = t

ddoSt2 [d
′|d′ ∈ DSt2 ∧ child(d′, r)] = s2 s1 ≡(St1,St2) s2

St ;En ` 〈t〉e〈/t〉 ⇒ (St ∪ St2, [r])

St ;En ` e ⇒ (St0, [d1, · · · , dN ])
[d′

1|d′
1 ∈ DSt0 ∧ α(d′

1, d1) ∧ νSt0(d
′
1) = τ ] = s1

· · ·
[d′

N |d′
N ∈ DSt0 ∧ α(d′

N , dN ) ∧ νSt0(d
′
N ) = τ ] = sm

St ;En ` e/α :: τ ⇒ (St0,ddoSt0(s1 ++ · · · ++sm))

Fig. 2. Semantics of XQuery using the simple XML store

created root node is returned. The semantics of e/α :: τ is as follows. First, e is eval-
uated. Then, for each node di in its result, construct a sequence si such that for each
content d′i in si, d′i is contained in St0, and α-relation holds for di and d′i, and the el-
ement name of d′

i is τ . The results of these sequences are concatenated. Finally, this
sequence is sorted in the document order and duplicates are removed from it because an
axis access by “/” requires sorting and duplicate elimination in the document order. This
sorting without duplicates is performed by using the function ddo (distinct-doc-order).

Value equivalent expressions are introduced in order to prove the correctness of our
fusion later.

Definition 3 (Value Equivalent Expressions). Given a store St , an environment En ,
and two XQuery expressions e1 and e2, e1 and e2 are said to be value equivalent, if
the following conditions hold; St ;En ` e1 ⇒ (St1, s1), St ;En ` e2 ⇒ (St2, s2) and
s1 ≡(St1,St2) s2.

3 Emulating XML Stores with Extended Dewey Codes

The problem of the existing fusion transformation is that the naive elimination of el-
ement constructors during the transformation does not preserve the context. To give a



correct fusion transformation, we should be able to emulate (keep track of) the con-
text information (i.e., XML store) during the static transformation when an element is
constructed. Our idea is to lift dynamic operations on XML store to the static level of
expression, and it is based on the observation that Dewey order encoding of the result
of the evaluation of an expression corresponds well to the structure of the expression.

3.1 XML Store Emulation on Expression

First, we show an important property for element constructors in terms of Dewey code:
The Dewey order encoding of the result of an evaluation of an expression corresponds
to the structure of the expression. This enables us to associate the static transformation
world with the dynamic evaluation world by using Dewey code.

Given an element construction 〈t〉e〈/t〉, we denote its relation with its result by
〈t〉e〈/t〉 ∼ r if there exist St ,En,St ′ such that St ;En ` 〈t〉e〈/t〉 ⇒ (St ′, r).

Property 1 (Dewey code correspondence in element construction). For an element con-
struction, 〈t〉e〈/t〉, the following properties hold.

(i) 〈t〉e〈/t〉 ∼ r, where r ∈ R and r is not in the input store.
(ii) 〈t〉e〈/t〉 ∼ r and e ∼ [r1, · · · , rn] imply ri = r.i.
(iii) For 〈t〉(e1, e2)〈/t〉, (e1, e2) ∼ [r1, r2] and d1 ∈ r1 and d2 ∈ r2 imply d1 < d2.
(iv) 〈t1〉e1〈/t1〉 ∼ r1 and 〈t2〉e2〈/t2〉 ∼ r2 imply r1 6= r2, where r1, r2 ∈ R.

The above correspondence property hints that we should associate each expres-
sion with a Dewey code, so that these codes can be used to keep track of context in-
formation during the fusion transformation. For instance, for the element construction
〈t〉($v/c, $v/a)〈/t〉, we may give the following Dewey order encoding to the expres-
sion:

(〈t〉($v/c)r.1, ($v/a)r.2〈/t〉)r

where ed denotes that d is the Dewey order encoding of the expression e (we will define
this formally in Section 4.)

One difficulty, however, remains in associating Dewey codes to expressions to keep
the context information: how do we deal with the “for” (“let”) expressions in XQuery?
We have to extend Dewey code for this purpose.

3.2 Extended Dewey Code

To be able to associate XQuery expressions with suitable context information, we pro-
pose an extended Dewey code (xD), defined by

d̂ ::= n x̂ | ε | [d̂ , d̂ , . . . , d̂ ]
x̂ ::= ε | ”.” d̂ | ”#” d̂

where n ∈ (R ∪ I) with R being a set of special codes6 and I being a set of integers.
It has a hierarchical structure, the same as in XQuery expressions, because xD is an

6 The special code is used to exploit Property 1 (i).



<a>
  ($u/c, $u/d)
</a>

a

c c... d d...

[[$u/c]] [[$u/d]]

<a>
  $u/c
</a>

a

c c...

[[$u/c]]

<a>

  for $u in e 
  return ($u/c, $u/d)
</a>

c c... d d... c c... d d......

a
where [[e]] = [v1,...,vN] 

[[v1/c]] [[v1/d]] [[vN/c]] [[vN/d]] 

(a) (b) (c)

Fig. 3. A simple example for the document order in element creations

annotation for an XQuery expression. Here, the underlined parts are our extension, and
ε is used for a termination, so, every xD ends with ε. Intuitively, the form of xD is
as follows. ε is annotated to an expression, which does not occur inside an element
constructor. A sequence construction has the form of sequence7 is used. The delimiter
“.”, which plays the same role as in the original Dewey codes, is used to represent
parent-child relationships.

The delimiter “#”, which is our extension, represents the association of a “return”
clause with a “for” or “let” expression and is used to resolve sortings with duplicate
elimination for multiple “for” or “let” expressions that are derived from identical “for”
or “let” expressions. Figure 3 (c) shows how an element is constructed with the “for”
expression (Q1).

Q1: 〈a〉 for $u in e return ($u/c, $u/d)〈/a〉

To show the idea behind the design of our delimiter “#”, let us consider the fusion
transformation for the expression ((Q1)/d,(Q1)/c)/ self :: ∗. For the expressions
(Q1)/d and (Q1)/c, we can get the value equivalent expressions (Q2) and (Q3),
respectively, from the XQuery semantics.

Q2: for $u in e return $u/d

Q3: for $u in e return $u/c

Now consider the following expression (Q4).

Q4: (((Q2)), ((Q3)))/ self :: ∗

7 This sequence is the same as the data model of XQuery. So, it is flattened, and singleton and
its element cannot be distinguished.



ed̂ ::= $v d̂ | (ed̂ , ed̂ , ..., ed̂)d̂ | (ed̂/α::τ)d̂ | (for $v in ed̂ return ed̂)d̂

| (let $v := ed̂ return ed̂)d̂ | (〈t〉ed̂〈/t〉)d̂

Fig. 4. Annotated XQuery

As described in the previous section, since axis access by “/” requires sorting and du-
plicate elimination in document order, the correct transformation of (Q4) should result
in (Q5), in which two “for” expressions (Q2) and (Q3) are merged.

Q5: for $u in e return ($u/c, $u/d)

Here, we can capture the order of the two expressions in the “return” expressions by
using “#”. Thus, by encoding (Q1) into

(〈a〉(for $u in e return ($v/c, $v/d))r.1#[1,2]〈/a〉)r

and encoding (Q2) and (Q3) into

(for $u in e return $v/d)r.1#2 and (for $u in e return $v/c)r.1#1

we can apply the transformation to (Q5) (See Section 4), thanks to sorting on subse-
quences produced by the “for” expressions.

Returning to our extend Dewey codes, we can introduce the context position of sort-
ing and duplicate elimination over d̂ in a similar way to the original Dewey code (See
Appendix A for details). Therefore, we can use the functions dc sort and remove dup
for sorting and duplicate elimination, respectively. The difference from the sorting of
the original Dewey code is in merging two extended codes sharing the same prefix until
they reach #. For instance, sorting [r.1#2, r.1#1] results in [r.1#[1, 2]].

4 XQuery Fusion

This section describes our algorithm for automatic fusion of XQuery expressions so
that unnecessary element constructions can be correctly eliminated. Basically, we will
focus on fusing the following subexpression,

e/α::τ

so that unnecessary element constructions in the query expression in e are eliminated
under the context of “selection” by α::τ .

We add annotations of the extended Dewey codes to the XQuery expression (Figure
4). We sometimes omit the annotation if it is clear from the context. To simplify our
presentation, we will assume that there is a global environment for storing all annotated
expressions during our fusion transformation, and a function

getExpGlobal(r)

that can be used to extract the expression whose code is r from the global environment.



peval () Θ = ()[]

peval $v Θ =



Θ($v) if $v is letvar
$v otherwise

(PEVR)

peval (e1, ..., eN ) Θ = let e′i = peval ei Θ
di = extract dc(e′i)

in flatten ((e′1, ..., e
′
N )[d1,..,dN ])

(PESEQ)

peval (e/ child :: τ) Θ = Fc (peval e Θ) τ (PECSTP)

peval (e/ self :: τ) Θ = Fs (peval e Θ) τ (PESSTP)

peval (e/parent :: τ) Θ = Fp (peval e Θ) τ (PEPSTP)

peval (let $v := e1 return e2) Θ = let e′1 = peval e1 Θ
e′2 = peval e2 (Θ ∪ {$v 7→ (e′1, let)})

in e′2 (PELET)

peval (for $v in e1 return e2) Θ = let e′1 = peval e1 Θ
e′2 = peval e2 (Θ ∪ {$v 7→ (e′1, for)})
d = extract dc e′2

in (for $v in e′1 return e′2)
#d (PEFOR)

peval (〈t〉e〈/t〉) Θ = let e′ = peval e Θ
a fresh r ∈ R

in dc assign 〈t〉e′〈/t〉 r

(PEEC)

Fig. 5. Fusion by partial evaluation

4.1 Fusion Transformation

Figure 5 summarizes our fusion transformation on XQuery expressions. Fusion is de-
fined by a partial evaluation function peval:

peval :: e→ Θ → ed̂

which accepts an XQuery expression and an environment Θ (mapping variables bound
by “let” or “for” to expressions):

Θ :: Var → (ed̂ , let | for)

and produces a more efficient XQuery expression in which subexpressions are anno-
tated by the extended Dewey codes. As will be seen later, the annotation is used to keep
track of information of the order and the context among expressions, and it plays an
important role in our fusion transformation. When the fusion transformation is finished,
we can ignore all the annotations and get a normal XQuery expression as the final result.

The definition of peval in Figure 5 is straightforward. For a variable, if it is
bounded by the outside “let”, we retrieve its corresponding expression from the en-
vironment; otherwise, it must be a variable bound by the outside “for”, and we leave
it as is. For a sequence expression, we partially evaluate each element expression and



dc assign () r = ()[]

dc assign $v r = $vr

dc assign (e/c) r = (e/c)r (DCSTP)

dc assign (e1, . . . , en) r = let r0 = r
e′i = dc assign ei ri−1

ri = succ(extract dc e′i)

in (e1, . . . , en)[r1,...,rn]

(DCPSEQ)

dc assign (<t>e</t>) r = let e′ = dc assign ei r.1
in <t>e′</t>r

(DCPEC)

dc assign (for $v in e0 return e) r = let e′ = dc assign e 1
bs = extract dc e′

in (for $v in e0 return e′)r#bs

(DCPFOR)

Fig. 6. Dewey code propagation

group them into a new sequence annotated with Dewey codes from the results of
each element expression. Note that we use flatten to remove nested sequences (e.g.,
flatten((er1

11, e
r2
12)

[r1,r2], er3
3 )[[r1,r2],r3] = (er1

11, e
r2
12, e

r3
3 )[r1,r2,r3]), and extract dc to get

annotated Dewey code from an expression (i.e., extract dc ed = d). For a location
step expression e/α::τ , we perform fusion transformation to eliminate unnecessary
element constructions in e after partially evaluating e. We will discuss the definitions
of the three important fusion functions Fc, Fs, and Fp, later. For a “let” expression, we
first partially evaluate the expression e1, and then partially evaluate e2 with an updated
environment and return it as the result. We do similarly for a “for” expression except
that we finally produce a new “for” expression by gluing partially evaluated results
together. For an element construction, after partially evaluating its content expression
e into e′, we create a new Dewey code for annotating this element and propagate this
Dewey code information to all subexpressions in e′ (with the function dc assign) so that
we can access (recover) this element constructor when processing the subexpressions
of e′. It is this trick that helps to solve the problem of e2 ◦ em in the Introduction.

Dewey Code Propagation Propagating the Dewey code of an element construction to
its subexpressions plays an important role in constructing our fusion rules, described
later, for correct fusion transformation.

Figure 6 defines a function dc assign e− r:

dc assign :: ed̂ → d̂ → ed̂

which is to propagate the Dewey code r into an annotated expression e by assigning
proper new Dewey codes to e and its subexpressions. In what follows, we will explain
some of the important equations in this definition. Note that we write e− to denote that
the Dewey code of e is “don’t care”.

The equation (DCPSEQ) horizontally numbers sequence expressions. The function
succ is used to enforce numberings using a strictly greater value relative to previously



processed expressions (e.g., succ r.1 = r.2). (DCPEC) introduces a vertical structure
to the numbering by initiating dc assign for the subexpression e by adding “.1” to
its second parameter. The equations that needs additional attention are (DCSTP) and
(DCPFOR). In (DCSTP), it may seem unusual for dc assign not to recurse subexpres-
sion e. However, considering that the path expression itself does not introduce an addi-
tional parent-child relationship and that dc assign always handles expressions already
partially evaluated expressions, there is no additional chance to simplify the path ex-
pression further by using the Dewey code allocated to the subexpression. In particular,
the characteristic equation (DCPFOR), which introduces # structure to the Dewey code,
numbers the expression e at the return clause. Note that the second parameter of the
recursive call for e is reset to 1. bs that reflects the horizontal structure produced by
the return clause is combined with the # sign to produce r#bs as the top level code
allocated to the “for” expression.

Lemma 1. From the definition of dc assign, given an XQuery expression e, the ex-
tended Dewey code assigned by dc assign e− r satisfies Property 1.

Fusion Rules Our fusion transformation on e/α::τ is based on the three fusion rules
(functions) Fc, Fs and Fp in Figure 7 that respectively correspond to three axis types.
The basic procedure is as follows:

1. Extract (get) subexpressions according to the axis α;
2. Select those that produce nodes whose name is equal to the tag name τ by using a

filter;
3. Sort the remaining subexpressions according to their Dewey codes;
4. If the above sort step succeeds, remove the duplicated subexpressions and return its

sequence as the result; otherwise, end fusion.

More concretely, let us consider the definition of Fc. We use get children e to get a
sequence of subexpressions that contribute to producing children of the XML document
that can be obtained by evaluating e, and use the filter(equal to τ) function to keep
those that are equal to τ , where filter p xs = [x | x← xs, p x]. The resulting sequence
expression is sorted according to their Dewey codes by dc sort. This sorting may fail
since not all of the Dewey codes are comparable. If the sorting succeeds, we return a
sequence expression by removing all duplicated element subexpressions; otherwise, we
end fusion by returning the original expression e/ child :: τ .

Our fusion transformation always terminates and is correct, as summarized by the
following theorem.

Theorem 1 (Correctness of Fusion). For an XQuery expression e, if peval e {} =
e′d

′
then e and e′ are value equivalent expressions.

Proof. (sketch): It is sufficient to show the correctness for location step expressions. For
other expressions, it is straightforward to show the correctness by using structural in-
duction on the expressions. For location step expressions, the correctness is implied by
Lemma 1 and lemma 4 in the Appendix A together with the semantics of the location
step expressions.



Simple Example For e1 ◦ em described in the introduction, our fusion function peval
works as follows.

peval e1 ◦ em {}
 {(PECSTP); (PELET); (PEEC)}

let $t := 〈sa〉{( 〈lhs〉/na/rhs/itemr.1.1〈/lhs〉r.1,

〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2)[r.1,r.2]}〈/sa〉r
return let $v := ($t/rhs, $t/lhs) return $v/item

 {(PELET); (PESEQ); (PECSTP); (PECSTP)}
let $v := ( 〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2,

〈lhs〉/na/rhs/itemr.1.1〈/lhs〉r.1)[r.2,r.1]

return $v/item
 {(PECSTP)}

remove dup (dc sort (/na/lhs/itemr.2.1
, /na/rhs/itemr.1.1))

→
(/na/rhs/itemr.1.1

, /na/lhs/itemr.2.1)

For e2 ◦em, which is also from the introduction, peval performs the correct transforma-
tion.

peval e2 ◦ em {}
 {(PELET); (PESEQ); (PECSTP); (PECSTP)}

let $t := 〈sa〉{( 〈lhs〉/na/rhs/itemr.1.1〈/lhs〉r.1,

〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2)[r.1,r.2]}〈/sa〉r
return let $v := $t/rhs/item return $v/..

 {(PELET); (PECSTP); (PEPSTP); (PEVR)}
/na/lhs/itemr.2.1

/..
 {(PFUSION)}
〈rhs〉/na/lhs/itemr.2.1〈/rhs〉r.2

5 Related work

There are many studies on rewriting XQueries into other XQueries [11, 17, 13, 19].
The study most related to ours in the sense of eliminating redundant expressions is
[11]. The authors of [11] proposed a rewriting optimization that replaces expressions
which return empty sequences with () by using an emptiness detection based on static
analysis. In contrast, our rewriting eliminates redundant element constructors as well.

Koch [13] and Page et al. [17] introduced some classes for composite XQuery and
proposed XQuery-to-XQuery transformations over the classes of XQuery they defined.
Their target queries don’t contain newly constructed nodes. In the real world, how-
ever, practical expressions such as schema mapping always return newly constructed
elements.

Tatarinov et al. proposed an efficient query reformulation in data integration sys-
tems, in which XML and XQuery are used for the data model and schema mapping,
respectively [19]. In this system, the composition of the element construction is typical



because the schema mapping that maps one element to an other element involves el-
ement construction. They treat the actual reformulation algorithm as a black box. Our
work attempts to open the box and exploit some of its properties.

Fusion has been extensively studied in the functional programming (FP) commu-
nity [21, 2, 7, 16]. Referentially transparent FP languages allow naive fusion rules (F),
as we saw in the Introduction, if the element constructor behaves like the constructors
in FP. However, since the element constructor introduces a new node identity in each
evaluation, thereby breaking the referential transparency, it is not directly applicable. It
would be interesting to promote the identity as a first class object by using the technique
described in [15], but our focus here is to perform XQuery-to-XQuery transformations,
and the node identity is not a first class object in XQuery.

6 Conclusion

We proposed a new rewriting technique for XQuery fusion to eliminate unnecessary
element constructions in the expressions while preserving the document order. The
prominent feature of our framework is its static emulation of the XML store and as-
signment of extended Dewey codes to the expressions. The result is easy construction
of correct fusion transformations.

We implemented a prototype system in Objective Caml. It consists of about 4600
lines of code. Currently it works stand-alone by reading XQuery expressions from stan-
dard input and produces rewritten XQueries to standard outputs. The system is available
at http://www.biglab.org/fusion.

We believe that our approach can be generalized straightforwardly to handle the
other axes including “transitive” axes like ancestor.

Acknowledgments We would like to thank the anonymous reviewers for their exten-
sive and extremely helpful comments. Part of this work was supported by Grant-in-Aid
for Scientific Research No. 22300012, No. 20500043, and No. 20700035.



Fc :: ed̂ → τ → ed̂

Fc ed τ =



remove dup (e′1, ..., e
′
N ) if dc sort succeeds

(ed/ child :: τ)ε otherwise

where (e′1, ..., e
′
N ) = dc sort(filter(equal to τ)(get children ed)) (CFUSION)

Fs :: ed̂ → τ → ed̂

Fs ed τ =



remove dup (e′1, ..., e
′
N ) if dc sort succeeds

(ed/ self :: τ)ε otherwise

where (e′1, ..., e
′
N ) = dc sort(filter(equal to τ)(get self ed)) (SFUSION)

Fp :: ed̂ → τ → ed̂

Fp ed τ =



remove dup (e′1, ..., e
′
N ) if dc sort succeeds

(ed/parent :: τ)ε otherwise

where (e′1, ..., e
′
N ) = dc sort(filter(equal to τ)(get parent ed)) (PFUSION)

get children :: ed̂ → ed̂

get children $v = ($v/ child :: ∗)ε get children ()[] = ()[]

get children (e1, ..., eN ) = flatten ((e′1, ..., e
′
N )[d1,..,dN ])

where e′i = get children ei di = extract dc(e′i) (GCSEQ)

get children (e/ child :: en) = (e/ child :: en/ child :: ∗)ε

get children (〈en〉ed〈/en〉) = ed (GCEC)

get children (for $v in e return (e1, ..., eN ))r#[b1,...,bN ]

=

0

B

B

@

for $v in e return (e11, e12, . . . , e1n1 ,
e21, e22, . . . , e2n2 ,

· · ·
eN1, eN2, . . . , eNnn)

1

C

C

A

r′

where (ei1, . . . , eini) = get children ei rij = extract dc e′ij

r′ = r#[b1.r11, . . . , b1.r1n1 ,
b2.r21, . . . , b2.r2n2 ,
...
bN .rN1, . . . , bN .rNnn ]

(GCFOR)

get self, get parent :: ed̂ → ed̂

get self er = er get parent er.n = getExpGlobal(r)

Fig. 7. Fusion rules for three kinds of axis



Bibliography

[1] S. Amano, L. Libkin, and F. Murlak. XML Schema Mappings. In PODS, pages
33–42, 2009.

[2] W. Chin. Safe Fusion of Functional Expressions. In Proc. Conference on Lisp and
Functional Programming, pages 11–20, San Francisco, California, June 1992.

[3] S. Daniels, G. Graefe, T. Keller, D. Maier, D. Schmidt, and B. Vance. Query
optimization in revelation, an overview. Data Eng., 14(2):58–62, 1991.

[4] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Framework for Logical
XQuery Opimization. In Proc of VLDB, pages 168–179, 2004.

[5] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus.
ACM Trans. Database Syst., 25(4):457–516, 2000.

[6] M. Fernamdez, J. Hidders, P. Michiels, J. Simeon, and R. Vercammen. Optimiz-
ing sorting and duplicate elimination in xquery path expressions. In Proceedings
of 16th International Conference on Database and Expert Systems Applications
(DEXA 2005), 2005.

[7] A. Gill, J. Launchbury, and S. L. P. Jones. A short cut to deforestation. In FPCA
’93: Proceedings of the conference on Functional programming languages and
computer architecture, pages 223–232, New York, NY, USA, 1993. ACM Press.

[8] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath
Queries. ACM TODS, June 2005.

[9] T. Grust, M. Mayr, and J. Rittinger. Let SQL drive the XQuery workhorse
(XQuery join graph isolation). In EDBT, pages 147–158, 2010.

[10] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In VLDB, pages 252–
263, 2004.

[11] B. Gueni, T. Abdessalem, B. Cautis, and E. Waller. Pruning Nested XQuery
Queries. In CIKM, pages 541–550, 2008.

[12] J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A Light but For-
mal Introduction to XQuery. In Second International XML Database Sympo-
sium,(XSym2004), pages 5–20, 2004.

[13] C. Koch. On the role of composition in XQuery. In Proceedings of Eighth Inter-
national Workshop on the Web and Databases (WebDB 2005), 2005.

[14] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen. From Region Encoding To Ex-
tended Dewey: On Efficient Processing of XML Twig pattern Matching. In Proc
of VLDB, 2005.

[15] A. Ohori. Representing object identity in a pure functional language. In ICDT ’90:
Proceedings of the third international conference on database theory on Database
theory, pages 41–55, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[16] A. Ohori and I. Sasano. Lightweight fusion by fixed point promotion. SIGPLAN
Not., 42(1):143–154, 2007.

[17] W. L. Page, J. Hidders, P. Michiels, J. Paredaens, and R. Vercammen. On the
expressive power of node construction in XQuery. In Proceedings of Eighth In-
ternational Workshop on the Web and Databases (WebDB 2005), 2005.



[18] P. Parys. XPath evaluation in linear time with polynomial combined complexity.
In J. Paredaens and J. Su, editors, PODS, pages 55–64. ACM, 2009.

[19] I. Tatarinov and A. Halevy. Efficient Query Reformulation in Peer Data Manage-
ment Systems. In Proceedings of the ACM International Conference on Manage-
ment of Data, pages 539–550, 2004.

[20] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and Querying Ordered XML Using a Relational Database Sys-
tem. In Proc of SIGMOD, 2002.

[21] P. Wadler. Deforestation: Transforming programs to eliminate trees. In
Proc. ESOP (LNCS 300), pages 344–358, 1988.

[22] World Wide Web Consortium. XQuery1.0 : An XML Query Language, January
2007. W3C Recommendation.

[23] World Wide Web Consortium. XQuery1.0 and XPath2.0 Formal Semantics, Jan-
uary 2007. W3C Recommendation.

[24] L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: From Dewey to a Fully Dynamic
XML Labeling Scheme. In SIGMOD Conference, pages 719–730, 2009.



A Sorting without Duplicates on Extended Dewey Code

In this appendix, we use the standard list representation for the extended Dewey code to
simplify our presentation. First, our extended Dewey code(xD) is redefined as follows.

ds ::= [] | d : ds
d ::= ε | n x where n ∈ (R∪ I)
x ::= ε | ”.”d | ”#”ds

To show sorting without duplicates on xD, we define ordering and equivalence relation
on xD.

A.1 Ordering on xD

We use ≺d and ≺x for ordering on d and x , respectively. We define partial order on
xD.

Definition 4 (xD Order). For ordering on d , n1 x1 ≺d n2 x2 if and only if one of the
following three conditions holds;

– n1, n2 ∈ R and n1 = n2, x1 ≺x x2.
– n1, n2 ∈ I and n1 < n2.
– n1, n2 ∈ I and n1 = n2, x1 ≺x x2.

For ordering on x ,

– . d1 ≺x . d2 if and only if d1 ≺d d2 holds.
– ε ≺x x1 if and only if x1 6= ε holds.

Lemma 2 (Transitivity of xD Order). If d1 ≺d d2 and d2 ≺d d3 then d1 ≺d d3.

Proof. Structural induction on d is used.

We use ∼d and ∼x for equivalence relation on d and x , respectively. We define
equivalence relation on xD.

Definition 5 (Equvalence Relation). For equivalence relation on d , n1 x1 ∼d n2 x2

if and only if n1 = n2 and x1 ∼x x2.
For equivalence relation on x ,

– ε ∼x ε.
– . d1 ∼x . d2 if and only if d1 ∼d d2 holds.
– # ds1 ∼x # ds2 if and only if ds1 ++ds2 is sortable.

Definition 6 (Sortable). For given a list of xD ds1, ds1 is sortable if and only if one of
the following three conditions holds;

– ds1 = []
– ds1 = d1 : []
– ds1 = d2 : ds2 and ∀d′ ∈ ds2(d2 ≺d d′ ∨ d′ ≺d d2 ∨ d′ ∼d d2)



Lemma 3 (Irreflexivity of ≺d ). ≺d is irreflexive from its definition.

Theorem 2 (Reflexive partial order of -). - is a reflexive partial order.

Surprisingly, both duplicate eliminating and merging two xD codes can be defined
as the following one algorithm.

Definition 7 (Duplicate Elimination and Merging). Given two xD code n1x1 and
n2x2 where n1x1 ∼d n2x2, both duplicate eliminating and merging, n1x1 ⊕d n2x2 is
defined by the following inference rules;

(x1 ⊕x x2)→ x3

(n1x1 ⊕d n2x2)→ n1 x3

(ε⊕x ε)→ ε
(d1 ⊕d d2)→ d3

(.d1 ⊕x .d2)→ .d3

xDDO(ds1 ++ds2)→ ds3

(#ds1 ⊕x #ds2)→ #ds3

Definition 8 (Sorting without Duplicates on xD, xDDO). For a given list of xD ds1

where ds1 is sortable, sorting without duplicates on ds1 (xDDO ds1) is defined straight-
forwardly by using - and ⊕d .

Lemma 4. For a given sortable list of xD ds1, the result of the sorting without duplicate
on ds1 (xDDO ds1) is strictly ordered under - from its definition.


