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Abstract
Bidirectional transformations provide a novel mechanism for syn-
chronizing and maintaining the consistency of information between
input and output. Despite many promising results on bidirectional
transformations, these have been limited to the context of relational
or XML (tree-like) databases. We challenge the problem of bidirec-
tional transformations within the context of graphs, by proposing
a formal definition of a well-behaved bidirectional semantics for
UnCAL, i.e., a graph algebra for the known UnQL graph query
language. The key to our successful formalization is full utiliza-
tion of both the recursive and bulk semantics of structural recur-
sion on graphs. We carefully refine the existing forward evaluation
of structural recursion so that it can produce sufficient trace infor-
mation for later backward evaluation. We use the trace information
for backward evaluation to reflect in-place updates and deletions on
the view to the source, and adopt the universal resolving algorithm
for inverse computation and the narrowing technique to tackle the
difficult problem with insertion. We prove our bidirectional evalu-
ation is well-behaved. Our current implementation is available on-
line and confirms the usefulness of our approach with nontrivial
applications.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; E.1 [Data Structures]: Graphs and networks

General Terms Design, Languages

Keywords bidirectional transformation, view updating, graph
query and transformation, structural recursion

1. Introduction
Bidirectional transformations (Czarnecki et al. 2009; Foster et al.
2005) provide a novel mechanism for synchronizing and maintain-
ing the consistency of information between input and output. They
consist of a pair of well-behaved transformations: forward trans-
formation is used to produce a target view from a source, while the
backward transformation is used to reflect modification on the view
to the source. This pair of forward and backward transformations
should satisfy certain bidirectional properties. Bidirectional trans-
formations are indeed pervasive and can be seen in many interesting
applications, including the synchronization of replicated data in dif-
ferent formats (Foster et al. 2005), presentation-oriented structured
document development (Hu et al. 2008), interactive user interface
design (Meertens 1998), coupled software transformation (Lämmel
2004), and the well-known view updating mechanism which has
been intensively studied in the database community (Bancilhon and

∗ c©ACM, 2010. This is a full version of the paper to apper in Proc. of The
15th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’10).

Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al. 1988; Heg-
ner 1990; Lechtenbörger and Vossen 2003).

Despite many promising results on bidirectional transforma-
tions, they are limited to the context of relational or XML (tree-like)
databases. It remains unresolved (Czarnecki et al. 2009) whether
bidirectional transformations can be addressed within the context
of graphs containing node sharing and cycles. It would be remark-
ably useful in practice if bidirectional transformation could be ap-
plied to graph data structures, because graphs play an irreplace-
able role in naturally representing more complex data structures
such as those in biological information, WWW, UML diagrams
in software engineering (Stevens 2007), and the Object Exchange
Model (OEM) used for exchanging arbitrary database structures
(Papakonstantinou et al. 1995).

There are many challenges in addressing bidirectional trans-
formation on graphs. First, unlike relational or XML databases,
there is no unique way of representing, constructing, or decom-
posing a general graph, and this requires a more precise definition
of equivalence between two graphs. Second, graphs have shared
nodes and cycles, which makes both forward and backward com-
putation much more complicated than that on trees; naı̈ve computa-
tion on graphs would visit the same nodes many times and possibly
infinitely. It is particularly difficult to handle insertion in backward
transformation because it requires a suitable subgraph to be created
and inserted into a proper place in the source.

This paper reports our first solution to the problem of bidirec-
tional graph transformation. We approach this problem by provid-
ing a bidirectional semantics for UnCAL, which is a graph algebra
for the known graph query language UnQL (Buneman et al. 2000);
forward semantics (forward evaluation) corresponds to forward
transformation and backward semantics (backward evaluation) cor-
responds to backward transformation. We choose UnQL/UnCAL
as the basis of our bidirectional graph transformation for two main
reasons.

• First, UnQL/UnCAL is a graph query language that has been
well studied in the database community with a solid foundation
and efficient implementation. It has a concise and practical sur-
face syntax based on select-where clauses like SQL, and can be
easily used to describe many interesting graph transformations.

• Second, and more importantly, graph transformations in UnQL
can be automatically mapped to those in terms of structural
recursion in UnCAL, which can be evaluated in a bulk manner
(Buneman et al. 2000); a structural recursion is evaluated by
first processing in parallel on all edges of the input graph and
then combining the results. This bulk semantics significantly
contributes to our bidirectionalization, providing a smart way
of treating shared nodes and cycles in graphs and of tracing
back from the view to the source.

Our main technical contributions are summarized as follows.
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• We are, as far as we are aware, the first to have recognized
the importance of structural recursion and its bulk semantics
in addressing the challenging problem of bidirectional graph
transformation, and succeeded in a novel two-stage framework
of bidirectional graph transformation based on structural re-
cursion. We demonstrate that graph transformations defined in
terms of structural recursions (being suitable for optimization
as have been intensively studied thus far (Buneman et al. 2000))
make backward evaluation easier.

• We give a formal definition of bidirectional semantics for Un-
CAL by (1) refining the existing forward evaluation so that it
can produce useful trace information for later backward evalu-
ation (Section 4), and (2) using the trace information to reflect
in-place updates and deletions on the view to the source, and
adopt the narrowing technique to tackle the difficult problem
with insertion (Section 5). We prove our bidirectional evalua-
tion is well-behaved.

• We have fully implemented our bidirectionalization presented
in this paper and confirmed the effectiveness of our approach
through many non-trivial examples, including all those pre-
sented in this paper and some typical bidirectional graph trans-
formations in database management and software engineering.
More examples and demos are available on our BiG project
Web site∗.

We consider an operation based approach, which means that the
user explicitly provides editing operations in terms of ”rename”,
”delete”, and ”insert”. Currently these operations are treated ac-
cording to the order specified by users. It might be challenging to
produce these operation sequences automatically from the states
before and after user’s modifications on the view, but it is beyond
the scope of this paper.

The forward transformations we consider is based on UnCAL,
which is bisimulation generic, meaning that the transformation
can’t distinguish between graphs that are bisimilar. For example,
it can’t extract “first child of a node”. Extending our model to cope
with order is included in our future work.

Also note that backward transformation is not bisimulation
generic, meaning that two results of updates that are bisimilar do
not always lead to bisimilar source. However, this is not necessar-
ily a limitation introduced by our bidirectionalization, since this
asymmetry comes from the expressiveness of conditional expres-
sion in the original UnCAL graph algebra. Similar argument apply
for isomorphic updates.

Outline We start with a brief review of the basic concept of a
graph data model and the structural recursion of UnCAL in Sec-
tion 2. Then, we clarify the bidirectional properties within our con-
text and give an overview of our two-staged framework for bidi-
rectionalizing graph transformations in Section 3. After explaining
how to extend the forward evaluation of UnCAL with trace infor-
mation in Section 4, we give a formal definition of bidirectional se-
mantics for UnCAL and prove that it is well-behaved in Section 5.
We discuss implementation issues in Section 6 and related work in
Section 7. We conclude the paper in Section 8.

2. UnCAL: A Graph Algebra
We adopted UnCAL (Buneman et al. 2000), a well-studied graph
algebra, as the basis of our bidirectional graph transformation. We
will briefly review its graph data model and the core of UnCAL.
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(a) A Simple Graph
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(b) An Equivalent Graph

Figure 1. Graph Equivalence Based on Bisimulation

2.1 Graph Data Model
We deal with rooted, directed, and edge-labeled graphs with no
order on outgoing edges. They are edge-labeled in the sense that all
information is stored on labels of edges while labels of nodes serve
only as a unique identifier without a particular meaning. UnCAL
graph data model has two prominent features, markers and ε-edges.
Nodes may be marked with input and output markers, which are
used as an interface to connect them to other graphs. An ε-edge
represents a shortcut of two nodes, working like the ε-transition in
an automaton†. We use Label to denote the set of labels andM to
denote the set of markers.

Formally, a graph G, sometimes denoted by G(V,E,I,O), is a
quadruple (V, E, I, O), where V is a set of nodes, E ⊆ V ×
(Label∪{ε})×V is a set of edges, I ⊆M×V is a set of pairs of an
input marker and the corresponding input node, and O ⊆ V ×M
is a set of pairs of output nodes and associated output markers.
For each marker &x ∈ M, there is at most one node v such that
(&x, v) ∈ I . The node v is called an input node with marker &x and
is denoted by I(&x). Unlike input markers, more than one node can
be marked with an identical output marker. They are called output
nodes. Intuitively, input nodes are root nodes of the graph (we allow
a graph to have multiple root nodes, and for singly rooted graphs,
we often use default marker & to indicate the root), while an output
node can be seen as a “context-hole” of graphs where an input node
with the same marker will be plugged later. We write inMarker(G)
to denote the set of input markers and outMarker(G) to denote the
set of output markers in a graph G. In addition, we write label(ζ)
to denote the label of the edge ζ.

Note that multiple-marker graphs are meant to be an internal
data structure for graph composition. In fact, the initial source
graphs of our transformation have one input marker (single-rooted)
and no output markers (no holes). For instance, the graph in Fig-
ure 1(a) is denoted by (V, E, I, O) where V = {1, 2, 3, 4, 5, 6},
E = {(1, a, 2), (1, b, 3), (1, c, 4), (2, a, 5), (3, a, 5), (4, c, 4),
(5, d, 6)}, I = {(&, 1)}, and O = {}.

Value Equivalence between Graphs Two graphs are value equiv-
alent if they are bisimilar. Please refer to (Buneman et al. 2000) for
the complete definition. Informally, graph G1 is bisimilar to graph
G2 if every node x1 in G1 has at least a bisimilar counterpart x2

in G2 and vice versa, and if there is an edge from x1 to y1 in G1,
then there is a corresponding edge from x2 to y2 in G2 that is a
bisimilar counterpart of y1, and vice versa. Therefore, unfolding a
cycle or duplicating shared nodes does not really change a graph.

∗ http://www.biglab.org
† This analogy would choose NFA rather than DFA, since we allow multiple
outgoing edges with identical labels from a node.
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Figure 2. Graph Constructors

This notion of bisimulation is extended to cope with ε-edges. For
instance, the graph in Figure 1(b) is value equivalent to the graph in
Figure 1(a); the new graph has an additional ε-edge (denoted by the
dotted line), duplicates the graph rooted at node 5, and unfolds and
splits the cycle at node 4. Unreachable parts are also disregarded,
i.e., two bisimilar graphs are still bisimilar if one adds subgraphs
unreachable from input nodes.

Graph Constructors Figure 2 summarizes the nine graph con-
structors that are powerful enough to describe arbitrary (directed,
edge-labeled, and rooted) graphs (Buneman et al. 2000):

G ::= {} { single node graph }
| {a : G} { an edge pointing to a graph }
| G1 ∪G2 { graph union }
| &x := G { label the root node with an input marker }
| &y { a node graph with an output marker }
| () { empty graph }
| G1 ⊕G2 { disjoint graph union }
| G1 @ G2 { append of two graphs }
| cycle(G) { graph with cycles }

Here, {} constructs a root-only graph, {a : G} constructs a graph
by adding an edge with label a ∈ Label ∪ {ε} pointing to the
root of graph G, and G1 ∪ G2 adds two ε-edges from the new
root to the roots of G1 and G2. Also, &x := G associates an
input marker, &x, to the root node of G, &y constructs a graph
with a single node marked with one output marker &y, and ()
constructs an empty graph that has neither a node nor an edge.
Further, G1 ⊕ G2 constructs a graph by using a componentwise
(V, E, I and O) union. ∪ differs from ⊕ in that ∪ unifies input
nodes while ⊕ does not. ⊕ requires input markers of operands
to be disjoint, while ∪ requires them to be identical. G1 @ G2

composes two graphs vertically by connecting the output nodes of
G1 with the corresponding input nodes of G2 with ε-edges, and
cycle(G) connects the output nodes with the input nodes of G
to form cycles. Newly created nodes have unique identifiers. We
will give this creation rule extended for our bidirectionalization
in Section 4.1. The definition here is based on graph isomorphism
(identical graph construction expressions results in identical graphs
up to isomorphism), and they are, together with other operators,
also bisimulation generic (Buneman et al. 2000), i.e., bisimilar
result is obtained for bisimilar inputs.

Example 1. The graph equivalent to that in Figure 1(a) can be
constructed as follows (though not uniquely).

&z @ cycle((&z := {a : {a : &z1}} ∪ {b : {a : &z1}} ∪ {c : &z2})
⊕ (&z1 := {d : {}})
⊕ (&z2 := {c : &z2}))

e ::= {} | {l : e} | e ∪ e | &x := e | &y | ()
| e⊕ e | e @ e | cycle(e) { constructor }
| $g { graph variable }
| if l = l then e else e { conditional }
| rec(λ($l , $g).e)(e) { structural recursion application }

l ::= a | $l { label (a ∈ Label) and label variable }

Figure 3. Core UnCAL Language

For simplicity, we often write {a1 : G1, . . . , an : Gn} to
denote {a1 : G1} ∪ · · · ∪ {an : Gn}.

2.2 The Core UnCAL
UnCAL (Unstructured Calculus) is an internal graph algebra for
the graph query language UnQL, and its core syntax is depicted
in Figure 3. It consists of the graph constructors, variables, condi-
tionals, and structural recursion. We have already detailed the data
constructors, while variables and conditionals are self explanatory.
Therefore, we will focus on structural recursion, which is a power-
ful mechanism in UnCAL to describe graph transformations.

A function f on graphs is called a structural recursion if it is
defined by the following equations‡

f({}) = {}
f({$l : $g}) = e @ f($g)
f($g1 ∪ $g2) = f($g1) ∪ f($g2),

where the expression e may contain references to variables $l
and $g (but no recursive calls to f ). Since the first and the third
equations are common in all structural recursions, we write the
structural recursion in UnCAL simply as

f($db) = rec(λ($l , $g).e)($db).

Despite its simplicity, the core UnCAL is powerful enough
to describe interesting graph transformation including all graph
queries (in UnQL) (Buneman et al. 2000), and nontrivial model
transformations (Hidaka et al. 2009). Some simple examples are
given below.

Example 2. The following structural recursion a2b replaces edge
label a with b and leaves other labels unchanged.

a2b($db) = rec(λ($l , $g). if $l = a then {b : &1}2
else {$l : &3}4) ($db)5

(The superscripts are for identifying code positions, which will be
important in Section 4; they can simply be ignored for now.) Here
is an instance of an execution:

a2b
“

◦
c

$$
a ;;•

”

= ◦
c

$$
b ;;•

where ◦ denotes the root of the graph.

‡ Informally, the meaning of this definition can be considered to be a fixed
point (though may not necessarily unique) over the graph, which is again
defined by a set of equations using the three constructors {}, :, and ∪. For
instance, the graph in Figure 1(a) can be considered to be the fixed point of
the following equations:

Groot = {a : {a : G5}, b : {a : G5}, c : G4}
G5 = {d : {}}
G4 = {c : G4}.
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Figure 4. Bulk Semantics of Structural Recursion in UnCAL
Example 3. The following structural recursion a2d xc replaces all
labels a with d and removes edges labeled c.

a2d xc($db) =
rec(λ($l , $g). if $l =a then {d : &1}2

else if $l =c then {ε : &3}4
else {$l : &5}6) ($db)7

Applying the function a2d xc to the graph in Figure 1(a) yields the
graph in Figure 4(c).

Example 4. The following structural recursion consecutive ex-
tracts subgraphs that can be accessible by traversing two connected
edges of the same label.

consecutive($db) =
rec(λ($l , $g). rec(λ($l ′, $g ′).

if $l = $l ′ then {result : $g ′}1
else {}2 )($g)3)($db)4

For example, we have

consecutive

 

• a //• X //•
◦
a 88rr
b

&&LL • a //• Y //•

!

= ◦ result //• X //•

Note that the structural recursive definition of consecutive uses
graph parameter $g ′ to achieve the transformation. Also note that
structural recursions are allowed to be nested, and inner recursion
can refer to outer variables (as $l in the example). This enables us
to express the join of multiple queries.

Example 5. Although the examples given so far are self-recursive,
it is possible to simulate mutual recursion by returning graphs with
multiple markers. For instance, the following function abab

abab($db) = &z1 @ rec(λ($l , $g).
&z1 :={a : &z2} ⊕ &z2 :={b : &z1})($db)

changes all edges of even distances from the root node to a, and
odd distance edges to b. We may consider the markers &zi as a
mutually recursive call, and abab to consist of two mutual recursive
functions. The first is &z1, which, at each edge in the original graph,
generates a new a edge pointing to the result of &z2 at the original
destination node. The second is &z2 that generates b edges pointing
to the result of &z1 from its destination. The result of the whole
expression is defined to be the result of the &z1 at the root node
of the argument graph. The following figure should be helpful. The
dashed edges denote the edges that are unreachable from the output

root node.

abab(◦ c //• d //• e //•) =

◦ a

��;
;;

;;
;; • a

��;
;

;
; • a

��;
;;

;;
;; •

• b

AA�
�

�
� • b

AA������� • b

AA�
�

�
� •

= ◦ a //• b //• a //•

2.3 Bulk Semantics of Structural Recursion
By allowing ε-edges, we can evaluate a structural recursion in a
bulk manner. Consider the structural recursion,

rec(λ($l , $g). e)

which is to be applied to an input graph G. In bulk semantics, we
apply body e independently on every edge (a, G1) in G where a is
the label of the edge and G1 is the graph that the edge is pointing
to, then join the results with ε-edges (as in the @ constructor).

Recall the structural recursion a2d xc defined in Example 3.
Applying it to the input graph in Figure 1(a) yields the graph in
Figure 4(a), where each edge from i to j in the input graph leads
to a subgraph containing a graph with an edge from Sij to Eij
in the output graph (where the dotted edge denotes an ε-edge),
and these subgraphs are connected with ε-edges according to the
original shape of the graph. If we eliminate all ε-edges as explained
in Section 3.2, we obtain a standard graph in Figure 4(c).

One distinct feature of bulk semantics is that the shape of the
input graph is remembered through additional ε-edges, which will
be fully utilized in our later bidirectionalization.

3. Overview: Bidirectionalizing UnCAL
It is more challenging to bidirectionalize transformations on graphs
than trees, because graphs may contain shared nodes or cycles. We
shall demonstrate that the structural recursion in UnCAL can serve
as the basis to solve this problem. Although structural recursion
was proposed within the context of query optimization, we will
show that it plays a crucial role in our bidirectionalization.

3.1 Bidirectional Properties
Bidirectionalization is used to derive backward transformation
from forward transformation. We approach the problem of bidirec-
tionalization in graph transformation by providing a bidirectional
semantics for UnCAL; forward semantics (forward evaluation)
corresponds to forward transformation and backward semantics
(backward evaluation) corresponds to backward transformation.

Before giving our bidirectional semantics for UnCAL, let us
clarify the bidirectional properties that the forward and backward
evaluations should satisfy. Let F [[e]]ρ denote a forward evaluation
(get) of expression e under environment ρ to produce a view, and
B[[e]](ρ, G′) denote a backward evaluation (put) of expression e
under environment ρ to reflect a possibly modified view G′ to
the source by computing an updated environment. ρ is a set of
mappings with form $x 7→ G with a graph (or label) G. The
following are two important properties:

F [[e]]ρ = G

B[[e]](ρ, G) = ρ
(GETPUT)

B[[e]](ρ, G′) = ρ′ G′ ∈ Range(F [[e]])

F [[e]]ρ′ = G′ (PUTGET)

The (GETPUT) property states that unchanged view G should give
no change on the environment ρ in the backward evaluation, while
the (PUTGET) property states that if a view is modified to G′ which
is in the range of the forward evaluation, then this modification
can be reflected to the source such that a forward evaluation will
produce the same view G′.

These two properties are essentially the same as those in (Fos-
ter et al. 2005). One problem with the (PUTGET) property is that it
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needs to check whether a graph is in the range of forward evalua-
tion, which is difficult to do in practice. To avoid this range check-
ing, we allow the modified view and the view obtained by back-
ward evaluation followed by forward evaluation to differ, but re-
quire both views to have the same effect on the original source if
backward evaluation is applied.

B[[e]](ρ, G′) = ρ′ F [[e]]ρ′ = G′′

B[[e]](ρ, G′′) = ρ′ (WPUTGET)

The get in our (WPUTGET) can be considered as an amendment of
the modified view G′ to G′′. Certainly, if the (PUTGET) property
holds, so does the (WPUTGET).

We say that a pair of forward and backward evaluations is
well-behaved if it satisfies (GETPUT) and (WPUTGET) properties.
In the rest of this paper, we will give a bidirectional evaluation
(semantics) for UnCAL, and prove the following theorem, which is
a direct consequence of Lemmas 2, 3, and 4 that will be discussed
later.

Theorem 1 (Well-behavedness). Our forward and backward eval-
uations are well-behaved, provided their evaluations succeed.

3.2 Two-Stage Bidirectionalization
Recall a2d xc, which maps the source graph in Figure 1(a) to the
view graph in Figure 4(c). The big gap between the source and the
view makes it hard to reflect changes on the view to the source. Our
idea to bridge this gap was to divide the forward evaluation into two
easily handled stages:

• Stage 1: Forward evaluation (in the bulk semantics) with suffi-
cient ε-edges, so that the output graph will have a similar shape
to the input graph, making the later backward evaluation easier.

• Stage 2: Elimination of ε-edges to produce a usual view.

For a2d xc, Stage 1 maps the source graph to the intermediate
graph in Figure 4(a), and Stage 2 maps the intermediate graph to the
view graph (Figure 4(c)). By doing so, each stage becomes easier
to bidirectionalize.

First, let us consider Stage 2. The ε-edge elimination procedure
is simple: new edges are added to skip the ε-closure (Figure 5).
It is easy to define a well-behaved backward evaluation for this
procedure. First, all nodes in the result graph, Gv , exist in the
original graph, Gs, so each node in Gv can be traced to Gs. Second,
although an edge in Gs may be duplicated in Gv ((E25, d, E56)
and (E35, d, E56) in Figure 4(b))§, each edge in Gv should have
a uniquely corresponding edge in Gs. Therefore, adding a new
node to Gv corresponds to adding a new node to Gs, and adding
a new edge to Gv corresponds to adding a new edge between
two corresponding nodes in Gs. Similar correspondence holds for
deletions of nodes and edges, and in-place updates of edges.

Next, let us consider Stage 1. One fact worth noting is that after
the backward evaluation in Stage 2, the modification to the view in

§ Note that Figure 4(c) does not have this duplication because for this
particular graph, it is safe to glue the source and the destination nodes of an
ε-edge together. It is unsafe, if and only if, the source has another outgoing
edge and the destination has another incoming edge. Here, duplication is
unavoidable.

Stage 1 satisfies the ε-marker preserving property: (1) No ε-edges
are added or deleted, (2) Markers are not added, deleted, or changed
and (3) Unreachable parts are not modified. This property is very
important in our bidirectionalization, because it not only enforces
the nine graph constructors so that they are invertible, but it also
makes it easy to bidirectionalize structural recursion because there
is a clear correspondence between the input and output graphs.

In the rest of this paper, we will focus on bidirectional graph
transformation in Stage 1.

4. Traceable Forward Evaluation
An UnCAL expression usually specifies a forward evaluation map-
ping a graph database (which is just a graph) to a view graph (in
Section 2). The main purpose of the present paper is to give back-
ward evaluation (backward semantics), which specifies how to re-
flect view updates to the graph database. For this purpose, we have
to detect how each node of the view is generated, particularly when
it is constructed through connecting input/output markers and re-
moving ε-edges, which are no longer in the view. To make the view
more informative, viz., traceable, we enrich the original seman-
tics of UnCAL by embedding trace information (like provenance
traces (Cheney et al. 2008)) in all nodes of the view that possibly
includes ε-edges. In this section, we explain what kind of trace in-
formation is embedded in the view, and extend the original seman-
tics for UnCAL expressions to be evaluated into traceable views.

4.1 Traceable Views
A view is obtained by evaluating an UnCAL expression with
a database. Every node of the view originates in either a node
of the database or a construct in the UnCAL expression, except
when the node is generated through a structural recursion with a
rec construct (in the bulk semantics). Recall that an expression
rec(λ($l , $g).e1)(e2) is evaluated by binding variables $l and $g
in e1 to a part of the evaluation result of e2. In this case, a node in
the view may originate not only in the whole rec expression but
also a sub-expression in e2.

A traceable view is a view each node of which has information
for tracing its origin. The information, called trace ID, is defined
by

TraceID ::= SrcID
| Code Pos Marker
| RecN Pos TraceID Marker
| RecE Pos TraceID Edge,

where SrcID ranges over identifiers uniquely assigned to all nodes
of the database, Pos ranges over code positions in the UnCAL
expression, Marker ranges over input/output markers, and Edge
stands for TraceID ×Label ×TraceID with a set of labels Label .

We now briefly explain the meaning of each trace ID. Let i
be a trace ID of a node u in a traceable view. When i is a node
identifier in SrcID , node u originates in the node assigned by i
in the database. When i is Code p &m with code position p and
input marker &m, node u originates in the subexpression at p in
the UnCAL expression. The marker &m is only required when the
subexpression is given by the ∪ or cycle construct. This is because
these constructs yield as many ε-edges as input markers. When i is
either RecN p i0 &m or RecE p i0 (i1, a, i2), node u is generated
through the rec construct at the code position p. RecN and RecE
stand for what node and edge, respectively, of the argument of the
recursion, the node originates in.

Let us explain these cases through an example where the Un-
CAL expression a2d xc in Example 3 is applied to the database
Gsrc in Figure 1(a). The traceable view we want can be ob-
tained from the graph Gview in Figure 4(a) by assigning trace
IDs to all nodes. The trace ID assigned to node 1 in Gview is
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(RecN 7 1 &) because the node originates in node 1 of Gsrc in
SrcID , which is used as a part of the argument of the rec con-
struct at code position 7 in a2d xc. The trace ID assigned to
node S12 in Gview is (RecE 7 (Code 2) (1, a, 2)) because the
node originates in the a-labeled edge from node 1 to 2 of Gsrc

in Edge through the graph constructor {d : } at code position
2 in the rec construct at 7 in a2d xc. When the argument of
the rec construct is also a rec expression, RecN and RecE in
the trace ID are nested like (RecN p (RecE p′ . . . ) . . . ) and
(RecE p (RecE p′ . . . ) (RecN . . . , a, RecN . . . )).

A traceable view is denoted by a quadruple (V, E, I, O) just
like an ordinary UnCAL graph. The only difference is that in
traceable views, trace IDs are assigned to all nodes.

4.2 Enriched Forward Semantics
Traceable views can be computed by a simple extension of the
original forward semantics of UnCAL so that tracing information
is recorded when a node is created. Let ep denote an UnCAL
subexpression e at code position p. We write ρ($x ) for G when
($x 7→ G) ∈ ρ. ρ is naturally used as variable substitution in
UnCAL expressions, e.g., eρ for an expression e. We inductively
define the enriched forward semantics F [[ep]]ρ for each UnCAL
construct of e.

Graph Constructor Expressions. The semantics of graph con-
structor expressions is straightforward according to the construc-
tion in Figure 2. For instance, we have

F [[{}p]]ρ = ({Code p}, ∅, {(&, Code p)}, ∅),
which creates a graph having a single node with the trace ID of
Code p (indicating the node is constructed by the code at position
p), no edges, an input node (the single node itself), and no output
nodes. As another example, the semantics for the expression e1∪e2

is defined below to unify two graphs by connecting their input
nodes with matching markers using ε-edges:

F [[(e1 ∪ e2)
p]]ρ = F [[e1]]ρ ∪p F [[e2]]ρ,

where ∪p is a union operator for two graphs concerning position p
and is defined by

G1 ∪p G2 = (V ∪ V1 ∪ V2, E ∪ E1 ∪ E2, I, O1 ∪O2)
where (V1, E1, I1, O1) = G1

(V2, E2, I2, O2) = G2

M = inMarker(G1) = inMarker(G2)
V = {Code p &m | &m ∈M}
E = {(Code p &m, ε, v) | (&m, v) ∈ I1 ∪ I2}
I = {(&m, Code p &m) | &m ∈M}.

We omit definitions for other constructor expressions.

Variable. A variable looks up its binding from environment ρ.

F [[($v)p]]ρ = ρ($v)

Condition. The forward semantics of a condition is defined as
F [[(if l1 = l2 then e1 else e2)

p]]ρ

=



F [[e1]]ρ if l1ρ = l2ρ
F [[e2]]ρ otherwise.

It first evaluates the conditional expression l1 = l2, and with the
result it evaluates either the then branch or the else branch.

Structural Recursion. The semantics of a structural recursion is
given by bulk semantics as reviewed in Section 2.3, which can be
formally defined by

F [[(rec(λ($l , $g). eb)(ea))
p]]ρ

= composep
rec(fwd eachedge(Ga, ρ, eb), Ga, M)

where M = inMarker(eb) ∪ outMarker(eb)
Ga = F [[ea]]ρ,

where fwd eachedge and composerec are defined in Figure 6.
Intuitively, fwd eachedge evaluates the body expression eb at each
edge ζ of the argument graph Ga obtained by evaluating ea and
returns the set of result graphs. Then, composep

rec glues all the
graphs together along the structure of Ga concerning code position
p. Note that subgraph(G, ζ) denotes the subgraph to which the
edge ζ is pointing in the graph G.

Example 6. We will now illustrate the semantics of rec through
an example: the structural recursion a2d xc, which is defined with
position information in Example 3, is applied to Gsrc in Figure 1(a),
and the traceable view is a graph similar to Gview in Figure 4(a).

First, Gsrc is bound to a variable $db. Then, fwd eachedge
generates a set of pairs of an edge and a ‘local result’ for each
edge in Gsrc. The local result is obtained by evaluating the body
of rec under ρ = {$db 7→ Gsrc} ∪ {$l 7→ L, $g 7→ G} with
the label L of the edge and a subgraph G reachable from the
edge. For example, as the local result for edge (3, a, 5) in Gsrc,
edge (Code 2, d, Code 1) with input node Code 2 and output
node Code 1 is generated because the subexpression {d : &1}2 is
used due to $l = a. The function composep

rec glues all pairs
of an edge and a local result after adding RecN or RecE to
their nodes. For example, regarding a pair of edge ζ = (3, a, 5)
and its local result containing edge (Code 2, d, Code 1), the set
ERecE contains edge (RecE 7 (Code 2) ζ, d, RecE 7 (Code 1) ζ)
where 7 is the code position of the concerned rec, while set
ERecN contains edge (RecN 7 3 &, ε, RecE 7 (Code 2) ζ) and
(RecE 7 (Code 1) ζ, ε, RecN 7 5 &) due to (&, Code 2) ∈ I
and (Code 1,&) ∈ O. The former corresponds to the edge
from S35 to E35 of Gview and the latter corresponds to two
edges from 3 to S35 and from E35 to 5 of Gview. In this ex-
ample, Eε is an empty set since Gsrc has no ε-edges. The sets
IRecN and ORecN of input and output nodes are obtained with
I = {(&, 1)} and O = ∅, respectively, which are those of
Gsrc. Hence, IRecN = {(&.&, RecN 7 1 &)} and ORecN = ∅
because M = inMarker(eb) ∪ outMarker(eb) = {&}. Here,
“.” denotes Skolem function (Buneman et al. 2000) that satisfies
(&x.&y).&z = &x.(&y.&z) (associativity) and &.&x = &x.& = &x
(left and right identity).

More concretely, if the source graph is s = '&%$ !"#1

b
''

a 77'&%$ !"#2 ,
a2d xc(s) gives the graph

'& %$ ! "#RecN 7 1 &

�� ,,'& %$ ! "#RecE 7 (Code 6) (1, b, 2)

b��

'& %$ ! "#RecE 7 (Code 2) (1, a, 2)

d��'& %$ ! "#RecE 7 (Code 5) (1, b, 2)

��

'& %$ ! "#RecE 7 (Code 1) (1, a, 2)

rr'& %$ ! "#RecN 7 2 &

which is bisimilar to the graph ◦
d

$$
b ::•.

5. Backward Evaluation of UnCAL
With traceable views and the ε-marker preserving property (Sec-
tion 3) on the modification of such views, backward evaluation (in
Stage 1) turns out to be simpler for two reasons.

• First, the graph constructors become invertible. For instance, if
G = G1 ∪ G2, G is modified to G′, but the modification is ε-
marker preserving; then, we can follow tracing information, ε-
edges, and marker information to uniquely decompose G′ to G′

1
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fwd eachedge(G( ,E, , ), ρ, e) =
n

(ζ,F [[e]]ρζ)
˛

˛

˛

ζ ∈ E, label(ζ) 6= ε, ρζ = ρ ∪ {$l 7→ label(ζ), $g 7→ subgraph(G, ζ)}
o

composep
rec(G, (V, E, I, O), M) = (VRecE ∪ VRecN, ERecE ∪ ERecN ∪ Eε, IRecN, ORecN)

where VRecE = {RecE p v ζ | (ζ, (Vζ , , , )) ∈ G, v ∈ Vζ}
ERecE = {(RecE p u ζ, a, RecE p v ζ) | (ζ, ( , Eζ , , )) ∈ G, (u, a, v) ∈ Eζ}
VRecN = {RecN p v &m | v ∈ V,&m ∈ M}
ERecN = {(RecN p v &m, ε, RecE p u ζ) | &m ∈ M, (ζ = (v, , ), ( , , Iζ , )) ∈ G, (&m, u) ∈ Iζ}

∪ {(RecE p u ζ, ε, RecN p v &m) | &m ∈ M, (ζ = ( , , v), ( , , , Oζ)) ∈ G, (u,&m) ∈ Oζ}
Eε = {(RecN p v &m, ε, RecN p u &m) | (v, ε, u) ∈ E,&m ∈ M}
IRecN = {(&n.&m, RecN p v &m) | (&n, v) ∈ I,&m ∈ M}
ORecN = {(RecN p v &m,&n.&m) | (v,&n) ∈ O,&m ∈ M}

Figure 6. Core of Forward Semantics of rec at Code Position p

and G′
2 such that G′

1∪G′
2 is exactly equivalent to G′. ¶ We will

write this decomposition as decompG1∪G2
∗∗, and applying it

to G′ will give (G′
1, G

′
2).

• Second, backward evaluation of a structural recursion rec(e) is
reduced to that of its body e (followed by result gluing), because
of the bulk semantics of structural recursion.

Backward evaluation greatly depends on what updates are al-
lowed on the view. We allow the following three general updates
on our edge-labeled graphs: (1) in-place updates as modification
of edge labels, (2) deletion of edges, and (3) insertion of edges or
a subgraph rooted at a node. And we accept a sequence of these
updates on the view and reflect them to the source. In the rest of
this section, we shall explain the respective backward evaluation
for these updates on views.

5.1 Reflection of In-place Updates
In this section, we formally define backward semantics for UnCAL,
where only in-place updates are considered.

Recall that backward semantics B[[e]](ρ, G′) is used to compute
a new environment from the original input environment ρ and the
modified view G′. Like forward semantics, backward semantics
can be defined inductively over the construction of expression.

5.1.1 Backward Evaluation of Simple Expressions
Graph Constructor Expressions. Since each constructor is re-
vertible and is associated with a decomposition function, we can
decompose the views of constructor expressions so as to define the
backward semantics inductively. For example, we have

B[[(e1 ∪ e2)
p]](ρ, G′) = B[[e1]](ρ, G′

1) ]ρ B[[e2]](ρ, G′
2)

where G1 = F [[e1]]ρ
G2 = F [[e2]]ρ
(G′

1, G
′
2) = decompG1∪G2

(G′)

Unlike Foster et al. (2005), we have variable binding, and therefore
multiple environments produced by backward evaluation of the
operands are merged by ]ρ defined below, using an approach
similar to that in Liu et al. (2007), which deals with variable

¶ The exact equivalence of two graphs G1(V1,E1,I1,O1) and
G2(V2,E2,I2,O2), is defined by V1 = V2 ∧ E1 = E2 ∧ I1 =
I2 ∧ O1 = O2.
∗∗ It would be more precise to write it as decompG1,∪,G2

in that the
decomposition depends on three arguments.

bindings.

(ρ1 ]ρ ρ2)

=

8

<

:

($v 7→ mg(G, G1, G2)

˛

˛

˛

˛

˛

˛

($v 7→ G1) ∈ ρ1,
($v 7→ G) ∈ ρ,
($v 7→ G2) ∈ ρ2

9

=

;

where mg(G, G1, G2) =

8

<

:

G1 if G2 = G ∨G1 = G2

G2 if G1 = G
FAIL otherwise

]ρ unifies each binding by mg. If only the binding on the left
hand side is modified (G2 = G), or both are consistently updated
(G1 = G2), then the binding on the left is adopted, and vice
versa. If both are updated to different values, it fails, leading to the
failure of the entire backward evaluation. Label variable bindings
are treated similarly.

We have omited the definitions for other constructor expres-
sions, which can be defined similarly.

Variable. A variable simply updates its binding as

B[[$v ]](ρ, G′) = ρ[$v ← G′].

Here, ρ[$v ← G′] is an abbreviation for (ρ \ {$v 7→ })∪{$v 7→
G′}.

Condition. The backward evaluation of a condition is defined by

B[[if l1 = l2 then e1 else e2]](ρ, G′)

=

8

<

:

ρ′
1 if l1ρ = l2ρ ∧ l1ρ

′
1 = l2ρ

′
1

ρ′
2 if l1ρ 6= l2ρ ∧ l1ρ

′
2 6= l2ρ

′
2

FAIL otherwise
where ρ′

1 = B[[e1]](ρ, G′)
ρ′
2 = B[[e2]](ρ, G′),

which is reduced to the backward evaluation of e1 if l1 = l2
holds, and to the backward evaluation of e2 otherwise. To guarantee
well-behavedness, we ensure that l1 = l2 does not change after
backward evaluation.

5.1.2 Backward Evaluation of Structural Recursion
Due to the traceable bulk forward evaluation of structural recursion
rec and the ε-marker preserving property that retains similarity in
shape between input and output graphs, backward semantics can
easily be defined as

B[[rec(λ($l , $g). eb)(ea)]](ρ, G′)
= merge(ρ, ea, Ea,

bwd eachedge(Ga, ρ, eb, decomprec(G
′, Ea)))

where Ga = ( , Ea, , ) = F [[ea]]ρ

This definition is easy to understand if we note duality with the def-
inition of its forward semantics. Backward semantics first decom-
poses through decomprec the modified result graph G′ into pieces
of graphs, which is intuitively an inverse operation of composerec.
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decomprec((V
′, E′, I′, O′), Ea) =

8

>

>

>

>

<

>

>

>

>

:

(ζ, (V ′
ζ , E′

ζ , I′ζ , O′
ζ))

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

ζ ∈ Ea, label(ζ) 6= ε,
V ′

ζ = {w | (RecE p w ζ) ∈ V ′},
E′

ζ = {(w1, a, w2) | (RecE p w1 ζ, a, RecE p w2 ζ) ∈ E′},
I′ζ = {(&m, w) | (RecN p v &m, ε, RecE p w ζ) ∈ E′},
O′

ζ = {(w,&m) | (RecE p w ζ, ε, RecN p v &m) ∈ E′}

9

>

>

>

>

=

>

>

>

>

;

bwd eachedge(G, ρ, e,G′) =
n

(ζ,B[[e]](ρζ , G′
ζ))

˛

˛

˛

(ζ, G′
ζ) ∈ G′, ρζ = ρ ∪ {$l 7→ label(ζ), $g 7→ subgraph(G, ζ)}

o

merge(ρ, ea, Ea,R) = B[[ea]](ρ, G′
a) ]ρ

U

n

ρ′ζ \ {$l 7→ } \ {$g 7→ }
˛

˛

˛

(ζ, ρ′ζ) ∈ R
o

where G′
a =

“

S

V ′′
ζ , Eeps ∪

S

E′′
ζ , Ia, Oa

”

Eeps = {(u, ε, v) | (u, ε, v) ∈ Ea}
(V ′′

ζ , E′′
ζ ) =

“

V ′
ζ ∪ {u}, E′

ζ ∪ {(u, ρ′ζ($l), I′ζ(&))}
”

for each (ζ, ρ′ζ) ∈ R, letting (u, , ) = ζ and (V ′
ζ , E′

ζ , I′ζ , O′
ζ) = ρ′ζ($g)

Figure 7. Core of Backward Semantics of rec at Code Position p

For every non-ε edge ζ ∈ Ea in the source argument graph, the de-
composition extracts (possibly modified) subpart G′

ζ of G′, which
originates at the result Gζ of the forward computation on the edge.
Then, in bwd eachedge, we carry out backward computation of the
body expression eb on each edge and compute the updated environ-
ment ρ′

ζ . Finally, these environments are merged into the updated
environment ρ′ of the whole expression. The merge function does
two pieces of work. First, by combining the information ρ′

ζ($l) and
ρ′

ζ($g) from the updated environments (and ε-edges existing in the
edges Ea of the source argument graph), it computes the modi-
fied argument graph G′

a. Then, we inductively carry out backward
evaluation on the argument expression ea to obtain another updated
environment ρ′

a. This ρ′
a and all ρ′

ζs are merged into ρ′.
Let us explain in more detail the definition of decomprec, which

is the key point of the backward evaluation.
The function first extracts from result graph G′ nodes V ′

ζ

and edges E′
ζ that belong to each edge ζ by matching trace ID

RecE p ζ. Note that if there are nodes that have been freshly
inserted into the view, we also require these nodes to have this
structure, so that these nodes are also passed to the backward eval-
uation of the recursion body. Input and output nodes with marker
&m are recovered by selecting those pointed from/to “hub” nodes
having structure RecN &m. Top-level constructors of trace ID
are erased so that we can inductively compute the backward image
from the body expression.

Example 7. Recall the simple example in Example 3 where the

source is s = '&%$ !"#1

b
''

a 77'&%$ !"#2 , and a2d xc(s) gives the graph G. If
the graph G is modified to G′ where the edge label b is updated to
X, then B[[a2d xc]]({$db 7→ s}, G′) returns binding {$db 7→ s′}

where s′ = '&%$ !"#1

X
''

a 77'&%$ !"#2 . Therefore, the in-place update of the
change on the view graph is reflected to the source.

Lemma 2 (Well-behavedness for In-place Updates). If output
graphs are modified by in-place updates on edges, then for any
expression e, the two evaluations F [[e]] and B[[e]]( , ) form a
well-behaved bidirectional transformation, if they succeed.

Proof. This statement can be proved by induction on the structure
of e. For the base case where e is a variable, it clearly holds.
Considering the inductive case, (1) if e is a constructor expression,
it holds because each constructor is revertible within our context,
(2) if e is a condition, its backward evaluation is reduced to that on
either its true branch or its false branch, so the statement holds by
induction, and (3) if e is a structural recursion, by bulk semantics,
its backward computation is reduced to its body expression, so the
statement holds by induction.

5.2 Reflection of Deletion
Deletion in a view is reflected as deletion of the corresponding part
in the source by using trace IDs. Suppose we want to delete the
edge labeled d in the view of Example 7. Since both endpoints of
the edge have trace IDs of the form RecE 7 (1, a, 2), we can see
that the selected edge has been generated due to the existence of
the source edge (1, a, 2), which is the “corresponding part” to be
deleted in the source.

In general, for a labeled edge ζ = (u, a, v) with a 6= ε, its
corresponding edge corr(ζ) is defined as:

corr((u, a, v)) = (u, a, v) if u, v ∈ SrcID
corr((RecE p u ζ′, a, RecE p v ζ′))

=



corr((u, a, v)) if corr((u, a, v)) 6= FAIL
corr(ζ′) if corr((u, a, v)) = FAIL

corr(ζ) = FAIL otherwise.

Here, FAIL means failure on finding the corresponding edge.
The first case means that if the edge ζ is a copy of an edge in the
source, then ζ itself is the corresponding edge. The second and the
third cases are for when ζ is a result of some structural recursion.
According to the forward semantics of rec in Figure 6, the non-ε
edge ζ must have the form (RecE p u ζ′, a, RecE p v ζ′) for some
p, u, v, and another non-ε edge ζ′. This means that ζ consists of an
edge (u, a, v) originating from an evaluation of a recursion-body at
ζ′. Hence, for this case, we first recursively trace the corresponding
source of (u, a, v), and if this fails, then try that of ζ′. In other
cases, corr fails to find the corresponding source, because it must
be the case that u has a trace ID of the form Code , meaning
that the edge is not derived from the source but from an UnCAL
expression.

Let $db be the source graph, Gview be the view produced
by F [[e]]ρ from a forward computation of expression e with en-
vironment ρ, and G′

view be a graph from Gview with a set of
edges Dout = {ζ1, . . . , ζn} removed. Our backward evaluation
B[[e]](ρ, G′

view) consists of the following three steps.

1. Compute the set of source edges

Din = {corr(ζi) | ζi is not an ε-edge}.

2. If FAIL ∈ Din, backward evaluation fails. If it is obtained
successfully without failure, compute

G′
src = ρ($db)−Din,

where G − E denotes removal of the edges in the set E from
graph G.

3. Return ρ′ = ρ[$db ← G′
src] as the result if F [[e]]ρ′ = G′

view,
and fail otherwise.
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Lemma 3 (Well-behavedness for Deletion). If output graphs are
modified by edge deletion, then for any expression e, the two eval-
uations F [[e]] and B[[e]]( , ) form a well-behaved bidirectional
transformation, if they succeed.

Proof. The (GETPUT) property is clear because of the fact that
Din = ∅ if Dout = ∅. For the (WPUTGET) property, it holds
because the third step actually does this check.

5.3 Reflection of Insertion
Reflection of insertion is much more complicated than that of
inplace-updating and deletion. This is because there are no corre-
sponding edges in the source for the freshly inserted edges in the
view, which requires us not only to create new information but also
to add it to a proper location in the source graph.

Our idea was to use the Universal Resolving Algorithm (URA)
(Abramov and Glück 2002), a powerful method of inversion com-
putation, to derive a right inverse of the forward evaluation, and use
the distributive property of structural recursion

rec(e)($g1 ∪ $g2 ) = rec(e)($g1 ) ∪ rec(e)($g2 )

to properly reflect insertion to the source.
In this section, we shall give our algorithm for this reflection,

before we highlight how URA can be used to derive the right
inverse.

5.3.1 Insertion Reflection with Right Inverse
We assume the monotonicity of insertion in that an insertion on the
view is translated to an insertion on the source rather than other
updating operations. The monotonicity comes from the absence of
isEmpty (Buneman et al. 2000) in our core UnCAL. We only con-
sider insertion on the view graph produced by forward computation
of a variable expression or a structural recursion. For the case of a
variable, this reflection is done in the same way as in Section 5.1.1.
Insertion for structural recursion, the basic computation unit in Un-
CAL, needs to be carefully designed. In the following, we will fo-
cus on structural recursion, omitting other cases for simplicity.

Before giving our reflection algorithm, we should clarify the
meaning of right inverse. In general, a function h is said to be a
right inverse of f if for any x in the range of f , f(h(x)) = x holds.
Within our context, for an expression e and a graph G, F◦[[e]](G)
is said to be a right inverse computation if it returns ρ′ such that
F [[e]]ρ′ = G.

Now, we will return to our reflection algorithm. Let Gsrc be the
source graph, Gview = F [[rec(e)($db)]]ρ, where ρ = {$db 7→
Gsrc}, and G′

view be a graph from G with new edges inserted.
Notice that it is sufficient to consider $db as the argument of
rec, because $db can be bound to other expression. Our backward
evaluation B[[rec(e)($db)]](ρ, G′

view) returns ρ as the result if
there are no new edges inserted in Gview; otherwise, it does the
following:

1. Extract the inserted subgraph G′ from G′
view such that

G′
view = Gview ∪G′.

2. Compute with right inverse computation:

ρ′
1 = F◦[[rec(e)($db)]](G′).

3. Return ρ′
2 = {$db 7→ Gsrc ∪ ρ′

1($db)} as the result.

The first step of extraction is possible provided that insertion
happens at the root node††. The second step of right inverse com-
putation will be explained in Section 5.3.3. The last step is to update

†† Insertions to non-root positions are possible due to bulk semantics that
allows similar treatment for every node.

the binding of $db and return this environment as our result. The
following lemma shows the correctness of the algorithm.

Lemma 4 (Well-behavedness for Insertion). If output graphs are
modified by edge insertion, then for a structural recursion of the
form rec(e)($db) where e contains no free variables, then two
evaluations F [[e]] and B[[e]]( , ) form a well-behaved bidirec-
tional transformation, if they succeed.

Proof. First, the (GETPUT) property clearly holds because ρ is re-
turned when no insertions occur. Next, we prove the (WPUTGET)
property by using the following calculation.

F [[rec(e)($db)]]ρ′
2

= { partial application }
F [[rec(e)(ρ′

2($db))]]ρ′
2

= { def. of ρ′2 }
F [[rec(e)(Gsrc ∪ ρ′

1($db))]]ρ′
2

= { structural recursion property }
F [[rec(e)(Gsrc) ∪ rec(e)(ρ′

1($db)))]]ρ′
2

= { forward evaluation }
F [[rec(e)(Gsrc)]]ρ

′
2 ∪ F [[rec(e)(ρ′

1($db)))]]ρ′
2

= { e does not contain free variable }
Gview ∪ F [[rec(e)($db)]]ρ′

1

= { right inversion }
Gview ∪G′

It is worth noting that we have simplified our discussion in
both the above algorithm and lemma by making it a requirement
that e in rec(e)($db) does not contain any free variables. With
this requirement, our forward and backward evaluation satisfies
the stronger (PUTGET) property. In fact, it is acceptable to relax
this condition by allowing e to contain other free variables and the
initial ρ contains binding of other variables. Then, right inversion
will produce ρ′

1 that will be used to update all variable bindings in
addition to $db. In this case, F [[rec(e)(Gsrc)]]ρ

′
1 may produce a

graph that is different from the original view Gview. In any case,
this different graph will not have an additional effect on the source
when we apply backward evaluation to this new graph. Therefore,
(WPUTGET) always holds.

With this idea, we shall propose an algorithm in which
(PUTGET) property is satisfied without any additional require-
ments. The idea is to utilize the Trace ID information, as will be
discussed later.

5.3.2 Improving Insertion Reflection
The method above satisfies the (PUTGET) property only if the
variables of e are disjoint from the variables bound in the initial
environment ρ. However, in general, since a transformation may
have multiple variable references, more effort is required to achieve
the (PUTGET) property. We tackle the problem by first locating
where we insert a graph by using trace IDs, and then applying the
URA algorithm (to be described later) to find what graph should be
inserted.

Consider the transformation a2d xc and the view in Example 6.
Suppose we want to insert a graph Gvins rooted at the view node
v = RecN 7 2 &. Where should some graph be inserted into the
source to reflect this insertion? The answer is that we must insert a
graph rooted at the source node 2 because there would be no edge
from v in the view unless there were an edge from 2 in the source
according to the bulk semantics of structural recursion. Now, our
next task is to find what graph should be inserted under the source
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node 2. That is, we hope to find Gsins such that the following holds.

a2d xc

 '&%$ !"#1

b
''

a 77'&%$ !"#2 // Gsins

!

=

'& %$ ! "#RecN 7 1 &

�� ++'& %$ ! "#RecE 7 (Code 4) (1, b, 2)

b��

'& %$ ! "#RecE 7 (Code 2) (1, a, 2)

d��'& %$ ! "#RecE 7 (Code 3) (1, b, 2)

��

'& %$ ! "#RecE 7 (Code 1) (1, a, 2)

ss'& %$ ! "#RecN 7 2 & // Gvins

URA can help us to find such Gsins for Gvins. For example, if
Gvins is {b : {}}, then URA returns Gsins = {b : {}}. If
Gvins is {d : {}}, then URA returns one of the possibilities,
Gsins = {a : {}} or Gsins = {d : {}}, depending on the
search method used in URA. According to the soundness and the
completeness of URA, the reflection by URA is always correct
in the sense that (PUTGET) holds, and moreover URA always
returns a Gsins if such Gsins exists. Of these, soundness is the
key to insertion reflection satisfying (PUTGET) for general UnCAL
transformations.

In summary, our insertion-reflection algorithm is as follows.

1. Let v be a node under which we want to insert a graph Gvins.

2. By using the tr function in Figure 8, we find the source node
u = tr(v) under which we insert a graph to reflect the insertion.

3. Let G′
view be a graph obtained from the view by adding ε-edge

from v to Gvins.

4. We find a graph Gsins connected from u by an ε-edge, by
applying URA for G′

view.

5. We return a graph G′
src obtained from the source by adding an

ε-edge from u to Gsins.

The soundness of the insertion-reflection algorithm is directly
derived from the soundness of URA.

Lemma 5 (Soundness of Insertion). Our insertion-reflection algo-
rithm satisfies (PUTGET).

Note that we use URA for G′
view instead of Gvins. Thus, URA

rejects any insertion of Gsins that violates (PUTGET).
In addition, our insertion-reflection algorithm is complete in the

sense that, if there exist some source insertions to reflect the view
insertion under some conditions, the algorithm will find one of
them.

Lemma 6 (Completeness of Insertion). Let v be a node such that
tr(v) 6= FAIL. For any source graph G, we can insert any graph
into its view if there exists a source insertion that reflects the view
insertion and v still occurs in the view of the insertion-reflected
source.

Recall that we only consider insertion on the view graph pro-
duced by forward computation of a variable expression or a struc-
tural recursion, which is expressed by tr(v) 6= FAIL. This lemma
can be proved using the property of trace IDs stating that, to insert
a graph rooted at view node v, we must insert a graph rooted at
source node tr(v). By induction on the trace ID of v, we can show
that, if there is an edge from v, it must be the case that there is an
edge from tr(v), which is implied by the property of trace IDs. Note
that Gvins has no edge to the original view. However, this is not a
restriction since if there is a crossing edge pointing to a subgraph
of the original view, we can duplicate the subgraph and integrate it
to Gvins so that the edge can be eliminated.

tr(SrcID) = SrcID tr(RecN v ) = tr(v)
tr(Code ) = FAIL tr(RecE v ) = tr(v)

Figure 8. Tracing Node ID

5.3.3 Right Inverse Computation by URA
Recall that the right inverse computation of an expression e is to
take a graph Gview and return a ρ such that F [[e]]ρ = Gview.
We adopt the universal resolving algorithm (URA) (Abramov and
Glück 2002), a powerful and general inversion mechanism, to com-
pute ρ. The basic idea behind URA is to search on a perfect pro-
cess tree (Glück and Klimov 1993), which represents all possible
computations of an expression, and to find a computation path that
produced the result.

Our right inverse computation consists of three steps.

1. It lazily enumerates possible evaluation paths by symbolic com-
putation called needed narrowing (Antoy et al. 1994)‡‡.

2. From the generated evaluation paths, it constructs a table of
input/output pairs of computations.

3. If there is a pair in the table whose output is Gview, it generates
a substitution (environment) from the path and returns it as the
result.

Example 8. As a simple example, let us see how we find ρ such
that

F [[a2d xc($x )]]ρ = Gview

where Gview = {d : {}}. We search ρ by symbolic evaluation
of a2d xc($x ). To evaluate a2d xc($x ), we unfold $x and recur-
sively evaluate a2d xc, i.e., a structural recursion. There are many
ways to instantiate $x such as

$x 7→ {}, $x 7→ {$l1 : $x1}, $x 7→ {$l1 : $x1, $l2 : $x2}.

If we choose $x 7→ {}, the computation finishes, yielding a table
consisting of an input/output pair ({}, {}). Since this table does
not contain a pair whose output is Gview, we continue searching.
Assume that we choose $x 7→ {$l1 : $x1}. Then a2d xc($x ) is
unfolded to (if $l1 = a then {d : &} else (if $l1 = c then {ε :
&} else {$l1 : &})) @ a2d xc($x1). As evaluation gets stuck here
because of a free variable $l1 in the if condition, we find a suitable
$l1 to resume the evaluation. If we choose $l1 7→ a, then the
expression is reduced to {d : &} @ a2d xc($x1) and input/output
pair ({a : {}}, {d : {}}) is obtained by choosing $x1 7→ {}. Since
Gview = {d : {}}, we gather all bindings along this computation
and return the following environment as the result.

{$x 7→ {a : {}}}

Figure 9 shows part of a perfect process tree in our right-inverse
computation: the left is the tree and the right is a table of a pair
of input/output graph templates (it is more general than a pair of
input/output graph instances, as we discussed above). Note this tree
is a variant of SLD-resolution trees (Glück and Sørensen 1994).

To use URA effectively for our right inverse computation of
UnCAL, we define a small-step semantics for UnCAL such that a
perfect process tree can be constructed though these small steps.
The only non-standard feature of this semantics is that we use
memoization to avoid infinite loops probably caused by cycles in
the source graph (See Appendix C for details). In addition, we
provide a Dijkstra-searching strategy to enumerate all the possible

‡‡ The same notion is called driving (Glück and Klimov 1993; Glück and
Sørensen 1994) in (Abramov and Glück 2002).
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Figure 9. URA for a2d xc and Enumerated Input/Output Pairs with Constraints (nodes without branching have been contracted)

Figure 10. GUI of our Bidirectional Graph Transformation Sys-
tem (left is a source and right is a view, and UnCAL transformation
can be run forward and backward)

evaluation paths so that a solution can always be found if one exists.
The two heuristics we use to design the cost function are:

• We use a (weighted) size of graphs (to be inserted into the
source) as a cost function in the Dijkstra-search.

• For the weighted size, the depth (the length of the path) has
more weight than the width (the number of paths). This strategy
works nicely for consecutive in Example 4.

Moreover, we show that a suitable binding to continue evaluation of
conditional expressions can easily be found for our core UnCAL,
because the conditional part of a conditional expression is in the
simple form of a1 = a2.

6. Implementation and Experiments
The prototype system has been implemented and is available on our
BiG project Website. It has a GUI for users to modify source and
view graphs, execute UnQL queries (which can be automatically
transformed to UnCAL) or UnCAL programs both forward and
backward, and see tracing information between the source and view
graphs. Figures 10 and 11 have two snapshots of the system. In
addition to all the examples in Buneman et al. (2000) and in this
paper, we have tested three non-trivial examples, demonstrating its
usefulness in software engineering and database management.

• Customer2Order: A case study in the textbook on model-driven
software development (Pastor and Molina 2007).

• PIM2PSM: A typical example of transforming a platform inde-
pendent object model to a platform specific object model.

• Class2RDB; A non-trivial benchmark application for testing the
power of model transformation languages (Bezivin et al. 2005).

Figure 11. Trace Information Display (one can choose set of edges
in either source or view and correspondence can be shown in both
according to our trace IDs)

All of these have demonstrated the effectiveness of our approach in
practical applications.

In our implementation, we carefully treat ε-edges and unreach-
able parts introduced during operations related to markers, and re-
trieval of edges or nodes of interest, which greatly affect perfor-
mance. Poor treatment would hinder large-scale UnQL queries to
evaluate in bidirectional mode§§ in a reasonable amount of time.
Speed-up of several orders of magnitude has been achieved since
our initial implementation due to the above and the following opti-
mizations.

Reduction in number of ε-edges As mentioned in the UnQL pa-
per (Buneman et al. 2000), ε-edges are generously generated dur-
ing evaluation, especially in rec. This slows the evaluation pro-
cess due to the increase in input size. Removing ε-edges during
evaluation has no harm on forward semantics because of bisimu-
lation equivalence. However, since ε-edges play an important role
in backward evaluation, they are not freely omitted in our bidirec-
tional settings. Moreover, a straightforward implementation of the
removal algorithm (Buneman et al. 2000) may introduce additional
edges, which may harm backward evaluation. Toward prudently re-
moving ε-edges that are suitable for backward evaluation, our ε-
removal algorithm glues source and destination nodes of ε as long
as bisimulation equivalence is not violated.

Pruning of unreachable nodes @ and rec may leave unreach-
able nodes if some input and output nodes are left unconnected due
to mismatched markers. This mismatch happens typically during
projection of graph components &zi by idiom &zi @ G and in the
case of @ in the definition of rec in rec(λ($l , $g).eb)({a : G}) =

§§ Note that we preserve every result of forward computation in the bidirec-
tional mode.
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eb(a, G) @ rec(eb)(G). A typical use of rec includes eb with no
output marker, where actual recursion below the first level from
the input nodes — subgraphs that are not reachable by traversing
only one edge — is not necessary because the @ does not connect
the first and second arguments due to the lack of matching mark-
ers. This opens up optimization opportunities, i.e., not to evaluate
eb for the subgraphs below. The improvement in performance was
significant for forward evaluation.

Optimization by fusion transformation Note that the backward
evaluation of rec(e1)(rec(e2)(e3)), a composition of structural
recursions, requires to generate intermediate result of backward
transformation, which is very expensive. This can be avoided by
fusing the two structural recursions into one. We have imple-
mented this based on the fusion rule (Buneman et al. 2000): if
e1(a, G) does not depend on G then rec(e1)(rec(e2)(e3)) =
rec(rec(e1) ◦ e2)(e3). With auxiliary rewriting rules such as
e1 @ e2 = e1 for e1 that produces no output nodes, 30% and 50%
of CPU time reductions are respectively achieved for forward and
backward execution in Customer2Order composed with selection,
30% and 65% reductions for simpler examples that appeared in the
evaluation for unidirectional transformation (Hidaka et al. 2009).
These experiments are for in-place updates, but similar reduction
could be achieved for other updates.

7. Related Work
Bidirectional transformation has been discussed as view updat-
ing problem in the database community. Bancilhon and Spyratos
(1981) proposed a general approach to the view updating problem.
They introduced an elegant solution based on the concept of a con-
stant complement view that captures the information in the view but
not in the original database. Their idea was not only applied to re-
lational databases (Hegner 1990; Lechtenbörger and Vossen 2003)
but also to tree structures (Matsuda et al. 2007). Constant comple-
ment views satisfy very strong bidirectional properties at the sac-
rifice of the number of reflectable updates. Although such strong
properties are nice for some applications (Hegner 1990), they are
too strong for our purpose, i.e., model transformation in software
engineering. Recent work by Fegaras (2010) propagates updates
on XML views created from relational databases. It supports du-
plicates but detects view side effects at both compile and run time.
Staworko et al. (2010) proposed an update propagation for XML
views in native XML databases. Their scenarios are very simple in
that view definitions are projection of the source, and update oper-
ations are restricted to the insertion and deletion of nodes.

In the area of programming languages, view updating has been
studied as bidirectional transformation. Foster et al. (2005) pro-
posed the first linguistic approach to solving this problem. They
developed some domain specific languages to support the develop-
ment of bidirectional transformation on strings and trees. Bohannon
et al. (2006) applied these techniques to relational databases, mak-
ing use of functional dependencies in relations to correctly prop-
agate updates. However, their approach is limited to strings, trees
and relations, and is difficult to apply to graph transformation due
to graph-specific features such as circularity and sharing.

Within the context of software engineering, there has been sev-
eral works on bidirectional model (graph) transformation (Ehrig
et al. 2005; Jouault and Kurtev 2005; OMG 2005; Schürr and Klar
2008; Stevens 2007), which can deal with kinds of graph structures.
However, they lack a clear formal bidirectional semantics and there
has not yet been any powerful method of bidirectionalization that
can be used to automatically derive backward model transforma-
tions from forward model transformations, so that both transforma-
tions can form a consistent bidirectional model transformation.

The concept of structural recursion is not new and has been
studied in both the database (Breazu-Tannen et al. 1991) and the
functional programming communities (Sheard and Fegaras 1993).
However, most of these have focused on structural recursion over
lists or trees instead of graphs. Examples include the higher order
function fold (Sheard and Fegaras 1993) in ML and Haskell, and the
generic computation pattern called catamorphism in programming
algebras (Bird and de Moor 1996). UnCAL (Buneman et al. 2000)
demonstrates that the idea of structural recursion can be extended
to graphs, but the original focus was on the optimization of query
fusion rather than bidirectionalization.

Our work was greatly inspired by interesting work on efficient
graph querying (Buneman et al. 2000; Sheng et al. 1999). Un-
like trees, graphs involve subtle issues on their representation and
equivalence. The use of bisimulation and structural recursion in
(Buneman et al. 2000) opens a new way of building a framework for
both declarative and efficient graph querying with high modularity
and composability. This motivated us to extend the framework from
graph querying to graph transformation and apply it to model trans-
formation (Hidaka et al. 2009). This work is a further step in this
direction to extend it from unidirectional model transformation to
bidirectional model transformation.

8. Concluding Remarks
This paper reports our first attempt toward solving the challeng-
ing problem of bidirectional transformation on graphs. We show
that structural recursion on graphs and its unique bulk semantics
play an important role not only in query optimization, which has
been recognized in the database community, but also in automatic
derivation of backward evaluation, which has not been recognized
thus far. As far as we are aware, the bidirectional semantics of Un-
CAL proposed in this paper is the first complete language-based
framework for general graph transformations.

Future work includes extending the framework from unordered
graphs to ordered graphs, introducing graph schemas to provide
structural information for more efficient bidirectional computation,
an efficient algorithm for checking updatability, and more practical
applications of the system for bidirectional model transformation
in software engineering.
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A. Formal Semantics of Traceable Forward
Evaluation

We formally give the semantics of traceable forward evaluation
that generates traceable views. It is defined in the same way as the
original semantics for UnCAL (Buneman et al. 2000). The only
difference is that we have to assign a trace ID to every node in the
view. The forward semantics F [[ep]]ρ for an UnCAL expression
e and a variable binding environment ρ is inductively defined on
the structure of e. We give the semantics for UnCAL constructs
other than {}, ∪, variable reference, if and rec which are given in
Section 4.2.

Nullary constructors &y and () These expressions construct
constant graphs: &y constructs a node with a default input marker
& and an output marker &y, and () constructs the empty graph.

F [[&mp]]ρ = ({Code p}, ∅, {(&, Code p)}, {(Code p,&m)})
F [[()p]]ρ = (∅, ∅, ∅, ∅)

{l : e} It prepends an edge on top of the root of the second
operand graph.

F [[{l : e}p]]ρ =
({Code p} ∪ V, {(Code p, lρ, I(&))} ∪ E, {(&, Code p)}, O)

where (V, E, I, O) = F [[e]]ρ

e1 ⊕ e2 It performs a componentwise union like ∪, except that
no ε-edges are involved.

F [[(e1 ⊕ e2)
p]]ρ = F [[e1]]ρ⊕F [[e2]]ρ,

where ⊕ is a componentwise union operator for two graphs. A
graph G1 ⊕G2 is defined by

G1 ⊕G2 = (V1 ∪ V2, E1 ∪ E2, I1 ∪ I2, O1 ∪O2)
where (V1, E1, I1, O1) = G1

(V2, E2, I2, O2) = G2

inMarker(G1) ∩ inMarker(G2) = ∅
e1 @ e2 It appends two graphs by connecting the output nodes of
the left operand and corresponding input nodes of the right operand
with ε-edges.

F [[(e1@e2)
p]]ρ = F [[e1]]ρ @p F [[e2]]ρ,

where @p is an append operator for two graphs concerning position
p. A graph G1 @p G2 is defined by

G1 @p G2 = (V1 ∪ V2, E1 ∪ E@ ∪ E2, I1, O2)
where (V1, E1, I1, O1) = G1

(V2, E2, I2, O2) = G2

E@ = {(u, ε, v)
| (u,&m) ∈ O1, (&m, v) ∈ I2}

Note that @ may introduce unreachable parts in the right operand
due to unmatched input/output nodes.

cycle(e) It forms cycles by connecting matching input/output
nodes with ε-edges as in @, and for each input node, it creates a new
input node marked identically and connects them to the original
input nodes with ε-edges. Unmatched output markers remain.

F [[cycle(e)]]ρ = cyclep(F [[e]]ρ),
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where cyclep is a cycle operator for a graph concerning position
p. A graph cyclep(G) is defined by

cyclep(G) = (V ∪ V ′, E ∪ E′ ∪ E′′, I ′, O′)
where (V, E, I, O) = G

V ′ = {Code p &m | (&m, u) ∈ I}
E′ = {(Code p &m, ε, u) | (&m, u) ∈ I}
E′′ = {(u, ε, v) | (u,&m) ∈ O, (&m, v) ∈ I}
I ′ = {(&m, Code p &m) | (&m, v) ∈ I}
O′ = {(u,&m) ∈ O | (&m, v) 6∈ I}

&m := e It distributes the marker on the left operand to each
of the input markers of the graph in the right operand, using the
Skolem function “.”.

F [[(&m := e)p]]ρ = (&m := F [[e]]ρ),

where := is an operator for a marker distribution for a graph. A
graph (&m := G) is defined by

(&m := G) = (V, E, I ′, O)
where (V, E, I, O) = G

I ′ = {(&m.&x, v) | (&x, v) ∈ I}

B. Formal Semantics of Backward Evaluation for
In-place Updates

This section gives formal backward semantics using trace IDs as-
signed during forward evaluation. Semantics for if , variable ref-
erence and rec are omitted since they are already given in Sec-
tion 5.1.

Nullary constructors {}, &y and () construct constant graphs in
the forward computation. Therefore, for the backward computation,
they accept no modification on the result view.

B[[{}p]](ρ, G′) = ρ if G′ = F [[{}p]]ρ
B[[&mp]](ρ, G′) = ρ if G′ = F [[&mp]]ρ
B[[()p]](ρ, G′) = ρ if G′ = F [[()p]]ρ

A label constant similarly accepts no modification.
B[[a]](ρ, a′) = ρ if a′ = a

{l : e} Backward computation detaches the (possibly modified)
edge from the top of the modified graph. Other modification on the
graph is reflected to the other operand G2 (as G′

2).
B[[{l : e}p]](ρ, G′) = B[[l]](ρ, a′) ]ρ B[[e]](ρ, G′

2)
where a = lρ

G2 = F [[e]]ρ
(a′, G′

2) = decomp{a:pG2}(G
′)

Here, the decomposition function is defined as follows:
decomp{a1:pG2}(G

′) =
(a′

1, (V
′ \ {r′}, E′ \ {e′}, {(&, v)}, O′))

where (V2, E2, {(&, v)}, O2) = G2

(V ′, E′, {(&, r′)}, O′) = G′

ζ′ = the unique edge in E′ of the form (r′, a′
1, v).

The modified view G′ is decomposed into its unique root edge
ζ′ = (r′, a′

1, v) and the rest of the graph rooted at v. If G′ has
more than one edges from the root node or the new root v does
not match the root node of the original result G2, the backward
evaluation fails.

e1 ∪ e2 It decomposes (decomp) the view G′ using forward
results of operands e1 and e2, and inductively conducts backward
computation on the operands.
B[[(e1 ∪ e2)

p]](ρ, G′) = B[[e1]](ρ, G′
1) ]ρ B[[e2]](ρ, G′

2)
where G1 = F [[e1]]ρ

G2 = F [[e2]]ρ
(G′

1, G
′
2) = decompG1∪pG2

(G′)
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Figure 12. Example for Bidirectional Computation of Union

decomp is defined below. G1\G2 denotes component (V, I, E, O)
wise set difference.

decompG1∪pG2
(G′) =

`

xreachable(G′
1, G1), xreachable(G′

2, G2)
´

where (V ′, E′, I ′, O′) = G′

(Vi, Ei, Ii, Oi) = Gi

G′
i = reachable((V ′, E′, Ii, O

′))
satisfying

M = inMarker(G1) = outMarker(G2)
∀&m ∈M, (&m, r′) ∈ I ′, (r′, ε, v′) ∈ E′ :

(&m, v′) ∈ I1 ∪ I2

unreachable(G) = G \ reachable(G)
xreachable(G′, G) =

(V r ′ ∪ V u, Er ′ ∪ Eu, Ir ′ ∪ Iu, Or ′ ∪Ou)
where (V r ′, Er ′, Ir ′, Or ′) = reachable(G′)

(V u, Eu, Iu, Ou) = unreachable(G)

Let us exemplify decompG1∪pG2
(G′) using Figure 12 in which the

label b of edge (5, b, 7) is modified to x on the view. Recall that in
forward semantics ∪p connects input nodes of the operands with ε-
edges. We remove these edges from the input nodes first. Then the
original input nodes 1 and 5 are restored using the input nodes of
the original graphs G1 and G2, and determine (possibly modified)
operands by collecting reachable parts from these nodes¶¶. Since
the modified edge is reachable from the input node of G′

2, the
modification belongs to the second operand. For well-behavedness,
decomp fails if ε-edges from the input nodes are changed. Note
that the forward computation could have glued the two input nodes
(1 and 5 in Figure 12) together, but it would make splitting of the
view difficult, since both of the operands can be reachable from the
glued node. As for trace IDs, this operator does not introduce them
except for the input nodes. So no destructing operation is conducted
for nodes other than the input nodes. One can easily verify that
this operation is reversible. decomp ensures that the input node of
the modified graph G′ is an origin of a bunch of ε-edges, whose
destination node came from the root node of either the original G1

or the G2. decomp for other operators are defined similarly to make
the operation reversible.

e1 ⊕ e2 It is like ∪, except that no ε-edge is involved.
B[[(e1 ⊕ e2)

p]](ρ, G′) = B[[e1]](ρ, G′
1) ]ρ B[[e2]](ρ, G′

2)
where Gi = F [[ti]]ρ

(G′
1, G

′
2) = decompG1⊕G2

(G′)
decompG1⊕G2

(G′) = decompG1∪G2
(G′)

without satisfying condition

¶¶ Reachable parts from a given node can be computed by traversing edges
from that node. reachable() starts from input node of given graph instead
of a given particular node.
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e1 @ e2 Because of unmatched I/O nodes, it may introduce un-
reachable part in the second argument during forward computation.
Backward computation carefully passes those parts backwards un-
touched to avoid unnecessary failure because of inconsistency be-
cause these parts are part of ordinary computation (computation on
reachable parts) before discarding by the @ operator.
B[[(e1@e2)

p]](ρ, G′) = B[[e1]](ρ, G′
1) ]ρ B[[e2]](ρ, G′

2)
where (G′

1, G
′
2) = decompG1@pG2

(G′)
G1 = F [[e1]]ρ
G2 = F [[e2]]ρ

decompG1@pG2
(G′)

= (xreachable(G′
1, G1), xreachable(G′

2, G2)) where
(Vi, Ei, Ii, Oi) = Gi

(V ′, E′, I ′, O′) = G′

E@ = {(u, ε, v) | (u,&m) ∈ O1, (&m, v) ∈ I2}
G′

i = reachable((V ′, E′ \ E@, Ii, Oi))

cycle(e) It removes the ε-edges introduced in the forward eval-
uation and restores the original I/O nodes.

B[[cycle(e)]](ρ, G′) = B[[e]](ρ, G′
2)

where (V ′, E′, I ′, O′) = G′

(V, E, I, O) = F [[t]]ρ
V ′ = {(Code p &m u) | (&m, u) ∈ I}
E′ = {(Code p &m u, ε, u) | (&m, u) ∈ I}
Ecycle = {(u, ε, v) | (u,&m) ∈ O, (&m, v) ∈ I}
G′

2 = (V \ V ′, E \ E′ \ Ecycle, I, O)

&m := e It “peels off” the marker on the left hand side from
each of the input markers in G′ at the front.
B[[&m := e]](ρ, G′) = B[[e]](ρ, G′

1)
where G′

1 = (V ′, E′, I ′
1, O

′)
(V ′, E′, I ′, O′) = G′

I ′
1 = {(&x, v) | (&m.&x, v) ∈ I ′}

C. Small-Step Semantics of UnCAL
This section gives a complete definition of the small-step seman-
tics of UnCAL corresponding to the traced evaluation semantics in
Section 4. As we mentioned in the paper, small-step semantics is
obtained in a straightforward way except where we need to care
about shareness and cycles and introduce further computation for
rec. We basically follow the recursive semantics of UnCAL (Bune-
man et al. 2000). Unlike the recursive semantics in (Buneman et al.
2000), ours creates the nodes in VRecN in Figure 6 whenever rec
traverses the node, and whether rec traverses these nodes depends
on whether they have been visited or not. Additionally, the transfor-
mation result of each edge must be escaped by using RecE, as in the
bulk semantics. This escaping also follows the recursive semantics
because the escaping may traverse a graph before rec does, e.g., in
the evaluation of rec(λ( , ).$g)({a : {}}); thus, in later narrow-
ing, the escaping narrows variables as well as rec does.

In advancing to the formal definition of the small-step evalua-
tion, we extend the definition of the UnCAL expression as:

e ::= . . .
| G
| v|G
| cnrecMO

p,v,M (e1, . . . , en)
| escp,ζ(e)

| cnescMO
p,v,ζ(e1, . . . , en; a1, . . . , an),

where

• G is a graph value appearing in the evaluation, i.e., a quadruple
(V, E, I, O),

• v|G is used internally in rec and esc, which intuitively means
a node v in G just being traversed,

• cnrecMO
p,v,M is used to create VRecN nodes as in Figure 6 and

then connect each evaluation result from each edge as in the
bulk semantics, where MO is the set of output markers put on
v that is used to keep track of the output markers assigned to
node v in the input graph of rec,

• escp,ζ is used to escape the evaluation result of rec by using
RecE p ζ, and

• cnescMO
p,v,ζ , a counterpart of cnrec for esc, is used to create a

RecE p v ζ node and then connect it to each escaped result from
each edge by using an edge labeled ai, where MO is similar to
that of cnrec.

C.1 Small-Step Semantics
Since now a graph value is an (extended) expression, we can de-
fine small-step semantics by reduction sequence e1 −→ e2 −→
· · · −→ G, where our small-step evaluation −→ is given in the
form of

C[e] −→ C[e′] if e→ e′,

which reads expression C[e] is reduced to C[e′] via the reduction of
e to e′. Here, C is an evaluation context that indicates the redex of
the expression, e is the redex of expression C[e], and e→ e′ is the
small-step evaluation relation that reads redex e is reduced to e′. It
is important to separate the redex and the evaluation context from
the expression because they are used in later (needed) narrowing;
in general, substituting a value for a variable in the non-redex
position may change the semantics. In the following, we present
the definition of C and→.

C.1.1 Evaluation Context
The call-by-value evaluation context is defined as
C ::= 2 | cycle(C) | &m := C | C op e | G op C | {a : C}
| rec(λ($l , $g).e)(C) | escp,ζ(C)
| cnrecMO

p,v,M (G1, . . . , Gi−1, C, ei+1, . . . , en)

| cnescMO
p,v,ζ(G1, . . . , Gi−1, C, ei+1, . . . , en; a1, . . . , an),

where op represents a binary graph constructor in UnCAL, i.e., ∪,
⊕, and @. For an expression e and an evaluation context C, C[e]
denotes the term obtained by replacing a hole 2 in C with e. Any
evaluation context has exactly one 2 and any expression can be
written in the form of C[e], which means that any expression has a
unique redex.

C.1.2 Small-Step Evaluation Relation
Figure 13 shows the small-step evaluation relation e → e′. The
definition of rec/esc basically follows the equation of structural
recursion in the form

f({a1 : G1, . . . , an : Gn})
= (e(a1, G1) @ f(G1)) ∪ · · · ∪ (e(an, Gn) @ f(Gn)).

We use the above equation for the simplicity of both memoization
and narrowing. Unlike the original equations of structural recursion
where a recursion traverses a set of edges, function f above tra-
verses a node of a graph. The actual definition of rec/esc is a bit
more complicated than the above because their small-step seman-
tics must coincide with the traced evaluation semantics and must
handle a node with input/output markers; the rule of cnrec/cnesc
is responsible to this. In the following, we first explain the rules of
rec and cnrec, and then those of esc and cnesc.

The definition of rec consists of the three rules: the first one
for a graph that may have multiple root nodes, and the second and
third ones for a graph with a single root. Intuitively, the first rule
partitions a graph to single-root graphs by extracting the reachable
part from each input node, and then proceeds computation of rec.
Formally, the definition just follows the equation below that holds
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if a1 = a2 then e1 else e2 → e1 (if a1 = a2)
if a1 = a2 then e1 else e2 → e2 (if a1 6= a2)

rec(λ($l , $g).e)(G( , ,I, ))
p →

L

&m∈I

`

&m := rec(λ($l , $g).e)(I(&m)|G)p
´

rec(λ($l , $g).e)(v|G)p → cnrec
v|GO
p,v,Me

()
(if v has already been traversed by rec at p)

rec(λ($l , $g).e)(v|G)p → cnrec
M

v|G
O

p,v,Me
(e1, . . . , en)

(if v has not yet been traversed by rec at p)

ei =

8

<

:

escp,ζi(e[$l 7→ ai, $g 7→ Gi])
qi

@ rec(λ($l , $g).e)(vi|G)p (if ai 6= ε)

rec(λ($l , $g).e)(vi|G)p (if ai = ε)
where ( , ai, vi) = ζi

Gi = subgraph(G, ζi)
q1, . . . , qn are fresh code positions

v has the out edges ζ1, . . . , ζn.

cnrecMO
p,v,M (G1, . . . , Gn)→ (V ′, E′, I ′, O′)

V ′ = VRecN ∪ V1 ∪ · · · ∪ Vn

E′ = ERecN ∪ E1 ∪ · · · ∪ En

I ′ = {(&m, RecN p v &m) | &m ∈M}
O′ = ORecN ∪O1 ∪ · · · ∪On

VRecN = {RecN p v &m | &m ∈M}
ERecN = {(RecN p v &m, ε, Ii(&m)) | &m ∈M}
ORecN = {(RecN p v &m,&n.&m) | &m ∈M,&n ∈MO}
(Vi, Ei, Ii, Oi) = Gi

escp,ζ(G( , ,I, ))
q →

L

&m∈I

`

&m := escp,ζ(I(&m)|G)q
´

escp,ζ(v|G)q → cnesc
M

v|G
O

p,v,ζ ()
(if v has already been traversed by esc at q)

escp,ζ(v|G)q → cnesc
M

v|G
O

p,v,ζ (e1, . . . , en; a1, . . . , an)
(if v has not been traversed by esc at q)

ei = escp,ζ(vi|G)q

( , ai, vi) = ζi

v has the out-edges ζ1, . . . , ζn.

cnescMO
p,v,ζ(G1, . . . , Gn; a1, . . . , an)→ (V ′, E′, I ′, O′)

V ′ = {vRecE} ∪ V1 ∪ · · · ∪ Vn

E′ = {(vRecE, ai, Ii(&)) | 1 ≤ i ≤ n} ∪ E1 ∪ · · · ∪ En

I ′ = {(&, vRecE)}
O′ = {(vRecE,&m) | &m ∈MO} ∪O1 ∪ · · · ∪On

(Vi, Ei, Ii, Oi) = Gi

vRecE = RecE p v ζ

where
Me = inMarker(e) ∪ outMarker(e)

M
v|G
O = {&m | (v,&m) ∈ O} with ( , , , O) = G

Figure 13. Small-Step Evaluation Rules for UnCAL: Rules for graph constructors have been omitted because they are obvious.

for rec in the traced semantics.
rec(λ($l , $g).e)(G(V,E,I,O))

=
M

&m∈G

(&m := rec(λ($l , $g).e)(G&m))

where G&m = (V, E, {(&, I(&m))}, O)

(*)

Since the single-root graph reachable from a given node in a graph
can be identified with the node itself in the graph, we use I(&m)|G
instead of extracting the reachable part from I(&m). This not only
simplifies the definition of the first rule but also plays an important
role in the later narrowing where a narrowing variable can be seen
as a node of which edges are not fixed yet.

The second rule and the third rule of rec use memo to find
whether a node has been traversed by rec or not. If the node has
not yet been traversed by rec, the evaluation rule

rec(λ($l , $g).e)(v|G)p → cnrec
M

v|G
O

p,v,Me
(e1, . . . , en)

(if v has not yet been traversed by rec at p)

ei =

8

<

:

escp,ζi(e[$l 7→ ai, $g 7→ Gi])
qi

@ rec(λ($l , $g).e)(vi|G)p (if ai 6= ε)

rec(λ($l , $g).e)(vi|G)p (if ai = ε)
where ( , ai, vi) = ζi

Gi = subgraph(G, ζi)
q1, . . . , qn are fresh code positions

v has the out edges ζ1, . . . , ζn.
proceeds to evaluating on each edge connected from the node,
memoizes the traversed node, and then, by using cnrec, connects
the resulted graph. In addition to p, v and Me, MO is passed to
the evaluation of cnrec because whether the VRecN nodes have
output markers depends on whether v has output markers. We
need not care input markers here because the first rule already
remove them. Recall the correspondence between the first rule
and Equation (*). The introduced esc expressions have fresh code
positions q1, . . . , qn for the memoization that will be performed in

the evaluation of esc. Note that, in the evaluation of rec body e,
$g will be bound to Gi instead of v|G because v|G is not a graph
nor a value∗∗∗. If the node has already been traversed by rec, the
evaluation rule

rec(λ($l , $g).e)(v|G)p → cnrec
v|GO
p,v,Me

()
(if v has already been traversed by rec at p)

just returns VRecN nodes. Note that we only do a membership test
for memo instead of looking it up because VRecN nodes generated
by cnrec work as a corresponding value for the entry v in the
memo.

The rule of cnrec creates the VRecN nodes, and connects them
to each evaluation result Gi from each edge of v. The set of edges
ERecN represents this connection. Then, the rule puts the input
marker &m to a node RecN p v &m in VRecN for the further recursive
connection. Note that the rule does not create any input markers
corresponding to IRecN because of the relationship between the first
rule of rec and Equation (*).

The rules of escaping expression escp,ζ is defined so that, when
the memo is empty, escp,ζ(G) evaluates to the graph obtained from
G by replacing each node v by RecE p v ζ. Similar to rec, the
definition of esc consists of the three rules. We only explain the
second rule because the other rules are similar to rec. The second
rule

escp,ζ(v|G)q → cnesc
M

v|G
O

p,v,ζ (e1, . . . , en; a1, . . . , an)
(if v has not been traversed by esc at q)

ei = escp,ζ(vi|G)q

( , ai, vi) = ζi

v has the out-edges ζ1, . . . , ζn.

∗∗∗ It is sure that we can treat v|G as a value. However, it requires a
large amount of changes on the evaluation rules, although the change is
straightforward.
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(C[e], φ) ;∅ (C[e′], φ) if e→ e′

(C[if $l = l then e1 else e2], φ) ;θ (C[e1], φ)θ θ={$l 7→ l}
(C[if $l = l then e1 else e2], φ) ;∅ (C[e2], φ ∩ ($l 6= l))
(C[if a=$l then e1 else e2], φ) ;θ (C[e1], φ)θ θ={$l 7→a}
(C[if a=$l then e1 else e2], φ) ;∅ (C[e2], φ ∩ ($l 6= a))

(C[rec(λ($l , $g).e)($x |G)p], φ) ;θ (Cθ[e′], φθ) (for arbitrary n)
θ = {$x 7→ v|Gextend}, rec(λ($l , $g).eθ)(v|Gθ)→ e′

Gextend =
v $ln

**UUUUUUUU
...

$l1

tthhhhhhhhh$l2
xxqqqq

$x1 $x2 · · · $xn

$x1, . . . , $xn, $l1, . . . , $ln are fresh variables
v ∈ SrcID is a fresh node id.

(C[rec(λ($l , $g).e)($x |G)p], φ) ;θ (Cθ[e′], φθ)
θ = {$x 7→ v|G}, rec(λ($l , $g).eθ)(v|Gθ)→ e′

the rec at p has already traversed v.

(C[escp,ζ($x |G)q], φ) ;θ (Cθ[e′], φθ) (for arbitrary n)
θ = {$x 7→ v|Gextend}, escp,ζ(v|Gθ)

q → e′

Gextend =
v $ln

**UUUUUUUU
...

$l1

tthhhhhhhhh$l2
xxqqqq

$x1 $x2 · · · $xn

$x1, . . . , $xn, $l1, . . . , $ln are fresh variables.
v ∈ SrcID is a fresh node id.

(C[escp,ζ($x |G)q], φ) ;θ (Cθ[e′], φθ)
θ = {$x 7→ v|G}, escp,ζ(v|Gθ)

q → e′

the rec at p has already traversed v.

Figure 14. Narrowing Rules for UnCAL

proceeds to evaluation of each graph connected from the node,
memoizes the traversed node, and then, by using cnesc, connects
the resulted graph. Unlike rec, esc passes the labels a1, . . . , an

to cnesc for the simplicity of cnesc. Note that we cannot use
ε-edges in the connection of the escaped results because of the
correspondence to the trace semantics. We believe that now the
definition of cnesc should be intuitive for readers.

C.2 Narrowing
Narrowing rules, which are used to construct perfect process trees
in URA, are obtained from the small-step semantics in a straightfor-
ward way except where we need to clarify the definition of narrow-
ing variables. Merely treating a narrowing variable as just a syntac-
tic object $x is unsatisfactory; a graph value (V, E, I, O) cannot
contain a syntactic object $x . Instead, we treat them as a special
kind of nodes by extending the definition of trace IDs as:

TraceID ::= . . .
| $x ,

under which a graph can contain narrowing variables.
A narrowing variable will be instantiated to some kind of graph

G that is identical to v|G for some v, instead of an arbitrary graph
that may contain multiple roots or may contain unreachable part.
Node-by-node substitution {$x 7→ v|G} represents the replace-
ment of node $x with v in G, and application G′{$x 7→ v|G}
intuitively means a graph obtained from the componentwise union
of G and G′ by replacing every node $x with v. Note that the defi-
nition may introduce a loop; e.g., for G′ = ({$x}, ∅, {(&, $x )}, ∅)
and G = ({1, $x}, {(1, a, $x )}, ∅, ∅), we have

G′{$x 7→ 1|G} = ({1}, {(1, a, 1)}, {(&, 1)}, ∅).
Similar to the usual substitutions, it is easy to define composition
of node-by-node substitutions and to extend applications of them
to expressions.

Now, we define narrowing rules. Figure 14 shows the formal
definition of the narrowing relation ;. Since narrowing at if in-

duces constraints on variables, each narrowing step is written as
(e, φ) ;θ (e′, φ′), where θ is a substitution used in narrowing.
The rules find the most general unifier to proceed with the evalu-
ation when we encounter a free variable in redex. Since free vari-
ables may appear within the evaluation context, the narrowing rules
involve C. Narrowing for rec/esc is defined for arbitrary n so that
the argument variable of rec/esc can be instantiated to a node with
an arbitrary number of outgoing edges. Another important point in
narrowing is the second rule of rec/esc. To make loops by nar-
rowing, we replace a narrowing variable with an already-traversed
node. Note that φ may contain constraints of the form $l1 6= $l2 due
to the second rule of if . Such constraints appear in the perfect pro-
cess tree of consecutive in Example 4. Our narrowing rules have
been borrowed from (Abramov and Glück 2002; Glück and Klimov
1993), and those of needed narrowing (Antoy et al. 1994) for call-
by-value small-step semantics. The soundness and completeness of
needed narrowing are discussed in (Antoy et al. 1994).
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