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Abstract

In the research of software reuse, feature models have been widely adopted
to capture, organize and reuse the requirements of a set of similar applications
in a software domain. However, the construction, especially the refinement,
of feature models is a labor-intensive process, and there lacks an effective
way to aid domain engineers in refining feature models. In this paper, we
propose a new approach to supporting interactive refinement of feature mod-
els based on the view updating technique. The basic idea of our approach is
to first extract features and relationships of interest from a possibly large and
complicated feature model, then organize them into a comprehensible view,
and finally refine the feature model through modifications on the view. The
main characteristics of this approach are two folds: a set of powerful rules
(as the slicing criterion) to slice the feature model into a view automatically,
and a novel use of a bidirectional transformation language to make the view
updatable. We have successfully developed a tool, and a nontrivial case study
shows the feasibility of this approach.

1 Introduction

In domain engineering, feature models [1][2][3] have been widely used to capture,
organize and reuse the requirements of applications in a software domain. An



important step of constructing a feature model is to refine a big, abstract feature
into small, concrete features. Different approaches have been proposed to guide
the refinement of features. For example, in FODA [1], a set of guiding principles
are proposed to refine feature models. In FORM [2], features are refined in four
layers according to the feature hierarchy, i.e. capabilities, operating environments,
domain technologies and implementation techniques.

Feature models grow large during refinement. Reports [4][5][6] show that real-
would feature models often grow beyond thousands of features, and the largest one
reported [7] has more than 5000 features. On the other hand, feature model re-
finement becomes more and more difficult when the feature model grows. For one
thing, it becomes more difficult to find all features related to the current refinement
task. For another, it is difficult to locate a specific feature in the large model.

One way to attack this problem is to organize features related to the current
refinement task into a view. Then the domain engineer only modifies the view
to accomplish the current refinement task. As the view is usually much smaller
than the whole feature model, the refinement task becomes much easier. However,
there are several challenges in applying this idea. First, it is difficult to locate
all related features that should be contained in the view. Second, it is unknown
how to organize these features into a view so that their relations and hierarchical
information are preserved. Third, it is unclear how to reflect the modification on
the view back into the feature model.

In this paper, we propose a new approach to supporting interactive refinement
of feature models based on the above idea. In our approach, first, domain engi-
neers choose features of interest (called initial features); second, a set of features
and relationships that may help domain engineers refine the feature model are auto-
matically extracted from the feature model, with the help of eight heuristic slicing
rules; third, all the extracted features and relationships are automatically organized
into an annotated feature model (called view); and finally, after domain engineers
refine the view, we transform all view updates into updates on the feature model
by using the bidirectional transformation technique [8]. The main contributions of
our paper are summarized as follows:

e We have made the first attempt of applying the slicing technical to feature
model refinement, by proposing a set of slicing rules to extract related fea-
tures and relationships based on initial features, and giving an organizing
algorithm to organize them into a view that is comprehensible enough for
later refinement.

e We define a set of valid modifications on the view and apply the bidirec-
tional transformation technique in building the updatable view, so that any
refinement operations on the original feature model can be done through the
valid modification on the view and any valid modification on the view can
be correctly reflected back as a refinement in the original feature model.



e We implement a tool! and successfully apply it to refine the web store do-
main, which shows that our approach to feature model refinement via modi-
fication on sliced view is promising and potentially useful in practice.

The rest of this paper is organized as follows. Section 2 gives some prelimi-
nary knowledge on feature models. Section 3 introduces a running example that
will be used through the paper. Sections 4, 5 and 6 amplify the whole process of
our approach. Section 7 illustrates our approach with the web store system case
study. Section 8 discusses the related work, and Section 9 concludes the paper and
highlights the future work.

2 Preliminary: Feature Models

There currently exist several notations for describing feature model [1][3][9]. In
our approach, we adopt, though not limited to, the notation proposed by Zhang et
al.’s work [9]. The basic notations and their semantics are summarized in Table 1.

Feature groups with predicates are explained more in Table 2. In this table,
f1...fn denotes features. For a feature f, bind(f) is a predicate; it is true if f is
bound, and false if unbound. And, complex constraints are shown in Table 3. In
this table, p and ¢ denote feature groups with predicates.

3 A Running Example

We use the web store domain as a running example to demonstrate our approach.
A web store is an online shop that sells products or services. In the past few years,
more and more consumers choose web stores to purchase products or services.
Web store systems are composed of two parts, namely, the Products Purchase and
the Business Management. In the Products Purchase, customers can register an ac-
count, browse and choose products, check out, pay the order and ask for help when
encountering problems. In the Business Management, the shop operators can pro-
cess orders, manage warehouse, arrange advertisements, start products promotions
and manage staffs of the web store. Figure 1 shows part of the web store feature
model. This example is constructed according to a real world example [10] which
will later be used to evaluate our approach.

It is usually not easy for domain engineers to refine large feature models. For
example, if a domain engineer wants to refine feature Shipping Address, he needs
to find out the features related to it and analyze these features to find any hints for
this refinement task. It is difficult for the domain engineer to do it manually in this
large feature model. In this paper, we will demonstrate how our approach helps
domain engineers collect and organize related parts in the feature model to help
domain analysts refine the feature model.

!See http://sei.pku.edu.cn/~ wangboO7/fmrvb.html for the detail.



Table 1: Symbols and Explanations for Feature Models

Symbol Name Explanation
Mandatory A mandatory feature must be bound in a configuration
feature process, if its parent feature is bound .

Optional feature

A optional feature can either be bound or be removed
in a configuration process, if its parent feature is
bound.

Feature

In our paper, we use this symbol to denote a feature
that can be replaced by either a mandatory feature or a
optional feature.

Refinement
relationship

A refinement connects the parent (the feature
connected to the up end) and the child (the feature
connected to the down end). A feature must have one
parent. The root feature has no parents. There are
three  kinds of refinement:  decomposition,
characterization and specialization.

Decomposition
Relationship

Refining a feature (up end) into its consistent features
(down ends) is called decomposition.

Characterization
relationship

Refining a feature (up end) by identifying its attribute
features (down ends) is called characterization.

Specialization
relationship

B FFo [P

Refining a feature (up end) into further detailed
features (down ends) is called specialization.

A require constraint connects the requirer (the feature
connected to the non-arrow end) and the requiree (the

Require . .
— quir feature connected to the arrow end). This constraint
constraint . . . .
means that if the requirer is bound in the
configuration process, the requiree must be bound.
A excludes constraint connects two features. This
Exclude .
> . constraint means that these two features cannot be
constraint

bound in the same configuration.

A feature group contains a set of features. We define
three kinds of feature groups according to their
predicates. See Table 2 for the formal definitions of
feature groups with predicates.

Predicate

Feature group
with predicate

A complex require constraint connects two feature

€ | Compl i
- ompiex require groups. See Table 3 for its formal definition.
< Complex exclude A complex exclude constraint connects two feature

groups. See Table 3 for its formal definition.

4 Approach Overview

Our approach is composed of two parts, 1) build an updatable view with feature
model slicing, and 2) refine the feature model with an updatable view, as shown
in Figure 2. We will introduce the two parts in details in Section 5 and Section 6,
respectively. In this section we first give an overview of the approach.

In the first part, the input is a feature model, and the output is an comprehen-
sible view. The first part consists of three activities. In the first activity, domain
engineers select a few features (called initial features) according to the refinement
tasks. In the second activity, features and relationships that are related to the initial
features are automatically extracted from the feature model according to a set of
heuristic slicing rules and the initial features. In the third activity, the extracted
features and relationships are automatically organized into a view which is a com-
prehensible annotated feature model.



Table 2: Feature Groups with Predicates

Feature group Multi Single All
with predicate Multi Single All
[ L 77 PYRIO ] [ L7 PYPIU ] [ LF PYPI ]
Formal bind(f,)v bind(f,) ® bind(f))M
definition bind(f,)u...u bind(f)) ®...® | bind(fy)) N...n
bind(f,) bind(f,) bind(f,)
Table 3: Complex Constraints
Complex Complex require (p, @) | Complex exclude (p, q)
constraint
predicate predicate predicate C predicate
p q p q
Formal
definition P-4 p--g

In the second part, domain engineers refine the original feature model by ex-
amining and modifying the view. We define a set of valid operations on the view
and how these operations correspond to operations on the original feature model.
With these valid operations, domain engineers can modify the view and all the
modifications can be automatically reflected on the original feature model. We ap-
ply the bidirectional transformation technique to implement the reflection of view
modifications.

As an example, let us see how our approach helps refine feature Shipping Ad-
dress in Figure 1. First, the domain engineer selects initial features of interest.
Since a shipping address is used to deliver an order, we suppose the domain en-
gineer selects features Shipping Address and Order Status Notification as initial
features. Then related features are automatically extracted to form a comprehensi-
ble view. In this case, the generated view contains Shipping Address and sub-trees
of Order Status Notification. Then the domain engineer only inspects this view
and founds that Shipping Address must has a child feature Mobile Number because
there is feature SMS, which means that the system can notify the customer of the
order status by sending messages to his mobile phone. So he added feature Mo-
bile Number as a child feature of Shipping Address on the view, and the feature is
also automatically added to the original feature model as a sub feature of Shipping
Address.
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5 Build a Comprehensible View with Feature Model Slic-
ing

In this section, we introduce the first part of our approach, in which features and
relationships are extracted from the feature model and organized into a compre-
hensible view to help domain engineers refine the feature model.

The idea of feature model slicing is inspired by the concept of program slicing.
Program slicing [11] takes a program and a slicing criterion as inputs, and returns
a sub set of the program that satisfy the criterion.

The feature model slicing takes the feature model and a slicing criterion as
inputs. The slicing criterion is denoted as a pair < F, R >. F'is the feature set that
contains all the initial features. R is a rule set that contains all the slicing rules. In
the feature model slicing, features and relationships related to the initial features
are extracted from the feature model according to the slicing rules and organized
into a view with the help of an organizing algorithm.



5.1 Preprocess: select initial features

To obtain the view, domain engineers are requested to select initial features that
they want to focus on. The domain engineer may want to refine these initial fea-
tures, or they may want to use these features to help refine other features. It is
worthwhile to note that although it is a free selection process, the initial features
have an influence on the generated view because the slicing rules use these initial
features as starting points to extract related features and relationships. Therefore,
whether the view can greatly benefit the process of refinement depends on the ini-
tial features.

5.2 Extract related features and relationships

Based on the initial features, some closely related features and relationships are
extracted from the feature model. These features and relationships can help domain
engineers refine the feature model.

Eight heuristic slicing rules are provided to identify features and relationships
closely related to the initial features. These rules are categorized into two types,
namely the Feature Identification Rules and the Relationship Identification Rules.

Feature Identification Rules

The goal of feature identification rules is to identify features closely-related to
the initial features. We call these features extended features. The slicing rules for
identifying extended features are listed as follows.

F1: Identify extended features by finding offspring of the initial features.

The offspring of a feature characterize their parent in detail and contain vari-
able points related to the parent. If a domain engineer focuses on one feature, he
should also consider the offspring of the feature when refining the feature model.
For example, if feature Warehouse Management is selected as an initial feature,
the domain engineer should also consider feature Shipping, Products Return, and
Procurement, as shown in Figure 3(a).

F2: Identify extended features by finding parents of the initial features.

A parent feature describes its children in a higher abstraction level and the
parent feature helps domain engineers understand the feature model. If a domain
engineer focuses on all the children of a feature, he should also consider the parent
of these children when refining the feature model. In Figure 3(b), feature Shipping
Method, Shipping Address, Payment Method and Order Notification are selected
as initial features. The parent feature Check Out of these initial features can help
domain engineers understand these initial features and refine the feature model.

F3: Identify extended features by finding characterization relationships.

In a characterization relationship, the sibling features describe their parent from
different perspectives. If a domain engineer focuses on one of the children in the
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characterization relationship, the domain engineer should also consider all its char-
acterization siblings when refining the feature model.

For example, the feature Pay the Order is characterized by two attribute fea-
tures, Payment Method and Currency Type, as shown in Figure 4(a). If feature Pay
Method is selected as an initial feature, the domain engineer should also consider
Currency Type.

F4: Identify extended features by finding specialization relationships.

In a specialization relationship, siblings describe different ways of implement-
ing their parent. If a domain engineer focuses on one of the children in the special-
ization relationship, the domain engineer should also consider all its specialization
siblings when refining the feature model.

For example, feature Shipping Method is specialized into feature UPS, EMS,
FexEx, and Post, as shown in Figure 4(b). If feature UPS is selected as an initial
feature, the domain engineer should also consider the other three features.

Relationships Identification Rule

Generally speaking, all the relationships among the selected features (initial
features and extended features) should be extracted, because these relationships
help domain engineers understand and refine the feature model. It is worth noting
that a constraint is a kind of relationship. A feature group is also a kind of relation-
ship, because each feature group has a predicate on its members. In the following
we explain each type of relationship in details.

R1:1dentify refinement relationships between the selected features.

If all features in a refinement relationship are selected, the domain engineer
should also consider the refinement relationships when refining the feature model.

For example, feature Warehouse Management is decomposed into three fea-
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tures: Shipping, Products Return, and Procurement, as shown in Figure 5(a). Do-
main engineers should also consider this decomposition relationship.

R2: Identify binary constraints between the selected features.

If both features of a binary constraint (require constraint or exclude constraint)
are selected, the domain engineer should also consider the binary constraint when
refining the feature model.

For example, Order Notification and Order Status Notification are selected, and
there is a require constraint between them. Domain engineers should also consider
this require constraint.

R3: Identify feature group predicates among the selected features.

If all features of a feature group are selected, the domain engineer should also
consider the feature group predicates when refining the feature model.

For example, SMS and Email are selected, as shown in Figure 6; domain engi-
neers should also consider the feature group that has a Multi predicate on them.

RA4: Identify complex constraints among feature groups.

If both feature groups of a complex constraint are included in the slicing, the
domain engineer should also consider the complex constraints when refining the
feature model.

For example, there are two feature groups p and g in Figure 6. Group p has one
feature Notification Method and predicate All. Group g has feature SMS, Email
and predicate Multi. When feature groups p and g are selected, domain engineers
should also consider the complex requires between p and q.

5.3 Organize the features and relationships into a view

To make the results of the extraction more comprehensible, we organize these fea-
tures and relationships into a view, which has additional annotations and maintains
the original level relations among the selected features.



According to rules R1 and R2, the selected features are a set of sub-trees from
the original feature model. Usually these sub trees are scattered in the model,
which make the results of the extraction hard to understand. For example, there
are 5 selected features in the feature model, as indicated by the grey rectangles in
Figure 7. These 5 features are in three sub-trees locates in different parts of the
feature model.

In our approach, we organize the results of the extraction by computing the
lowest common ancestor (LCA) of the roots of the sub-trees. For any two features,
their LCA 1is their shared ancestor that is located farthest from the root feature.
With LCAs, artificial features, annotations and artificial relationships are created
to organize the results of the extraction.

For each LCA, an artificial feature is created and attached with an annotation
which indicates the source of the artificial feature. For example, the LCA of fea-
ture F' and G is feature D. In the view, artificial feature AF?2 is created as the parent
feature of F' and G. This artificial feature is attached with an annotation which in-
dicates that it can be traced to feature D in the original feature model, as shown in
Figure 7. After we create an artificial feature, we create two artificial refinement
relationships from the artificial feature to the roots of the two sub-trees, respec-
tively. In this way we make the artificial feature the common parent of the two sub
trees.

flegend ~ 77T
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=l Feature

_ Artificial

Refinement :
1|:| Selected
i Feature
: Ignored
Sub-trees 1

Feature Model View

Figure 7: An Example of Constructing a View

Besides adding artificial features for LCAs, our approach also adds artificial
features to keep the relative depth of each feature. For example, feature F and H
have the same depth of 4 in the original feature model. After adding AF2 and AF'1
as common features, feature F' has a depth of 3 and feature H has a depth of 2, and
they are not of the same depth. So we add another artificial feature, AF3, to make
F and H have the same depth.

The view is built by an organizing algorithm that adopts a bottom up tree con-
struction strategy, as illustrated in Figure 8. This algorithm takes the roots of the
sub-trees as inputs and builds the view as output.

This algorithm 1) finds the LCA for each feature pair (f;, f;) in the input set S,
2) picks the LCA of these two features, 3) generates an annotated artificial feature
for the picked LCA if it is are not in the set S, 4) adds the artificial refinement
relationships from this LCA to the features f/ and fj{, and 5) removes the features

10



Input: S = {f1.fo.f5,...f,}
Output: View

Initialization: For all 1<i<n, f.selected = true;
while(S has more than one element)
Find (f.f;) with maximal depth(LCA(f".f))) in {(f.f) | i %, f; €S, f; €S}.
Let f= LCA(ff,) .
if f.selected == false then f.addAnnotation(); end if
if f==f/ then
level = distance(f,f;)-1;
If f.selected == false then f.addChild(f;,level); end if
S.remove(fj’);
else if f==f then
level = distance(f,f)-1;
If f.selected == false then f.addChild(f/,level); end if
S.remove(f;);
else
if fis not in S then f.selected = false; S.add(f); end if
if f.selected == false then
level = distance(f.f;)-distance(f.f);
if level>0 then
f.addChild(f;,level); f.addChild(f;,0);
else if level<0 then
f-addChild(f/,0); f.addChild(f;, | level|);
else
f.addcChild(f;,0); f.addChild(f;,0);
end if
end if
S.remove(f); S.remove(f,);
end if
end while
View.root = S.getOneElement();
return View;

Figure 8: An Algorithm for Constructing a View

f! and f]’- from the set S and adds the LCA into the set S. The procedure is iterated
until the whole view is built. The key variables and functions are illustrated as
follows:

e Each feature has an attribute selected that manifests whether it is in the input
set;

e Function LCA(f}, f}) computes the LCA of f; and f};

e Function f.addChild(f!,level) generates the artificial refinement relation-
ships from f to f/ by adding the number of level artificial features between
them to keep their relative hierarchy. If the parameter level is equal to 0, f/
becomes a child of f;

e Function depth(f) returns the distance from the root feature to feature f;
e Function distance(f, fj’) computes the length of the path from f to fJ’-.
With this algorithm, we ensure that artificial features and relationships are cor-

rectly added and relative depths of features are preserved.

11



6 Refine Feature Models with Updatable Views

In this section, we first define the updatable view; then prove that the updatable
view can be built by the GRoundTram system.

6.1 Refine feature models with view updating

The updatable view is defined by a view and a set of valid operations on it. Domain
engineers can refine the feature model by using these valid operations to modify
the view. These modifications on the view can be automatically reflected back to
the original feature model.

In order to clarify the valid operations on view, we will introduce both the valid
operations and the invalid operations. The valid operations are provided to facilitate
the feature model refinement. And the invalid operations have little contribution to
the feature model refinement.

We classify the operations on the view into three categories: add, delete, and
change. Domain engineers can add or delete features and relationships. They can
also change the attributes of features and relationships.

Invalid Operations

1) Add relationships: If the operation of adding relationship involves artificial
features, it is invalid. Adding relationships that contains artificial features cannot
help refine the feature model, because artificial features are created only for orga-
nizing. For example, adding a require constraint between artificial feature AF'/ and
feature G is meaningless.

2) Delete features and relationships: If the deleting operation refers to artificial
features and relationships, it is invalid. For example, in the updatable view shown
in Figure 9, deleting artificial feature AF3 and the artificial relationship between
AF3 and H will make the view hard to understand and cannot help refine the feature
model.
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Figure 9: Examples of Invalid Operations

Valid Operations
1) Add features and relationships: If the operation of adding new feature with

12



the selected parent in the view, it is valid. If the relationships that only contain
the selected features, the operation of adding them is valid. Figure 10 shows how
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Figure 10: Example of Adding Features and Relationships

the added features and relationships are transformed back to the original feature
model. For example, feature L and M are added as the children of feature G with a
decomposition relationship in the view. All these modifications are reflected in the
refined feature model.

2) Delete features and relationships: 1If the features are not artificial in the view,
the operation of deleting them is valid. If a feature is deleted, all its children are
deleted automatically. All the constraints and relationships on the deleted features
are also deleted. If the relationships only contain the selected features, the opera-
tion of deleting them is valid.
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Figure 11: Examples of Deleting Features and Relationships

Figure 11 shows how the deletion of features and relationships are reflected
back to the original feature model. For example, feature L and the require con-
straint between G and H are deleted in the view. All these modifications are re-
flected in the refined feature model.

3) Change attributes of features and relationships: If the attributes belong to
the selected features and relationships, the operations of changing them is valid.

In general, domain engineers can modify any feature and relationship that exist
in the original feature model. However, the artificial features and relationships
which are introduced to organize and enrich the view cannot be modified, because
modifying these features and relationship cannot help refine the feature model.

There is a special case we have to handle when modify the view. If the roots of

13



the sub-trees are deleted in the view, the content and the structure of the artificial
features may be changed, because the deletion of the roots may lead to the change
of the LCA. In this case, the view needs to be built again after the deletion is
reflected back to the original feature model.

For example, if feature F' is deleted in the view, the feature F' in the original
feature model (see Figure 7 feature model) is also deleted. Then in the original fea-
ture model, feature D is no longer a LCA. So we have to regenerate the updatable
view, as shown in Figure 12.
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Figure 12: An Example of Deleting the Root of a Sub-tree

It is worth noting that any operation on the original source feature model cor-
responds to a valid operation on one of its sliced views.

6.2 Use bidirectional transformation to build updatable views

In the previous section we have seen the definition of updatable view. In this sec-
tion we discuss how bidirectional transformation techniques can be used for easy
implementation of an updatable view.

We use the system GRoundTram [12][13], which has been developed to sup-
port systematic development of bidirectional model transformation. GRoundTram
adapts an existing well established graph querying language UnQL [14] for model
transformation. It provides a powerful bidirectional transformation language UnQL+
that extends UnQL and performs an efficient bidirectional computation. In GRound-
Tram, graphs are edged-labeled in the sense that all information is stored as labels
on edges rather than on nodes. The GRoundTram system gives a support to con-
struct an updatable view, maintaining the traceability between the feature model
and the updatable view.

We represent, in GRoundTram, a feature model by a source graph model?, and
an updatable view by a target graph model. A forward UnQL+ query is automati-
cally created by analyzing the result of feature model slicing. Once a forward query
is provided, the backward transformation comes for free by the GRoundTram sys-
tem. In this way we only need to implement a forward query that extracts a view

2See http://sei.pku.edu.cn/” wangboO7/fmrvb.html for the graph representation of feature models.
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from the feature model, and do not have to write code to reflect the updates back
into the source.

Besides the easy implementation of the updatable view, another two advan-
tages of using GRoundTram in our approach is that: 1) GRoundTram maintains
the history of the modifications caused by backward transformation, so that we can
easily implement an undo functionality to cancel a refinement; 2) GRoundTram
records the traceability links between nodes in the source graph and nodes in the
target graph, so that we can easily support tracing back from features on the view
back to the features in the original model. For example, Figure 13 shows a snap-
shot of GRoundTram system, the source graph model and target graph model are
displayed in the left and right part, respectively. Suppose that in the target graph
model, we first delete the feature account and perform the backward transforma-
tion. And then, we add the feature cash and perform the backward transformation
again. History of these changes is reflected to the source graph model (left in Fig-
ure 13). In this modified source graph model, the feature deleted is represented
by a set of dash nodes and edges and the feature added is colored with purple. In
addition, when we select the feature submitorder on the target graph model, the
selected feature can be traced back to the source graph model with red highlight.

6.3 Reflect the refinement on views to feature models

Now we show that GRoundTram is a powerful bidirectional transformation system
which makes all the refinement on views be truly reflected to the original feature
model. There are two facts about GRoundTram [12][13].

Fact 1. The UnQL+ is as expressive as FO(TC) (first order logic with transitive
closure).
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Fact 2. All the basic graph operations on the projection view of a graph model
can be transformed back. These basic operations are: 1) adding/deleting nodes, 2)
adding/deleting edges and 3) relabeling edges.

First, we explain that it is feasible to use UnQL+ provided by GRoundTram to
implement the feature model slicing. We define some concepts to describe the view
formally. F'is a feature set and R is a set of relationships over F'. Relationship
r(r € R) can be represented as {(f1, f2) | (f1,f2) € r, f1 € F,fo € F}. The

union of the relationships in R is defined by U(R) = |J r. Then, the transitive
reR
closure can be defined as follows:

e Set’(UR) = F,
o Set!(UR) ={f|(g,f) € UR, g € Set*(UR)},
e TC(UR) = Set(UR) = |J Set'(UR).

i>0

Any part of the feature model can be characterized by a FO(TC) formula. Since
the extracting features and relationships in the view can be traced back to the fea-
ture model, they correspond to a part of the feature model. Therefore, they can be
described by FO(TC) formula. The artificial features and relations of the view can
be directly illustrated by FO formula. The whole view can be characterized by the
FO(TC) formula. Fact 1 guarantees that the forward transformation (i.e., slicing)
can be expressed in UnQL+ language.

Then, we show informally that all the valid operations on the view can be
reflected backward to the feature model. The view and feature model in GRound-
Tram are represented in the form of the target graph model and source graph model,
respectively. Target graph model contains two kinds of elements, namely traceable
elements and artificial elements. Artificial elements are the artificial nodes and
edges. Traceable elements are the nodes and edges that can be traced back to the
source graph model. Any valid operation on the view is decomposed into some
basic graph operations on the traceable elements in the target graph model. Fact 2
guarantees that the valid operations on the view can be backward transformed to
the feature model.

7 An example

In this section, we use the web store feature model constructed from a published
feature model [10] to illustrate our approach. The constructed feature model has
314 features. In this example, we refine the certain parts of the web store feature
model that describe the shopping process in web stores. A typical shopping process
in a web store is described as follows: a customer chooses products, fills out the
order and pays the order. The store wraps the products and ships them to the
customer.
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Figure 14: The Web Store Feature Model

This refinement task consists of three steps. First, initial features are selected
to express what we may want to refine in the feature model. Then, other features
and relationships that may help us to refine the feature model are automatically
extracted and organized into an updatable view. Finally, we focus on generated
view and modifies it. The modifications on the view are reflected on the original
feature model automatically.

7.1 Select initial features

The selection of the initial features is to tell the system what we wants to consider
in the process of refinement.

10 initial features are selected to indicates the concerns on the shopping- related
parts of the feature model. These initial features are marked with a red hook on the
top left corner of the feature, as shown in Figure 14.

7.2 Slice the feature model into an updatable view

Based on the initial features, features and relationships are automatically extracted
from the feature model and organized into a view. We use the GRoundTram System
to make the view updatable.

25 relationships and 12 extended features are extracted according to the slic-
ing criterion, as shown in Figure 14. The extended features are 3 sub-trees of the
original feature model. These five sub-trees located in different part of the feature
model, and the roots of these sub-trees are not in the same level, which makes it
hard to understand. 3 artificial features, 2 annotations, and 5 refinement relation-
ships are created to organize the result of the extraction into a view, as shown in
Figure 15.
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Figure 15: The View of the Web Store Feature Model

7.3 Refine the view

The generated view collects the useful information to help us focus on parts of the
original feature model. Then we can refine the feature model by performing the
valid operations defined in Section 6 on the view.

Eight features and eight relationships are refined from existing features. Two
features are changed in the view. Due to the limit of space, the result of the back-
ward transformation on the feature model is not presented here.

During the refinement, three of eight added features are created with the help
of extracted features and relationships, as shown in Figure 15. Features UPS, EMS
and FedEx remind us that if web stores support express delivery, it can supports
cash on delivery. So feature COD is added as a specialized feature of feature Pay-
ment Method. In addition, if a web store allow customers using a member account
to pay an order, the system should show the balance of the member account when
customers checks out the order. So feature Show Account is created as the child
of feature Checks Out. Feature SMS indicates that the system can notify the sta-
tus of the order by sending customers an instant message. The system should let
customers enter the phone number when they check out. Therefore, feature Mobile
Number is refined from feature Shipping Address for this reason.

We can conclude from the example that the extracted and organized view help
us in ways of collecting information and providing some hints to refine the feature
model.

8 Related Work

Feature models represent the commonality and variability of the applications in
the domains. Basic feature models [1][2] and cardinality-based feature models [3]
are both constructed by capturing the commonality in abstraction and variability in
step-wise refinement, with the help of a set of principles.
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The original concept of a program slice was introduced by Weiser [11]. Weiser
defined a program slice as a reduced, executable program that is abstracted from the
original program and can produce the specified subset of behavior of the original
program. The task of computing program slices is called program slicing. Feature
model slicing is inspired by the concept of program slicing. It can be defined
by abstracting the meaningful parts from a feature model to form a view. Different
from the program slicing, our slicing criterion focus on feature relations rather than
program semantics. Besides, we also have an organization algorithm to organize
the sliced feature. Kagdi et al. [15] propose UML model slicing. Their definition
is general and their approach targets the UML model. Our approach is focused on
the feature model.

View updating (bidirectional transformation) has been intensively studied in
the database community [16][17][18][19][20]. Recently, a lot of work has been
devoted to design of bidirectional languages for developing bidirectional transfor-
mation, which has many applications [8] including synchronization of replicated
data in different formats [21], presentation-oriented structured document develop-
ment [22], and interactive user interface design [23], coupled software transforma-
tion [24]. Our work is the first attempt of applying the bidirectional transformation
to the feature model refinement.

9 Conclusion

In this paper, we show the importance of slicing in feature model refinement, which
has not be recognized so far. With the view updating technique, we are able to
refine large and complicated feature models. The main features of our approach
are two folds: a set of powerful slicing rules to slice the feature model into a view
automatically, and a novel use of a bidirectional transformation language to make
the view updatable. The updatable view allows domain engineers to refine feature
models in an effective way; they can get the extracted and organized information,
and refine the feature model by directly modifying the view. Our future work
will focus on exploring more accurate slicing rules, working on more practical
examples, and investigating applicability of our approach.
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