ISSN 1884-0760

GRACE TECHNICAL REPORTS

Sound and Complete Validation of Graph
Transformations

Kazuhiro Inaba Soichiro Hidaka Zhenjiang Hu
Hiroyuki Kato Keisuke Nakano

GRACE-TR-2010-04 May 2010

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Sound and Complete Validation of
Graph Transformations

Kazuhiro Inaba Soichiro Hidaka Zhenjiang Hu Hiroyuki Kato
National Institute of Informatics
{kinaba,hidaka,hu,kato}@nii.ac. jp

Keisuke Nakano
The University of Electro-Communications
ksk@cs.uec.ac. jp

May 6th, 2010

Abstract

Transformation of graph structures is becoming more and more
important in many fields such as semistructured database or model-
driven software development. There, graphs are often associated with
schemas that describe structural constraints on the graphs. In this
paper, we present a static validation algorithm for the core fragment of
a graph transformation language UnCAL [7]. Given a transformation
and input/output schemas, our algorithm statically verifies that any
graph satisfying the input schema is converted to a graph satisfying
the output schema.

Our algorithm is enabled by reformulating the semantics of the
core UnCAL, using monadic second-order logic (MSO). The logic-based
foundation allows to express the schema satisfaction of transformations
as the validity of MSO formulas over graph structures. Furthermore,
with several insights on the established properties of UnCAL, the prob-
lem turns out to be reducible to the validity of MSO over finite trees,
which have sound and complete decision procedure.

1 Introduction

Transformation of graph structures is becoming important in many fields |7,
10, 18, 3]. For instance, in semistructured database [7], data sources are
represented as graphs and therefore queries on the database become graph
transformation. In model-driven software development [10], software com-
ponents in different level of abstraction are modeled as graphs, and their
relation is described as executable graph transformations.

In these applications, we often assume, for each graph transformation,
that its input and output graphs are not arbitrary graphs but have some
structure in it. Let us consider, say, a graph transformation that extracts a
list of “person names” from a graph-formed database of an “address book”.
Input graphs for such a query are assumed to have, e.g., a root node having
a bunch of outgoing edges labeled person, each pointing to a node with
edges name, address, phoneNo, etc. Similarly, for an input graph satisfying
such structural constraints, we expect the transformation to return an out-
put graph with a set of name edges. Such constraints on the structure of
input /output graphs are expressed by some graph schema language.

Sometimes, graph transformations written by programmers contain bugs
that break these structural constraints imposed on the transformations. For
instance, instead of generating a set of name edges, programmer may write
a transformation that produces a set of name edges each preceded by a
person edge, forgetting to erase the parent edge. It is relatively easy to
check such bugs dynamically; for each run of the graph transformation,
we can check the conformance of the concrete input/output graphs to the
specified schemas. A question arises here is, whether it is possible to ensure
beforehand that such structure-breaking bugs can never happen? Dynamic
check is not satisfactory, because it only checks the correctness for particular
given input graphs.

The objective of this paper is to answer the question affirmatively, by
providing a static validation algorithm of a practical graph transformation
language. The problem we would like to verify is the following one:

Validation Problem Given a transformation f, an input
schema s,, and an output schema s, determine whether “for
any graph g satisfying s, the output graph f(g) satisfies s,

More specifically, we present the validation algorithm for the core fragment
of UnCAL graph algebra, which is first introduced as the basis of a graph
query language UnQL for unstructured database [6] and later applied to
semistructured database [7], and is recently applied to model-driven soft-
ware development [15]. Our validation is sound, i.e., we are able to know
statically that a validated transformation never produces ill-formed output.
Furthermore, it is decidable and complete; the validation process always
terminates without any false alarm.

Main difficulty of the validation of graph transformations is that it looks
very close to undecidable problems. The largest problem resides in the “for
any graph” part of the validation problem; first-order properties are well-
known to become undecidable [26] on graphs, and even worse, precisely ex-
pressing schemas and translation languages in logic usually require involved
features like transitive-closures which go beyond first-order logic. Widely
adopted compromise for such situation on graphs is tree-decomposition [22].
By restricting the set of graphs in consideration to the tree-decomposable

ones (i.e., graphs whose sharing and cycles are limited to some constant dis-
tance), essentially the validation problem is reduced to that on trees. Unfor-
tunately, we cannot follow this approach for two reasons. Firstly, since our
purpose is to validate transformation programs for more general graphs, lim-
iting the input domain to almost-tree graphs does not make sense. Secondly,
the original semantics of UnCAL is given in the first-order logic extended
with transitive closures, whose validity is known to be undecidable even on
finite trees [24].

In order to overcome the difficulty, our approach is different from the
traditional tree-decomposition based method, though the spirit is a little
similar as we also reduce the problem on graphs to trees. We focus on the
fact that UnCAL transformations are well-structured by structural recursion
that always quite uniformly traverses over argument graphs. The structural-
recursion-based nature of UnCAL enables to derive two nice properties called
bisimulation-genericity and compactness, as shown in [7]. To put it plainly,
by exploiting these properties, we prove that if a schema-violation occurs
then it must occur within the finite unfolding of the graph. Hence, for the
purpose of checking schema conformance, we only need to concentrate on
such finite prefixes (called finite-cuts) of graphs. Furthermore, we have found
out that for the core fragment of UnCAL under consideration, we can give
an alternative presentation of its semantics by using monadic second-order
logic (MSO), which is known to be decidable on finite trees [21]. The core
UnCAL itself is expressible enough to capture basic subgraph extractions
and relabeling /restructuring along the structure of the original input graphs,
and we believe that it is a good starting point for constructing a decidable
validation algorithm for the full UnCAL.

In summary, our approach for the validation problem consists of three
steps. First, we show the validation problem for transformations over graphs
can be reduced to the problem over finite trees. Since the reduction is sound
and complete, deciding the latter problem solve the validation problem of
graph transformations. To make it clear what has enabled the reduction,
in this paper we further split this step into two. We show the bisimulation-
genericity of our schemas, which, together with the existing result of the
bisimulation-genericity of UnCAL, allows to reduce the validation problem
to possibly infinite trees. Then, we utilize the compactness that allows to
reduce the problem into finite trees. In the second step, we convert the
schema and UnCAL transformation into a single MSO logic formula. The
formula is valid (i.e., true on any finite trees) if and only if the translation
is valid with respect to the schema. Thus in the third step, we determine
the validity of the formula by known decision algorithm for MSO on finite
trees.

Outline The paper is organized as follows. Section 2 explains the graph
transformation language UnCAL and our schema language, which are the
target languages of our validation technique. The subsequent two sections
discuss how the validation problem on arbitrary graphs can be reduced to
that on infinite trees (Section 3), and eventually to that on finite trees
(Section 4). In Section 5, the validation problem is shown to be expressible
in MSO over finite trees. Since the logic is known to be decidable, the
validation problem is proven to be decidable at this point. Section 6 shows
related work, and Section 7 concludes and presents future direction of the
research.

2 Languages

In this section, we introduce two languages concerning our validation tech-
nique. One is for describing graph transformations: a core fragment of
UnCAL graph algebra [7]. The other is a schema language for describing
structural properties of graphs.

2.1 Graph Data Model

We deal with rooted, directed, finite-branching and edge-labeled graphs
whose nodes conveying no particular information. We fix the finite set Label
of labels and the set Data of data values throughout the paper. We assume
a special label € ¢ Label, and denote by Label. the set Label U {c}. We usu-
ally write the elements of Label by typewriter font like a, foo, or name, and
write the elements of Data as double-quoted strings like "John" or "3.14".
A graph g = (V, E,r) consists of a set V' of nodes (sometimes called ver-
tices), a function F from V to a finite set of edges, and a designated root
node r € V. Here, an edge is a pair in the set (Label. U Data) x V; the
first component of each edge is the information conveyed by the edge, and
the second component is the destination node of the edge. A graph without
any sharing (multiple edges pointing to the same destination node) and any
cycles is called a tree.

Notable feature of the UnCAL’s graph model is that it has e-edges re-
sembling e-transitions of automata, which work as shortcuts between nodes.
Schemas and transformations will be defined to respect this intuitive mean-
ing of e-edges. For example, the following two graphs are considered to be
semantically equivalent.

a a d
c doeiede _— [°7°
oZ e ¢ - \:.;0
Sese=e=e c

Here, the white circle o denotes the root node of each graph. The reason for
using e-edges is to make the transformation language as simple as possible.

Schema = roottype Type where Decl--- Decl

Decl = Name = {FEdge, ..., Edge}
| Name = {FEdge,..., Edge,}
Type = Name | Data | Type Type

Figure 1: Graph Schema Language GS

For instance, we do not need a union operator e; U ey of two edge-sets
explicitly, because it can be simulated by a construction {¢ : ej,£ : ea} of a
new node having two e-edges, as exemplified by the root node of the figure
above.

Formally, we define the set E~(v) of outgoing edges of a node v as the set
of non-¢ edges reachable from v by traversing only e-edges. That is, (I,u) €
E~(v) if and only if [# ¢ and there exists a sequence v = vg,v1,..., v of
nodes with (e,v;) € E(v;—1) for i > 0 and (I,u) € E(uv).

2.2 Schema Language

A schema describes a restriction to the structure of graphs. For example,
one can state that all the outgoing edges for the designated root node must
be labeled abc, and each of the destination nodes of the edges may have
edges labeled xyz going to the same type of nodes, and several other edges.
This claim on the structure of graphs can be stated in our schema language
as follows:

roottype T where T = {abc:S} S = {xyz:S,x*}.

The schema language, named GS, has the most similarity with the simulation-
based graph schema proposed in [5] for UnCAL, but GS is more inclined
for describing the structural properties of graphs. The difference will be
discussed in detail in Section 6.

Figure 1 defines the syntax of GS, where Name is a set of type names
whose elements are written by san-serif symbols like Apple, and Data is a
special type name for Data edges. We require a schema to be well-formed,
i.e., every Name in a schema occurs exactly once as a left-hand side of a
Decl, and in each Decl, there are no duplicate Labels in the right-hand side.
Let us explain the idea of each construct by using the following example:

roottype SNS where
SNS = {member : Person}
Person = {name : DataiName, email : Data,
friend : Person, *}
Name = {first : Data, family : Data, middle : Data}

The schema describes structural properties of the set of graphs representing
the user-network of a social networking service. According to the schema,
the root node must have type SNS, that is, all outgoing edges must be
labeled member and reach to nodes typable with the Person type. At this
point, we only consider the case where the number of the edges is arbitrary;
the extension adding cardinality constraints to schema will be discussed
later as future work. For a node to have the type Person, its outgoing edges
labeled name have their destination nodes of type Data 1 Name, meaning
that it must be typed by either one of the types Data (merely having a
string representation of one’s full name) or Name (storing the name in more
structured way). Similarly, outgoing edges of a node of type Person with
label email must have Data destination nodes, and so on. Since the type
definition ends with *, it can also have extra edges of other labels with no
constraints. Note also that the destination type of friend edges are again
Person itself; this implies that instances of the schema may contain cycles.

Formally, for a schema s written in GS, we let rtype(s) be the root type of
s, tname(s) the set of type names appearing in s, tdecls(7) the corresponding
body b such that the declaration 7 = b is in s, and ns(p) = {71,..., 7} C
tname(s) for a type p = 71 1---17,. The set [s] of graphs satisfying the
schema s consists of graphs g = (V, E,r) such that there exists a mapping
m : V — 2tname(s)U{Data} with the following properties:

L. 7 <y, rtype(s) (where v <, p means m(v) N ns(p) # 0 and is read as
“v has type p”).

2. For any node v € V, having Data € m(v) implies that for any (I,u) €
E~(v) we have [€ Data.

3. For any node v € V, having 7 € m(v) for 7 € tname(s) implies that
E—(v) satisfies tdecls(7). Here the set of edges E—(v) is defined to
satisfy a type declaration tdecls(7) = {l1 : p1,...,ln : pn} if and only
if for any edge (I,u) in E7(v) the label [is equal to one of /; and in
that case u <, p; holds. When tdecls(7) has a trailing star {---*}, we
require for any edge (I,u) in E7(v) that the label | must either be
equal to one of I; and u <, p;, or be equal to none of them.

For brevity, we sometimes abuse the notation and say that v satisfies
tdecls(Data) to mean the second condition to hold for the node v. Using
the defined terminology, the validation problem can now be stated as the
problem of determining the validity of the following proposition: “for any

graph g, g € [[SIN]] implies f(g) € [[SOUT]]”‘

2.3 Core UnCAL

The graph transformation language dealt with in this paper is, the nest-
free and positive fragment of the UnCAL graph algebra, which we call the

e u= {l:e,...,l:e} node with edges
| 3¢ variable reference
| if$l=athenecelsee conditional (a € Label)
| & output marker
| rec(A($/,89). & :=e,..., &, :=€)(e) structural recursion

I == 8§l label variable reference
| a label (a € Label. U Data).

Figure 2: Core UnCAL Language

core UnCAL. The concrete syntax is shown in Figure 2. Several syntactic
restrictions further applied to the core UnCAL are explained at the end of
this section, with comparison to the full UnCAL.

We hope the intuition of the most of the constructs is clear for the reader.
Node construction expression {l; : ej,...,l, : e,} creates a fresh node v
with outgoing edges F(v) = {(l1,71),..., (ln,)} where r; is the root node
of the graph obtained by evaluating the expression e;. Variable reference
and conditional branch is defined as usual. The output marker expression &;
is used only in the body of rec expressions as explained below. The distinct
feature of UnCAL is that basically all graph manipulations are expressed in
terms of one unified and powerful construct called structural recursion. The
expression rec(A($1,$g). & :=e1,...,&, :=e,)(eq) is evaluated as follows:
first evaluate e, and obtain the argument graph, and then, for every non-¢
edge (I,v) of it, evaluate each e; under the environment {$/ +— [,$g — v}.
The output marker expression &; (if any) in e; is connected to the root nodes
of the result graphs of the evaluation of e; at the edges in E(v).

Let us look at some examples. The following UnCAL expression a2d_zc

rec(A($,%9).
& = if$/ =athen {d: &}
else if $/ = c then {¢ : & } else {31 : & })($db)

replaces all labels a by d and shorts edges labeled ¢ by changing them to ¢
as follows:

b b b
a_~\d d ~ d d /\\.d
o=>0 0> = 0=>0 00 = o= =@
a2d_xc(S) S

b
Here, $db is a designated variable referring to the input graph and e(g) for
any UnCAL expression e should be read as “evaluate e under the environ-
ment $db — g”.

More involved example is the following UnQL expression abab

rec(A($/,89). &1:={a: &}, &:={b: & })($db)

that changes all edges of even distance from the root node to a, and odd
distance edges to b. You may consider the markers & as a mutually recur-
sive call, and the expression abab to be consisting of two mutual recursive
functions. One is &, which, at each edge in the original graph, generates
a new a edge pointing to the result of & at the original destination node.
Another is & that generates b edges pointing to the result of & from its
destination. The result of the whole expression is defined to be the result of
the & at the root node of the argument graph. The following figure should
be illustrative. The dotted edges denote the edges unreachable from the

output root node.
.Y\.
- — a_b_a
S = o>e>e>e
o b Ve

oa o
abab(oéogogo) = \
eb @b

Formally, the expression rec(A($1,39g). & :=e1,...,&,:=e€y)(e,) is eval-
uated as follows. First, evaluate e, and obtain some graph g, = (V, E,r).
Then, generate n new nodes ' from ™ for each node v € V, each corre-
sponds to the marker &. Then for each edge p = (l,u) € E(v) of v € V,
we evaluate each body expression e; to obtain a graph g, ;. If [= ¢, we
let gpi = ({v,u},{v — {(¢,)}},w), ie., e-edges are always kept un-
changed. If [# ¢, evaluate e; under the environment {$! — [,$g —
u, & +— ..., & — "u} and get g;m = (V',E’,r"). Then we let 9pi =
(Vpis Epivrpi) = (V' U{w}, E'U{ — {(g,7")}},), making v the new root
node!. The result graph g of the evaluation of the whole expression is the
simple aggregation g = (U, ; Vp.i»v — U, ; Ep.i(v), 'r) of all the graphs g,
making the & output at the root node in the input graph as the root node
of the output.

Here is another more realistic example

rec(A($01,891). & :={member :
rec(A($k,$g2). & :=
if $/, = friend then $¢ else {})($g1) })($db)

that extracts, from a graph satisfying the SNS schema, the set of members
who are being friends of some other member.
The differences of the core UnCAL from the full UnCAL are threefold.

Nest-Free Core UnCAL prohibits nested rec to refer to outer variables,
e.g., for a nested rec expression rec(A($l;,$g;). - - - rec(A($lz, $g2). - - - &=
ei--+)(-++)--+)(e), the inner body e; can only use variables $ly and
$g2, not $1; or $g;,

!This new root/e-edge inproduction was implicit in the preceding examples and de-
picted as if we unified ' and v

Positive Core UnCAL does not have if isEmpty($g) then predicate to
check whether the graph pointed by $g is empty or not.

Simplified Markers Uses of markers & are simplified. We require output
markers & not to occur directly in the argument expression e, in an
expression rec(- - -)(e,); they can only appear in the body expressions
of recs (i.e., rec(---rec(---)({a: &})---)(e) is not allowed due to &
in the argument but rec(---)(rec(---{a: &} --)(e)) is ok because it
is wrapped in another rec). We also restrict the occurrence of input
markers &;:= only at the root of the body expression of rec. Besides,
we have dropped the marker-connection operator @ of full UnCAL.
In fact, the use of @ is implicit in the core UnCAL; the expression
rec(---)(---) in the core UnCAL should be read as & @rec(---)(---)
in the full UnCAL.

Note that the first and the second constraints essentially lower the expres-
siveness, while the third simplification is not so, because all the UnCAL
expressions compiled from its front-end language UnQL can easily be writ-
ten in the form satisfying the third condition.

As a final remark, let us note one thing about the purpose of the UnCAL
language. The reader may find it too primitive and not user-friendly; but
this is rather intended. UnCAL is developed as the easy-to-reason-about in-
ternal algebra of a more human-friendly graph-query language called UnQL,
in the same sense as that the well-known relational algebra is an internal
language for the SQL querying language. The validation algorithm for Un-
CAL as will be presented in this paper can automatically be applied to the
UnQL language, by first compiling UnQL to UnCAL and then running the
validation algorithm. Roughly speaking, the restrictions of the core UnCAL
correspond to the subset of UnQL queries that cannot take the join or the
direct-product of multiple query results. Yet, the “core UnQL” is express-
ible enough to capture basic subgraph extractions (as shown in the previous
example) and relabeling/restructuring along the structure of the original
input graphs.

3 From Graphs to Infinite Trees

Recall that the validity of a proposition of the form “for any graph g, a
property ¢ holds” referring to arbitrary graphs has no general decision pro-
cedure [26] even for some first-order expressive property ¢. The validation
problem we want to verify—at least if literally written—is in that form: “for
any graph g, if it satisfies the input schema s,,, the output f(g) satisfies the
output schema s.,.”. To avoid this obstacle, in this section, we decouple

the reference to arbitrary graphs from the validation problem and reduce the

problem to that on infinite trees. The concept that plays the most important
role here is what is called the bisimulation.

Definition 1. Graphs g1 = (V1, E1,7r1) and g2 = (Va, Ea,72) are defined to
be bisimilar and written g1 = go if there exists a relation (called bisimulation)
S C V1 x Vs, satistying the following conditions: (1) (r1,72) € S, (2) for all
(v1,v2) € S and (I,u1) € E7(v1), there exists ug such that (I, u2) € E5(v2)
and (uj,u2) € S, and (3) for all (v1,v2) € S and (l,u2) € E5(v2), there
exists u; such that ([,u;) € E77(v1) and (ug,ug) € S.

In fact, UnCAL is designed carefully to regard two graphs equal if they
are bisimilar, in the sense that two bisimilar input graphs always generate
again bisimilar output graphs. Graph transformations written in UnCAL
are said to be bisimulation-generic in the sense that the following lemma
holds.

Lemma 1 ([7], Proposition 4). For any transformation f written in UnCAL
and any graphs g1 and g2, if g1 = g2 then we have f(g1) = f(g2).

Note that the lemma holds even for infinite graphs. Regarding the known
fact that any rooted graph is bisimilar to some possibly infinite tree, the
bisimulation genericity can be applied to the validation problem in the fol-
lowing manner. Under the assumption that schemas s, and s, and the
transformation f do not distinguish bisimilar instances, the validation prob-
lem is shown to be equivalent to determine the proposition: “for any tree
T that satisfies the given input schema s,, the output f(7') satisfies the
output schema s,,,”. Thus we can reduce the problem from general graphs
to trees, which is much easier. In fact, validity of MSO becomes decidable
on infinite trees [21] unlike on graphs.

Before formalizing this approach, we need to check the assumption that
not only UnCAL transformations but schemas are also bisimulation-generic.
This is proved in the next lemma.

Lemma 2. Let s be a schema written in GS and g1 = (V1,E1,71),92 =
(Va, Eg,r9) be graphs such that g1 = g2. Then, g1 € [s] implies g2 € [s].

Proof. Let S C Vi x V5 be the witness relation of the bisimilarity g1 = g9
and my : Vi — 2tmeme(s)U{Data} 1o the type assignment that ensures g; € [s].
We can construct the type assignment mg : Vo — 2fname(s)u{Data} o g, a9
follows.

ma(v') = H{ma(v) | (v,0) € S}

Let us show that this assignment makes the graph go satisfy the schema s.
First, for the root node, we have ra <,,, rtype(s), because we have ma(r2) 2
mi(ry) due to (r1,72) € S, and 71 <y, rtype(s) (recall that v <, p is a short-
hand for m(v) N ns(p) # (). Next, let us assume any node vy € V5 assigned
a type 7 € ma(v2) and show E57(vy) satisfies tdecls(7). By the construction

10

of my, there exists some vy such that (vy,v2) € S and 7 € mq(vy1), and
hence E;7(v1) satisfies tdecls(T). Let tdecls(t) = {l1 : p1,...,ln : pn} (the
other cases can be proved similarly), (I/,u') be any edge in E5(v2), and u
be some node satisfying (u,u’) € S whose existence is assured because S is
a bisimulation. The label I’ must be equal to some of [;’s; otherwise, there
must be an edge (I',u) € E{(v1), which contradicts the assumption that
E(v1) satisfies tdecls(T). Furthermore, v’ satisfies the condition v’ <y, p;,
because u <, p; and ma(u') 2 mq(u). O

This bisimulation-genericity of schemas and transformations allows us
to concentrate only on representatives among bisimilar graphs, instead of
dealing with all kind of graphs. Let b be a function from graphs to graphs
such that g = b(g). Intuitively, b is a function to obtain the representative
among the set of graphs bisimilar to g. Then the following lemma holds.

Lemma 3. Let b be a function from graphs to graphs such that g = b(g) for
any g. Let ¢ and v be a bisimulation-generic (i.e., ¢(g) = p(g') when g =
g') properties on graphs, and f be a bisimulation-generic transformation.
Then, the claim “p(g) implies ¥(f(g)) for any graph g” holds if and only if

“o(g) implies ¥ (f(g)) for any graph g in range of b”.

Proof. The ‘only if’ direction is trivial. For the ‘if’ direction, ¢(g) implies
©(b(g)) by the bisimulation-genericity of ¢. Then, since b(g) is in the range
of b, we have ¥(f(b(g))), which implies ¥(f(g)) by bisimulation-genericity
of ¢ and f. O

It is well-known that any rooted graph is bisimilar to an infinite tree
called the unfolding of the graph. Let us formally state the property. Let
g = (V,E,r) be a graph. The unfolding procedure unfold(g) is defined as
(V',E',r") where

(v,p) | v € V,pis a path from r to v}

{
E'((v,)) {{ (u,p.(L,w))) | (u) € E(v)}
= (r,¢).

Here a path from r to v is a finite list (I3, u1) -+ (In, up) of edges such that
(lh,u1) € E(r), (lit1,ui+1) € E(u;), and u, = v (if any). € denotes the
empty path and . denotes concatenation. Note that unfold(g) always yields
a tree, i.e., a graph with no loops and sharings, because each invocation of
unfold creates a fresh node. The resulting tree is infinite when the original
graph contains cycles. By taking the bisimulation relation S as {(v, (v,p)) |
v e V,(v,p) € V'} it is easy to see that g is bisimilar to unfold(g). Now,
applying Lemma 3 with b = unfold proves the following main theorem of
this section: validation problem of UnCAL on graphs is reduced to that on
infinite trees.

11

Theorem 1 (Graphs to Infinite Trees). Let s,y and sq, be schemas written
in GS, and f be a transformation written in UnCAL. Then, the claim “for
any graph g, g € [sn] implies f(g) € [Sour]” is equivalent to the claim “for
any possibly infinite tree T, T € [s,] itmplies f(T) € [sour]”-

It is worth remarking that, theoretically, this theorem in addition to the
MSO-definability results in Section 5 already establishes sound and complete
validation.

4 Infinite Trees to Finite Trees

Infinite trees are much better domain compared to graphs in that they in
fact already allows to give a decidable validation algorithm. Validity of
quite a few logics (including MSO [21] that we will use later) cross over
the borderline of decidability when we restrict the domain from graphs to
infinite trees.

There is, however, a problem with infinite trees regarding practical ef-
ficiency. As far as we know, there is no realistic implementation on the
validity of MSO on infinite trees. On the other hand, for MSO on finite
trees®, there exists a good practical implementation MONA [13], whose effi-
ciency is verified in many applications. In order to implement a practically
efficient validation of graph transformations, it is essential to reduce the
problem further to the domain of finite trees. To this end, we show in this
section that the validation problem over infinite trees can be reduced to that
over finite trees.

The key idea for restricting the input domain to finite trees comes from
the following observation: if an input infinite tree causes an error (i.e., gen-
erates an output graph not satisfying the output schema), it must be due
to some edge(s) finitely reachable from the root node of the tree. In such a
case, even if we cut off the infinite continuation below the erroneous edges
and make the tree finite, it should still reveal the error.

Let us formalize the notion of the “cutting off”. For trees T} =
(Vi,Ey,r1) and Ty = (Va, E9,72), we define the prefix-order relation
T1 =< Ty to hold if and only if there is a one-to-one mapping e (stands
for embedding) from V; to Vs such that e(r1) = r2 and ([,u1) € Ei(vy) iff
(I, e(u1)) € Ea(e(vr)).

Definition 2. For a possibly infinite tree T, the set of its finite-cut trees
(or finite-cuts for short) is cut(T) = {t | t < Tt is a finite tree}.

*Here we mean by MSO on finite trees what is called weak MSO (WSkS) in the litera-
ture. Precisely speaking, it is MSO on the infinite k-ary tree domain with no node/edge-
labels, whose second-order variables can range over finite sets only. The restriction on the
domain of second-order variable essentially prohibits us to encode infinitely many labeled-
edges. Hence, we call it MSO on finite trees. Similarly, we mention MSO on the infinite
k-ary tree domain with no restriction (called SkS) as MSO on infinite trees.

12

For instance, consider the following example of finite-cuts of a four-node

tree.
C
a2 _e>0 ae a/. a ¢Se 2 0>
cut | o7 =40 ,07 ;00,07 L
More interesting example is the finite-cuts of an infinite tree
cut (ote2ete) ={o0tectets .}

that produces infinitely many finite trees.

Definition 3. A set C is said to cover T if it is a subset of cut(T") and for
any t € cut(T') there exists t. € C such that t < t..

Intuition is, ¢ < ¢/ means that ' contains more information on the original
tree t than T. When C covers T, it roughly means that C' has enough
information to recover T

The central player of this section concerning the notion of cuts is the
nice property called compactness of core UnCAL. In the appendix of [7], it
is proved that all positive UnCAL transformations are compact, i.e., instead
of transforming an infinite tree T' by an UnCAL transformation f, we only
need to transform every finite tree of the set cut(T") in order to obtain enough
information to construct f(7).

Lemma 4 ([7], Proposition 8). Let T' be a possibly infinite tree and f be
a transformation written in the core UnCAL. Then, {unfold(f(t)) | t €
cut(T)} covers unfold(f(T)).

The lemma is proved in [7] for a use as an easy-to-use proof method for
deriving several optimization laws. Here, we are to show another application
of the lemma, to the validation problem of transformations.

Similar property can be proved for our schema language GS, too. Every
finite-cut of a tree T satisfy the schema which is satisfied by the original
tree T', and more importantly, if all the finite-cuts of T" satisfy a schema s,
then it means the original tree T" also satisfies the schema s. In other words,
cut(T') contains enough information to test the schema satisfaction of 7.

Lemma 5. The following properties hold for a possibly infinite tree T and
a schema s written in GS:

1. T € [s] implies t € [s] for any finite tree t € cut(T).
2. If there exists a set C C [s] that covers T, we have T € [s].

Proof. Let T = (V, E,r). For the first property, let us assume m to be the
witness mapping of T' € [s]. Let t = (V;, Et,r¢) be a finite cut of 7' and
let e : V; — V to be the witness of ¢ < T. Then by taking the assignment

13

me as my(vy) = m(e(v)), we can show the schema satisfaction ¢ € [s].
For the root node, my(r;) = m(e(r¢)) = m(r) and hence whose intersection
with ns(rtype(s)) is nonempty. For any node vy € V; with 7 € my(vy),
there cannot be any edge (I,u;) € E;(v;) violating tdecl(r), otherwise the
outgoing edge (I, e(uy)) in E(e(vy)) violates the declaration tdecl(T).

For the second property, if T is finite then C' must contain a tree isomor-
phic to T itself and thus it is immediate. Consider the case T' (and hence
() is infinite. We can assume C' to contain a countable chain t; < t9 < ...
of finite trees covering T'. Without loss of generality, we can assume each {;
to have the form (V;, E|y;,r) with V; C V and E|y; is the restriction of E to
V;. Let M; to be the set of all type assignments m; : V — gtname(s)U{Data}
whose restrictions m;|y, to V; are witnesses for t; € [s], and M;(v) for
v € V to be the set (J,,.cps, mi(v). Note that from the proof of the first
property of the present lemma, M;(v) 2 M;(v) for any v when i < j, i.e.,
a type assignment for a larger cut works also for smaller cuts. Now, we
construct the type assignment m, : V — 2tneme(s)uibata}l a5 follows: m(v) =
{7 | 7 occurs infinitely often in the sequence M;(v), Ma(v),...}. Let us ver-
ify that the assignment ensures T' € [s]. First, let us check r <, rtype(s),
i.e., m(r) N ns(rtype(s)) # 0. Suppose not, then there exists some i such
that M;(v) N ns(rtype(s)) = 0, which contradicts ¢; € [s]. Next, let us as-
sume 7 € m(v) and check whether v satisfies tdecl(7). Consider the case
when tdecl(t) = {l1 : p1,...,ln : pn} (other cases are similar). For any
edge (I,u) € E7(v), the label [is either one of [;’s; otherwise, for a cut
containing v and u, none of its assignment my, can have 7 € my(u), which
contradicts the assumption that 7 occurs infinitely often in the sequence.
Thus, w.l.o.g. we assume [= [;. In this case, m(u) N ns(p1) cannot be
empty. Suppose it is empty, then none of ns(p;) occurs infinitely many in
M;(u), Ma(u), ..., which implies the existence of sufficiently large k such
that My (u) N ns(p1) = 0. But since M (v) contains 7, this contradicts the
typing of t. O

Similarly to the previous section, by exploiting compactness of both
transformations and of schemas, we can show that the validation problem
of UnCAL on possibly infinite trees is reducible to that on finite trees.

Theorem 2 (Infinite Trees to Finite Trees). Let s,y and s.,, be schemas
written in GS, and f be a transformation written in UnCAL. Then, the
claim “for any possibly infinite tree T, T € [s\] implies f(T) € [squr]” is
equivalent to the claim “for any finite tree t, t € [s\\] implies f(t) € [sour] ”-

Proof. The former claim immediately implies the latter, because finite trees
are the special cases of trees. Assume the latter claim, and T to be a tree
satisfying s,y. By Lemma 5 (1), all trees of cut(7T) satisfies the schema sy.
Hence, by the assumed claim, every tree in C' = {f(t) | t € cut(T)} satisfies
Sour- By Lemma 2, C" = {unfold(f(t)) | t € cut(T)} also satisfies s,,,. By

14

v = Az,y,...} first order variables

vs = A{X)Y,...} second order variables

ty == vy | root first order terms

ts u= ws | tsUts | tsNts | 0 second order terms
© true | false

| ¢ | Vo | oAy | ¢ =9 | ¢ ¢ standard logical connectives

| b=ty | te=ts | tyEts | ts ity

| Fpe | Vivrg | FPosp | Vs 15* and 2"¢ order quantifiers

| vert(ty) | edge(ts,ty, ty) graph primitives
(I € Label. U {"data"})

Figure 3: Syntax of Monadic Second-Order Logic

Lemma 4, C’ covers unfold(f(T)). Thus, by Lemma 5 (2), we have that
unfold(f(T')) satisfies the schema s ;.. By Lemma 2, this implies that f(T")
satisfies s, which derives the former claim. O]

Whether a tree T satisfies a schema s is equivalent to whether all the cut
trees in cut(T) satisfy s. Be aware that, even for a tree T' not satisfying the
schema s, there may be some tree t € cut(7T") that does satisfy s (actually,
there indeed exists such a tree: single-node tree ({o}, e — {},) satisfies any
schema and is always a cut of other trees). This way of correspondence is
adequate for our purpose, because we are considering the reduction from a
universal property “transformation conforms to the schemas for all infinite
tree T” to another universal property.

5 Validation through Monadic Second-Order Logic

So far, we have reduced the validation problem on graphs that determine
whether or not “f(g) satisfies s, for any graph g satisfying s,,” to the
problem on finite trees “f(t) satisfies s.,, for any finite tree ¢ satisfying
S - In this section, we show the proposition can directly be expressed as a
MSO formula, whose validity is known to be decidable on finite trees [23].
Before going into the detail, let us add some explanation on the choice of
the logic. The most natural choice of logic for representing UnCAL trans-
formations is first-order logic with transitive closures (FO+TC), which is
shown in [7] to capture the full expressive power of UnCAL. The problem of
FO+TC is that the validity of its formula is undecidable [24] even on finite
trees, let alone graphs. Hence, naively reducing the problem to the validity
of FO+TC formula can only derive either unsound, incomplete, or possibly
non-terminating algorithm for the validation. Rather, our approach is to
start from a decidable logic (namely, MSO) that can capture some clearly

15

defined fragment of UnCAL (i.e., the core UnCAL), and provide sound,
complete, and terminating validation algorithm for the fragment, which we
hope to be a solid framework towards the complete validation of full UnCAL.
Section 7 discusses possible directions for enlarging the class of schemas and
transformations that can be captured by the decidable logic.

Another logic worth remarking is MSO on infinite trees. Although the
logic is also known to be decidable, as explained in Section 4, we prefer MSO
on finite trees, emphasizing practically efficient implementation.

5.1 Review of MSO

The syntax of the formula of MSO over edge-labeled graph structure is in
Figure 3. The variant of MSO we have adopted is basically that used to
describe (2, 2)-definable MSO transduction of Courcelle [9], with customiza-
tions to adjust for our purpose, namely adding the root constant and making
edge predicates edge; to be labeled. For a graph g = (V, E,r) and an envi-
ronment I" that maps first-order variables to VUFE and second-order variables
to subsets of V U E, the judgment relation g,I" E ¢ is defined standardly.
We present the definition on the two graph-specific primitives:

g, I'Evert(t) ifI'(t) eV
g?F F edgel(tlat27t3)
if I(ty) € V and I'(t2) = (I,T'(t3)) € E(v)

where T is extended as I'(root) = r, I'(t; Uta) = I'(t1) UTL'(¢2), I'(t1 Nt2) =
I'(t1) NI (t2), and I'(@) = 0, and the judgment relation for other connectives
are defined standardly. We write g F ¢ when g,I" F ¢ holds for the empty
environment I.

One thing we have to note here is that we have single predicate
edgen g 1, for edges with data-value labels, in contrast to having dis-
tinct edge; predicate for each label [€ Label.. In other words, we are
assuming that all data-value edges in graphs and transformations to be
labeled by the same unique label "data". This is justified without loss of
generality for the following two reasons. First, for schemas, changing the la-
bel for data edges never affects schema satisfaction, because our schema has
no way to distinguish each different data label. Second, for transformation,
since we are considering the nest-free fragment of UnCAL transformations,
we cannot compare two label variables and hence there are no ways to
distinguish different data labels either.

5.2 Representing Schemas in MSO

The definition of schema satisfaction g € [s] in Section 2.2 almost literally
translates to an MSO formula.

16

Lemma 6. For any schema s, there exists an MSO formula ps such that for
any graph g the schema satisfaction g € [s] becomes equivalent to g F ps.

Proof. Let {11,...,mn} = tname(s). The concrete construction of ¢, is as
follows

3T,,.... T, FPTpaa. (
root € union(rtype(s)) N
Vv, (vert(v) — (
(v € Try = Yygeciy(r) (V) A
(v € Try = Videcty(r2) (V) A

(U € TTn - ¢tdecl3(Tn)(v)) N

(U € TTData - wtdecls(Data) (U))

)

where union(ry1---17,) = Tr, U... U T, . Here, the list of second-order
variables T’ corresponds to the type assignment m in the definition of schema
satisfaction. Each second-order variable T is meant to denote the set {v |

7 € m(v)} of nodes assigned the type 7. Hence, v € union(ry1--+17x) is
equivalent to v € T, V --- Vv € Ty, and therefore it is intended to mean
71 €m(v) V- V1, € m(v), or equivalently v <, (711 -17%).

The formula ty4e., (r)(v) means that v satisfies tdecls(7) and defined as
follows. When tdecls(T) = {l1 : p1,---,lm : pm}, Yideer, (v) becomes

320. (e_out(v,0) AVe. ((e € O A —vert(e)) — Fz.Tly. (

(edgey, (z,e,y) ANy € union(p1))) V
(edge, (z,e,y) Ay € union(p2))) V

(edge, (z,e,y) Ay € union(pn)))

)

where e_out(v,0) is a predicate for computing E7(v). It is intended to
become true only when O denotes the set E7(v) of outgoing edges (plus
several auxiliary nodes, which are filtered out by the subsequent —vert(e)).
It is defined by using a standard technique to represent transitive-closure in
MSO as the least fixpoint

e_out(v,0) = e_out' (v,0) AV2R. (e_out'(v, R) — O C R)

17

ecout' (v, R) = (v € R) A
VizVleVly.((z € R Aedge.(x,e,9)) —y € R) A
VieVeVy.((x € RA edgey (z,e,y)) — e € R) A

Viz Ve Vly.((x € RA edge;, (r,e,y)) > e€R))

with {l1,...,[,} = Label U {"data"}. The definition of e out says that O
is the least set satisfying e_out’(v, O) and the auxiliary relation e_out’(v, R)
says that R is a fixpoint of the traversal of the graph through e-edges. Note
that, for simplicity of the formulas, R and O contain both nodes (that are
reachable from v via e-edges) and edges (with non-¢ labels, outgoing from v
or the other nodes reachable from v via e-edges).
When tdecls(7) = {l1 : p1,.--,lm : pm,*} having the trail star, ¥ygec, (V)
becomes
320. (e_out(v,0) AVe. ((e € O A —vert(e)) — Fz.3ly. (
(edge,, (z,e,y) Ny € union(py))) V
(edge, (z,e,y) Ay € union(p2))) V

(edge;, (x,e,y) Ay € union(py))) V
edgey (z,e,y) V-V edgey (z,¢,9)
)
with {l},...,0,} = Label U {"data"} \ {l1,...,ln}. When 7 = Data, the
formula ¥ygec1, (v) becomes
320. (e_out(v,0) AVe. ((e € O A —vert(e)) — Fz.Tly. (
edgengata" (.T, €, y)

));

meaning that all the outgoing edges are labeled "data". O

5.3 Representing Core UnCAL in MSO

Next, we express the core UnCAL transformation by using MSO logic. We
adopt the formalism for describing graph transformations in MSO intro-
duced by Courcelle [9].

Definition 4. A graph-to-graph transformation f is said to be a k-copying
MSO-definable transduction if there exists a constant k£ and a set of for-
mula verto(z), ..., verty_1(r), edge;; ;. (v,y,2) for | € Label.U{"data"},
i,7,m € {0,...,k — 1} satisfying the following conditions for any g =
(V,E,r):

18

e For any pair of w € VU FE and j € {0,...,k — 1}, we have either
g F vert;(w) or g F edge; ; ;,, (v, w,u) for at most one combination of
1, M, V, U.

e g = edge;, ; ,,(v,w,u) implies g F vert;(v), g ¥ vert;(w), and g F
vert,, (u).

e The output f(g) of the transformation is isomorphic to (V' , E' r")
where V' = {(v,4) | v € VUE, g E vert;(v)}, E'((v,4)) = {(l, (u,m)) |
weVUE,gFedge;; (v, w,u)}, and = (r1).

Intuitively, k-copying MSO-definable transduction creates k copies of
input nodes and edges, and by reorganizing them to form the output graph
structure according to the supplied formulas vert;(z) and edge, ; ; ,,,(,y, 2)-
The formula vert;(x) indicates that the i-th copy of x (which is either a node
or an edge in the input graph) becomes a node of the output graph, and
edgemj’m(x,y, z) indicates that the j-th copy of y becomes an edge from
the i-th copy node of = to the m-th copy node of z, labeled .

MSO-definable transductions enjoy several nice properties. In particular,
the following two properties are important.

Lemma 7 ([9], Proposition 3.2). (1) The inverse image of an MSO-definable
set of graphs under an MSO-definable transduction is MSO-definable. That
is, if f is an MSO-definable transduction and ¢ is an MSO formula on
graphs, then there exists an MSO formula f~1(p) such that g & f~(y) if and
only if f(g) E w. (2) The composition of two MSO-definable transductions
is MSO-definable.

The first property enables to convert MSO formulas on output graphs
into that on input graphs. More specifically, instead of saying “the output
graph f(g) satisfies the schema s..", i.e., “f(g) F ¢s,,,”, we can convert it
to the formula “g F f _l(gosom)” on input graphs. Using this conversion, the
validation problem “for any graph g satisfying s, the output f(g) satisfies
Sour” can be restated as the validity of the formula “g F @5 — [~ (¢s,..)"
on input graphs.

Transformations in core UnCAL turn out to be realizable as MSO-
definable transductions. The construction is basically to follow carefully

the semantics given in Section 2.3.

Lemma 8. Any transformation f written in the core UnCAL is an MSO-
definable transduction.

To illustrate the idea, consider the following simple example:

rec(\($1,89). & :={a: &,b: $g})($db).

19

According to the semantics, on every edge e connecting nodes v and u in the
input graph, the body expression is evaluated and generates a new fragment
of graph as follows

a_lu
v—s1 generates Lvi,./

™

b u

and these graphs are aggregated to form the whole output. Here, recall that
each marker & is represented by a newly created node %, and the variable
$¢ is referring to the destination node u of the current edge. The important
property of core UnCAL is that it prohibits access to outer variables, which
implies that any variable expression inside a body of rec must point to the
destination node u of the currently processed edge. Actually, this fact is
crucial to make core UnCAL to be MSO-definable.

In order to represent the transformation as a MSO-definable transduc-
tion, it is natural to construct each % node as the i-th copy of the input
node u. To represent input subgraphs embedded in the output graph like u
in the example above, we use 0-th copy of the input nodes and edges. Other
components (i.e., the nodes and edges created during evaluation of the body
expressions) of the output graph is constructed as the copies of the current
edge e.

Thus, the example of the output shown above is represented as follows,
using the notion of copying
2o)

v, 1)—(D=(e,2) "
(0.7

(u,0).
where (z,7) denotes the i-th copy of x. From this picture, we obtain the

following set of formulas representing the example transformation as a 5-
copying MSO-definable transduction

verty(z) = vert(x)

edge; o (7, ¢,y) = edge(7,e,y)
for | € Label. U{"data"}

rt(z)

ﬁvert()

vert (z

verty(z

verts(z) = verty(x) = false

edge, 3,(7,y,2) =2 =y A3'v.edge,(v,y, 2)
edgeb,?A,O(xv Y,z
(

edge;; ; (2, y, 2

=z =y A3 edge,(v,y,2)

)
)
)
edge, 1 15(2,y,2) =y = z A J'u. edge,(z,y, u)
z) =
z)
z) = false otherwise

20

where edge, (1,12,13) is the shorthand for the formula edge,, (t1,t2,t3) V
-+ Vedgey (t1,t2,t3) with {l1,...,l,} = Label U {"data"}. (To be exact,
we had to take into account the semantics of structural recursion that must
preserve e-edges in the input graph as-is in the output. For presentation pur-
pose, we have omitted the part.) For example, the predicate edgey, 5 4 (7,
y, z) tells that there is a b-edge (y,4) from (z,2) to (z,0) if and only if z = y
and y is an edge going to z, as is illustrated in the picture. Let us repeat
again here that it is essential that we do not have nested variable reference
in the core UnCAL. If it were (say, suppose $g was an outer-scope variable),
the z of the destination node (z,0) in the output graph need not be the
destination node of the current edge in the input graph, and hence there is
no way to reach it from the current edge y like 3'v. edge, (v, v, 2).

of Lemma 8. We first show the construction how to represent each structural-
recursion defined by rec expressions as a MSO-definable transduction. The
construction is by induction on the nesting height of rec. Let us consider
a structural recursion rec(\($7,8g). & :=e1,...,&, :=e€,) of nesting height

h, assuming that sub rec expressions occurring in eq, ..., e, is by induction
hypothesis MSO-definable. The base case of the induction is the case h = 1,
meaning that there are no rec expressions in ey, ..., e,.

We first convert each body expression e; to the following normal form
that has if expressions only at the top-level of the expression (except if
expressions inside the bodies of nested rec recursions)

if $/ = [then specialize(e;, l1)

else if $/ = [then specialize(e;, l2)

else if $/ = [, then specialize(e;, 1))
else &;

where {l1,...,l,} = Label U {"data"} and specialize(e;,() is the expression
obtained from e; by removing all if-subexpressions in a way that each if-
subexpression if $/ = I’ then e, else ey is recursively replaced with e; if
' =1 and with ef otherwise, and by changing all the edges {---$l:e---}
to {---1:e---}. Since it exhaustively checks all the labels, the final else
branch is unreachable in the standard semantics. Note that, however, by
placing &; there, we get a unified treatment for the rather exceptional e-
edge rule of the structural recursion. That is, instead of dealing with input
e-edges specially, just using the normalized body expression above even for
e-edges would realize the same result. For this reason we prefer the normal
form above and do not deal with e-edges exceptionally.

Let e;; = specialize(e;, 1) for | € LabelU{"data"} and e; . = &;, and con-
sider the new structural recursion f; = rec(A($/,$g). & :=e1,,..., &, =e€,).

21

We compute the MSO-representation of each f; separately. Suppose we have
obtained the ky-copying representation of f as the set of predicates verté/
and edgefju ik We can combine them into a single maxy (ky)-copying trans-
duction realizing the original structural recursion by a simple case-analysis
formula: vert;(z) = vert(z) V \/, ((3'v.3'u.edge,; (v, 2, u)) A vert! (x)) and
edge;; ;1 (2,9,2) = V5 (3tv. 3 u.edgey (v, y,u)) A edgegjm-’k(z)) for each
li,5,k.

Representing each f; as a MSO-definable transduction is done just as il-
lustrated in the preceding example. The markers &;’s are represented as the
i-th copies of nodes, variable $¢ is represented as the 0-th copy of the des-
tination node of the currently processed edge, and node/edge-construction
expressions are assigned unique numbers j by, e.g., a depth-first traversal on
the body expression, and constructed as the j-th copy of the edge. Nested
recursion rec(---)(e,) is treated as follows. By inductively processing the
argument expression, we can assume e, is represented by a k,-copying rep-
resentation. Since by induction hypothesis the recursion is some &’-copying
transduction, we can represent its output by k, times k’ copies, assigning
fresh copy numbers 7', ..., + k.k’ — 1 (this is basically the same technique
as the composition of MSO-definable transductions of Lemma 7). Its root
is represented as the j’-th copy of the root node of the representation of e,.

So far, we have shown that each rec structural recursion is a MSO-
definable transduction. Showing the whole UnCAL transformation f to
be MSO-definable can be done in quite the same manner. Note that f
can contain the designated input variable $db, rec expression, or node-
construction expression, but no markers &;, nor if expressions (because no
label variable is in the scope). The variable $db is represented as the 0-th
copy of the input root node, and rec and node-construction expressions are
dealt as same as in f;, except that each node is constructed as the copy of
the root node of the input graph, not as the copy of the “current edge”,
which does not exist here. O

Wrapping up all the results presented so far, we derive the following
main theorem of the paper.

Theorem 3 (Sound and Complete Validation). Let s,y and Sq,p be schemas
written in GS, and f be a transformation written in UnCAL. We can effec-
tively determine the validation problem “for any graph g satisfying s, the
output graph f(g) satisfies squ” of graph transformations.

Proof. By Theorems 1 and 2, the claim is equivalent to “for any finite tree
t, t € [sy] implies f(t) € [sour]”- By Lemmas 6, 7 and 8, it is equivalent
to “t F s — f71(¢s,,,) holds for any finite tree t”. Since it is a validity
problem of an MSO formula on finite trees, it is decidable [23]. O

22

6 Related Work

Verification of model (graph) transformations is an important issue in soft-
ware engineering. The approaches presented so far, however, are applied
only to certain simple model transformations that can be easily mapped to
Prolog or CSP [16, 2], or only for certain properties such as equivalence
between input and output models [20]. In contrast, our verification covers
a wide class of model transformations and guarantee that the model trans-
formation will map schema-correct input model to a schema-correct output
model.

Another group of related work on validation of transformations can be
found in the area of XML processing, under the name ezact typechecking [25,
19, 17, 12]. Our novelty compared to those work is that we have dealt with
graphs and shown the reduction to finite trees. After the reduction and the
conversion to MSO-definable transduction, our approach to construct the
inverse image f~!(ps,,,) of the output-schema satisfaction formula follows
the same way as those researches on XML typechecking.

The most directly related work is the simulation-based schema for Un-
CAL graph model introduced by Buneman et al. [5]. Sound, complete, and
decidable validation algorithm of transformations with those schemas is also
given in the same paper. Compared to their schema, our schema language
GS has both enhancement and shortage. Their schema is more suitable for
expressing properties on data values, because their schema can have unary
predicates putting constraints on Data edges (like, “it must match some
regular expression pattern”), which cannot be dealt with in our framework.
On the other hand, our schema is more inclined to representing structural
properties of graphs. For example, GS has the trailing star {...x*} type dec-
laration that allows existence of arbitrary edges in addition to the specified
ones. Or, we have the union operator 71172 on types. For instance, the SNS
schema example in Section 2.2 contains a type DataiName, meaning that the
outgoing edge consists of data-value edges or a set of edges labeled first,
family, and middle, not both. Such a ‘“not both”-type condition cannot
be expressed in Buneman et al’s schema. Such feature is, however, crucial
for writing structural constraints, regarding the situation that all standard
XML schemas [4, 27, 8] has the notion of unions, or, the notion of inheritance
in metamodel language like [1] (which essentially another schema language
for graphs) being a variant of union type. Since Buneman et al.’s schema
is heavily based on the simulation relation over graphs, it is not at all clear
how to extend to these structural properties, while our approach generalizes
to any types of schema, as long as it is MSO-definable, bisimulation-generic,
and compact.

23

7 Conclusion and Future Work

We have shown the novel algorithm that verify a graph transformation writ-
ten in the core UnCAL is correct with respect to the specified input/output
schemas describing structural property of graphs. Our algorithm is sound,
complete, and decidable, in the sense that all correct transformations are
always reported as correct, and all erroneous transformations are always
reported as so. The technical contribution of the paper is summarized as
follows:

e we have recognized and demonstrated the usefulness of bisimulation-
genericity and compactness of graph transformations in the context
of validation, which adds another importance of structural-recursion-
based graph transformation in addition to optimization [7] or bidirec-
tionalization [14],

e we have proved those two properties also for the schema language GS;
together with the first contibution, these properties allow to reduce the
validation problem on graphs to that on trees without losing soundness
and completeness, and

e we have given a MSO based semantics of the core UnCAL, which
enabled decidable validation.

The challenge for the future is to establish the validation algorithm for full
UnCAL. As explained in Section 2.3, the major differences between the
core UnCAL and the full UnCAL are twofold. One is that nested rec al-
lowed to refer to outer variables, which breaks the MSO-definability. For
instance, nested UnCAL transformation can produce an output graph poly-
nomially larger than an input graph, while MSO-definable transduction has
only linear-size increase by definition. We are considering to address the
issue by introducing more powerful formalism for describing graph transfor-
mations, which still preserves the inverse MSO-definability. Note that, the
essentially only property of MSO-definable transductions we really needed
in Section 5 is that its inverse image of an MSO-formula is again an MSO-
formula. The translation itself need not be MSO-definable! In the area
of tree-transformation, such powerful yet MSO-definability-preserving for-
malism are widely used for the very same purpose (such as, macro tree
transducers [11] or pebble tree transducers [19]). We believe that similar
technique can be devised for graph transformations.

Another difference from the full UnCAL is the isEmpty($g) predicate,
which allows to test the emptiness (= nonexistence of outgoing edges) of a
node and in fact breaks the compactness. We think, this is mainly because
the current definition of cut(7T’) is too simple. Trees ¢ in cut(7T) are obtained
by simply eliminating subtrees of T', and therefore in ¢, there is not left

24

any sign whether each empty node was indeed empty in the original tree
T or it became empty due to the cut operation. A possible direction is to
introduce an extended notion of cuts with richer information, e.g., leaving
some special annotation to the cut-nodes so that the transformation can
distinguish different kinds of empty nodes.

The other important challenge is to support richer schema languages.
We are mainly interested in supporting cardinality constraints on the num-
ber of edges. For example, we are planning to allow type declaration like
Person = {name[l] : Data,email[l..x] : Data} meaning that there must be
exactly one edge labeled name, and at least one edge labeled email. Such
extension can almost subsume the standard schema language [1] used for
model-driven software development. Two things must be considered here.
The definition of bisimulation-genericity presented in the paper is based on
set-semantics where the collection of outgoing edges F(v) is defined to be a
set of edges. In this setting, cardinality other than [0..x] and [1..%] are mean-
ingless because duplicating edges are always unified. To sensefully introduce
other cardinalities, we need to consider thoroughly the bag- or list-based se-
mantics of UnCAL, which is slightly mentioned in the original paper [7] of
UnCAL. More severe issue is that introducing cardinalities like [1..%] (or
whatever the one with non-zero lower bound) breaks the compactness of
schemas. We need to find some way to address the issue.

References

[1] ATLAS group. KM3: Kernel MetaMetaModel manual. http://www.
eclipse.org/gmt/atl/doc/.

[2] D. Bisztray and R. Heckel. Rule-level verification of business process
transformations using CSP. Electronic Communications of the FASST,
6, 2007.

[3] D. Blostein, H. Fahmy, and A. Grbavec. Practical use of graph rewrit-
ing. Technical report, Queen’s University, 1995.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible
markup language (XML™). http://wuw.w3.org/XML/, 2000.

[5] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding struc-
ture to unstructured data. In International Conference on Database
Theory, pages 336—350, 1997.

[6] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query lan-
guage and optimization techniques for unstructured data. In ACM SIG-
MOD International Conference on Management of Data, pages 505—
516, 1996.

25

[7]

[17]

[18]

P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query lan-
guage and algebra for semistructured data based on structural recur-
sion. VLDB Journal: Very Large Data Bases, 9(1):76-110, 2000.

J. Clark and M. Murata. RELAX NG specification. http://www.
relaxng.org/, 2001.

B. Courcelle. Monadic second-order definable graph transductions: A
survey. Theoretical Computer Science, 126(1):53-75, 1994.

K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky,
U. Prange, G. Taentzer, D. Varré, and S. Varr6-Gyapay. Model trans-
formation by graph transformation: A comparative study. In Model
Transformations in Practice, 2005.

J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Com-
puter and System Sciences, 31:71-146, 1985.

A. Frisch and H. Hosoya. Towards practical typechecking for macro
tree transducers. In Database Programming Languages, pages 246260,
2007.

J. G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in
practice. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 89-110, 1995.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing structural recursion on graphs. Technical Report
GRACE-TR09-03, GRACE Center, National Institute of Informatics,
Aug. 2009.

S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards a compositional
approach to model transformation for software development. In ACM
Symposium on Applied Computing, pages 468-475, 2009.

G. Karsai and A. Narayanan. Towards verification of model transfor-
mations via goal-directed certification. In Model-Driven Development
of Reliable Automotive Services, pages 67-83. Springer-Verlag, 2008.

S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in poly-
nomial time. In International Conference on Database Theory, pages
254-268, 2007.

T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserv-
ing program transformations. In International Conference on Graph
Transformation, pages 286-301, 2002.

26

[19]

[20]

[21]

[24]

[25]

[26]

[27]

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.
Journal of Computer and System Sciences, 66:66—97, 2003.

A. Narayanan and G. Karsai. Towards verifying model transformations.
Electronic Notes in Theoretical Computer Science, 211:191-200, 2008.

M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of American Mathematical Society, 141:1—

35, 1969.

N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects
of tree-width. Journal of Algorithms, 7:309-322, 1986.

J. W. Thatcher and J. B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2:57-811, 1968.

H.-J. Tiede and S. Kepser. Monadic second-order logic and transitive
closure logics over trees. In Workshop on Logic, Language, Information
and Computation, pages 189-199, 2006.

A. Tozawa. Towards static type checking for XSLT. In ACM Symposium
on Document Engineering, pages 18-27, 2001.

B. A. Trakhtenbrot. Impossibility of an algorithm for the decision prob-
lem for finite classes. Doklady Akademiia Nauk SSSR, 70:569-572, 1950.

W3C XML Schema. http://www.w3c.org/XML/Schema.

27

