
ISSN 1884-0760

GRACE TECHNICAL REPORTS

Proceedings of the 1st Asian Conference on
Pattern Languages of Programs

(AsianPLoP 2010)

Volume I

Hironori WASHIZAKI Nobukazu YOSHIOKA
(editors)

GRACE-TR-2010-01 March 16, 2010

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Proceedings

AsianPLoP 2010

1st Asian Conference on Pattern
Languages of Programs

Volume I

Tokyo, Japan, March 16-17, 2010, Co-located with

The GRACE International Symposium on Advanced Software Engineering

Edited by

Hironori Washizaki and Nobukazu Yoshioka

Sponsored by

GRACE Center of the National Institute of Informatics (NII)

IPSJ/SIGSE Patterns Working Group

ACM Japan Chapter

Supported by

eXtreme Programming Japan Users Group (XPJUG)

AsianPLoP is a PLoP® Conference sanctioned by the Hillside Group.

PLoP is a registered trademark of The Hillside Group.

I-1

Conference Committee

Conference Chair

Eiichi Hanyuda, Mamezou, Co. Ltd.

Program Co-Chairs

Hironori Washizaki, Waseda University / National Institute of Informatics GRACE Center

Nobukazu Yoshioka, National Institute of Informatics

Program Committee

Eduardo B. Fernandez, Florida Atlantic

University

Joseph W. Yoder, The Refactory Inc and

Joe Yoder Enterprises

Norihiro Yoshida, Osaka University

Masao Tomono, KameNet Inc.

Koido Ryo, eXtreme Programming

Japan User's Groups

Terunobu 'Terry' Fujino, InArcadia, Ltd.

Kiminobu Kodama, Information System

Research Institute

Kenji Hiranabe, Eiwa System

Management, Inc.

Masaru Amano, Eiwa System

Management, Inc.

Takeshi Kakeda, Eiwa System

Management, Inc.

Kenichiroh Ohta, IBM Japan

Yuriko Sawatani, IBM Japan

Akira Sakakibara, IBM Japan

 Takao Okubo, Fujitsu Limited, Japan

Okita Naoyuki, Yokogawa Electric

Corporation

Akio Kawai, Object Design Laboratory,

Inc.

Yann-Gaël Guéhéneuc, Canada Research

Chair on Software Patterns and Patterns

of Software, École Polytechnique de

Montréal

Yuji Yamano, OGIS International, Inc.

Yoichi Hasegawa, Technoport

Takashi Iba, Keio University

Takashi Kobayashi, Nagoya University

Dinesha K V, IIIT Bangalore

Raj Datta, MindTree Ltd.

Eric Platon, Cirius Technologies

Foutse Khomh, DIRO, Universite de

Montreal, QC

Tsukasa Takemura, NSD CO., LTD.

I-2

Message from PC Co-Chairs

Welcome to the 1st Asian Conference on Pattern Languages of Programs, AsianPLoP

2010. AsianPLoP takes place at the first time, as a premier event for pattern authors

and users to gather, discuss and learn more about patterns and software development

in the Asia region as well as other regions.

The purpose of AsianPLoP is to promote development of patterns, pattern languages,

technologies and experiences of patterns primarily about software; however, these for

domains outside software are also welcome.

In AsianPLoP 2010, various patterns, pattern languages and related techniques will

be discussed. Topics include software design, services, security, interaction, pedagogy

and organizational change. Most of papers will be workshopped in the traditional

PLoP Writer's Workshop format. We received 16 paper submissions. After the

rigorous shepherding processes, 13 papers have been accepted for Writer ’s Workshops

and 3 papers for Writing Groups. Moreover the 1st program incorporates one invited

talk and one tutorial.

We thank program committee members. They reviewed and conducted shepherding

processes for papers carefully and fairly. Moreover we thank our sponsors, supporters

and the Hillside Group for their kind supports. We hope that the 1st conference of

AsianPLoP is successful, and will contribute the development of this filed.

Hironori Washizaki and Nobukazu Yoshioka

Program Co-Chairs

I-3

Invited Talk

Title: A Timeless Way Of Communicating

Presenter: Joshua Kerievsky (Industrial Logic, Inc.)

Abstract

If you pick up the masterpiece, "A Pattern Language", by Christopher Alexander et. al,

you will discover a book filled with engaging photographs, hand-drawn sketches, big

bold, hard-to-miss text, memorable stories and scholarly notes for the academically

minded. One can quickly "surf" this book by focusing only on pattern titles, images

and headlines or one can dive deep into the book by reading the detailed text of each

pattern. In short, A Pattern Language uses a timeless way of communicating, a form

that engages people and provides numerous pathways for accessing the knowledge.

As authors of software-related pattern languages, we must understand what it takes

to make our own works endure. In this talk, we will analyze the form and content of

real-world software patterns/pattern languages, looking for what makes them

succeed or fail at engaging the reader and providing knowledge pathways. If you are

interested in crafting great pattern languages, this talk will help you discover some

essential ingredients.

Biography

Joshua Kerievsky is founder of Industrial Logic, Inc., an early pioneer and expert in

Extreme Programming (XP), author of the best-selling, Jolt Cola Award-winning book

Refactoring to Patterns , thought leader behind Industrial XP, a state-of-the-art

synthesis of XP and Agile Project Management and an innovator of Agile eLearning,

which helps organizations “Scale Agility Faster.” Joshua has over 20 years of

experience in software development and loves coaching agile project communities,

helping executives understand and manage technical debt, leading excellent

workshops, and building software products (because it enables him to “walk the agile

talk” as an entrepreneur, manager, customer and programmer).

I-4

Tutorial

Title: Pattern Writing: The Straight Scoop

Presenter: Joseph W. Yoder (The Refactory, Inc.)

Abstract

Writing Patterns can be a difficult task and getting started sometimes is the most

difficult step. Pattern ideas start to emerge from experience practitioners but if you

don't have the experience of writing patterns, it can be daunting on how to capture

these experiences and start outlining your patterns. This tutorial will discuss ideas on

How to Write Patterns. We will discuss Patterns for Writing Patterns and outline

some different processes that beginning pattern writers can use to start the process of

capturing their patterns. We will also examine some different pattern forms and

workshop on some pattern writing.

I-5

Contents: Volume I

WW-1E: Security and Design

A pattern for the WS-Trust standard for web services ………………………………….I-9

Ola Ajaj and Eduardo B. Fernandez (Florida Atlantic University)

A Worm misuse pattern …………………………………………………………………….I-21

Eduardo B. Fernandez (Florida Atlantic University), Nobukazu Yoshioka (National

Institute of Informatics) and Hironori Washizaki (Waseda University)

Design Decision Topology Model for Pattern Relationship Analysis ………………...I-31

Kiran Kumar Vajja and Prabhakar TV (Indian Institute of Technology Kanpur)

WW-2E Pedagogy and Organization

Learning Patterns: A Pattern Language for Creative Learners II …………………...I-41

Takashi Iba (Keio University / MIT) and Toko Miyake (Keio University)

Metamorphosis - A Successful Organizational Change Management Pattern ……..I-59

Madhup Jain, Ranjith Kutty and Raju Dani (MindTree Limited)

WW-3E: Human Computer Interaction

Analyzing the HCI Design Pattern Variety ……………………………………………...I-85

Christian Kruschitz and Martin Hitz (University of Klagenfurt)

WG-1E: Organization and Services

Research Organization Servicelization Patterns ……………………………………….I-95

Yuriko Sawatani (IBM Research-Tokyo)

WG-2E: Network Systems

Adaptable Load Balancing ………………………………………………………………....I-99

Sung Kim and Youngsu Son (Samsung Electronics)

I-6

Contents: Volume II

WW-1J: Quality and Pattern Language (in Japanese)

A Search for a Process getting “Quality” ………………………………………………….II-9

Hiroshi Nakano and Bankoku Sasagawa (Center for Environmental Structure)

A Pattern Language for Environmental Design ……………………………………….II-53

Mizuki Oka (The University of Tokyo), Myeong-Hee Lee (Design Team Matt),

Yasuhiro Hashimoto (The University of Tokyo) and Kouichirou Eto (National

Institute of Advanced Industrial Science And Technology)

A Pattern Language for Organizing Events ……………………………………………II-63

Kouichirou Eto (National Institute of Advanced Industrial Science and Technology)

and Shinobu Shibamura (WikiBana)

WW-2J Facilitation and Retrospective (in Japanese)

A Pattern Language for MIKOSHI and YORIAI ………………………………………II-75

Masanari Motohashi

A Pattern Language for Retrospective – Facilitator …………………………………..II-89

Takeshi Kakeda (Eiwa System Management, Inc.)

WW-3J: Information Systems (in Japanese)

Towards A Pattern Language for Information Systems ……………………………..II-101

Kiminobu Kodama (Information Systems Institute, Ltd.)

WW-4J: Business Processes (in Japanese)

Declarative Description of Business Process Patterns ………………………………II-109

Tsukasa Takemura (NSD Co.,Ltd.)

WG-1J: Testing (in Japanese)

A Test Code Reconstruction Pattern based on Test Coverage ………………………II-135

Kazunori Sakamoto (Waseda University), Takuto Wada (Towersquest, Co.,Ltd.),

Hironori Washizaki and Yoshiaki Fukazawa (Waseda University)

I-7

I-8

1

A pattern for the WS-Trust standard for web services

Ola Ajaj and Eduardo B. Fernandez

Department of Computer and Electrical Engineering and Computer Science

Florida Atlantic University

777 Glades Road, Boca Raton, Florida 33431-0991 USA

oajaj@fau.edu, ed@cse.fau.edu

Abstract: Web services intend to provide an application integration technology that can be successfully used over

the Internet in a secure, interoperable and trusted manner. One of the main functionalities of web services is providing secure

messaging, where the web services exchange security credentials (either directly or indirectly). However, each party needs to

determine if they can trust the asserted credentials of the other party. Moreover, the dynamic interaction between the web

services requires specifying trust relationships in an explicit way for all parties. Without a clear definition of how web

services could manage secure communications and establish trust relationships with other partners, malicious web services

could use their business interactions to perform illegal actions. The WS-Trust standard defines how to establish trust between

interacting parties; we present here a pattern for this standard. WS-Trust defines a security token service and a trust engine

which are used by web services to authenticate other web services. Using the functions defined in WS-Trust, applications can

engage in secure communication after establishing trust.

1. Introduction

Without a clear definition of how web services can manage secure communications and establish

trust relationships with other partners, it would be hard to perform any kind of interaction. WS-Trust is a

standard to support the establishment of trust relationships.

Using web services requires that we exchange credentials to define the rights of each participant.

This exchange is based on trust and builds further trust. Trust is based on security and other policies to

enable requesting and obtaining credentials within different trust domains. Both parties need to

determine if they can "trust" the asserted credentials of the other party. The goal of the WS-Trust

standard is to enable applications to construct trusted message exchanges. This trust is realized through

the exchange and brokering of security tokens [oas09].

The motivation toward WS-Trust is supported by the fact that there are different formats for

security tokens (e.g. X.509 certificates, Kerberos tickets, SAML assertions, XACML policies, etc.), and

it’s unlikely to expect that an endpoint will understand each of these options. Additionally, there is no

guarantee that there will be an intersection between the sets of supported security token formats of

different actors who are willing to exchange messages using the WS-Security standard [Mad03].

 Web services standards are rather complex and verbose and it is not easy for designers and users

to understand their key points. By expressing web services security mechanisms and standards as

patterns, we can verify if an existing product implementing a given security mechanism supports some

specific standard [Fer06]. Inversely, a product vendor can use the standards to guide the development of

the product. By expressing standards as patterns, we can compare them and understand them better. For

example, we can discover overlapping and inconsistent aspects between them. We have produced

I-9

2

patterns to describe SAML, XACML, WS-Policy, WS-Security, XML Encryption, XML Digital

Signature, and others. A standard defines a generic architecture and this is a basic feature of any pattern;

it can then be confirmed as a best practice by looking at products that implement the standard (and

implicitly the pattern).

Section 2 shows a pattern that describes this standard. Section 3 ends the paper with some

conclusions.

 2. A Pattern for WS-Trust

Intent

WS-Trust defines a security token service and a trust engine which are used by web services to

authenticate other web services. Using the functions defined in WS-Trust, applications can engage in

secure communication after establishing trust.

Example

The Ajiad travel agency offers its travel services through several different business portals to

provide travel tickets, hotel and car rental services to its customers. Ajiad needs to establish trust

relationships with its partners through these portals.

The Ajiad supports different business relationships and needs to be able to determine which

travel services to invoke for which customer. Without a well-defined structure, Ajiad will not be able to

know if a partner is trusted or not, or to automate the trust relationships quickly and securely with its

partners, which may lead to losing a valuable business goal of offering integrated travel services as a

part of the customer’s portal environment.

Context

 Distributed applications need to establish secure and trusted relationships between them to

perform some work in a web-service environment which may be unreliable and/or insecure (e.g. the

Internet). The concept of "Trusting A" mainly means "considering true the assertions made by A", which

does not necessarily correspond to the intuitive idea of trust in its colloquial use.

WS-Security begins with the assumption that, if one of the parties uses a particular type of

security token within the WS-Security header, then the other party will be able to interpret and process

this token. A fundamental issue that WS-Security did not address is how two entities (a SOAP client and

SOAP Service) can agree on the nature and characteristics of the security tokens that are the

fundamentals of WS-Security.

Problem

I-10

3

Establishing security relationships is fundamental for the interoperation of distributed systems.

Without applying relevant trust relationships expressed in the same way between the involved parties,

web services have no means to assure security and interoperability in their integration. How can we

define a way for the parties to trust each other’s security credentials?

The possible solution is constrained by the following forces:

•••• Knowledge: In human relationships, we are concerned with first knowing a person before we

trust her. That attitude applies also to web services. We need to have a structure that encapsulates

some knowledge about the unit we intend to trust.

•••• Policy consideration: The web service policy contains all the required assertions and conditions

that should be met to use that web service. The trust structure should consider this policy for

verification purposes.

•••• Confidentiality and Integrity: Policies may include sensitive information. Malicious consumers

may acquire sensitive information, fingerprint the service and infer service vulnerabilities. This

implies that the policy itself should be protected.

•••• Message integrity: The data to be transferred between the partners through messages may be

private data that need to be protected. Attackers may try to modify or replace these messages.

•••• Time Validity: For protection purposes, any interactions or means of communications (including

the trust relationships) between the web services should have a time limit, that determines for

how long the trust relationship is valid.

Solution

We define explicitly an artifact (security token) that implies trust. This artifact implies what

kinds of assertions are required to make trustworthy interactions between the involved web services.

 We should verify the claims and information sent by the requester in order to obtain the required

security token that becomes a proof enough to establish a trust relationship with its target partners.

Structure

Figure 1 describes the structure of this pattern. Claim is a statement made about the attributes of

a client, service or other resource (e.g. name, identity, key, group, privilege, capability, etc.). Claims are

assertions, for example: “I am Joman”, “I am an authenticated user and I am authorized to print in

printer P”. Claims are used to validate the requests made by a sender and need to be verified.

A Security Token is a collection of claims. It is possible to add signatures to tokens. Security

Token also is a generalization of two types: Signed Security Token that is cryptographically endorsed

by a specific authority (e.g. an X.509 certificate or a Kerberos ticket) and Proof-of-Possession (PoP)

I-11

4

Token that contains a secret data parameter that can be used to prove authorized use of an associated

security token and provides the function of adding digital signature. Usually, the proof-of-possession

information is encrypted with a key known only to the recipient of the PoP token.

The Security Token Service (STS) is a web service that issues security tokens. It makes

decisions based on evidence that it trusts. The STS is responsible for generating security tokens and,

providing challenges for the requester to ensure message freshness (the message has not been replayed

and is currently valid), verification of authorized use of a security token, and finally establishing,

extending and removing trust in a domain of services. The STS is the heart of WS-Trust and forms the

basis of trust brokering. The main output of the STS is a trust relationship between the requester and the

receiver expressed as a security token. It represents the characteristic that one entity is willing to rely

upon a second entity to execute a set of actions and/or to make set of assertions about a set of subjects

and/or scopes in a secure, reliable and time-relevant manner.

Each STS has a Trust Engine that evaluates the security-related aspects of a message using

security mechanisms and includes policies to verify the requester’s assertions. The Trust Engine is

responsible for verifying security tokens and verifying claims against policies. A Policy is a collection

of policy assertions that have their own name, references, and ID. Policies form the basic conditions to

establish a trust relationship. Verifying the requester’s claims against policy assertions generates an

approval to use the target service. A policy may reference another policy (ies), in order to check the

tokens sent by the requester or verified by the receiver.

Dynamics

We describe the dynamic aspects of the WS-Trust using sequence diagrams for the use cases

“create security token” and “access a resource using a token”. Create a security token (Figure 2):
Summary: STS creates a security token using the claims provided by the requester.

Actors: A Requester

Precondition: The STS has the required policy to verify the requester claims and the requester

provides parameters in form of claims and RequestType signed by a signature.

Description:

a. The requester requests a security token by sending the required claims and RequestType signed

by a Signature to the STS. The signature verifies that the request is legitimate.

b. The STS contacts the Trust Engine to check the requester’s claims.

c. The Trust Engine contacts the web service’s policy to verify the claims including attributes

and security token issuers of the requester.

d. Once approved, the STS creates a security token containing the requested claims.

e. The STS sends back its SecurityTokenResponse with a security token issued for the requester.

Postcondition: The requester has a security token that can be used to access resources in a trusted

unit.

I-12

5

Figure 1: Class Diagram for the WS-Trust Pattern

+generateStatments()

-parameters

Claim

SignedSecurityToken

+addDigitalSignature()

-data

ProofofPossession

+addSignature()

SecurityToken

+generateAProof()

-name

-ID
-reference

Policy

+verifyClaimsAgainstPolicy()
+verifyAttributesAgainstSignature()

+verifySecurityTokenIssuers()

TrustEngine

+generateSecurityToken()

+renewSecurityToken()
+validateSecurityToken()

+cancelSecurityToken()

+provideChallenge()
+establishTrust()

+extendTrust()

+bootstratpTrust()

SecurityTokenService_STS

Requester Receiver

*

1

*

1

STS is a web service

1

1

requestToken

1

1

validateToken

Cryptographically endorsed
by a specific authoriy

(X.509 or Kerberos ticket)

encrypted with
a key known only

to the recipient

consult

generate

* *

*

1

*

1

re
c
e
iv

e

requestService

1

1

1

*

I-13

6

Figure 2: Sequence Diagram creating a security token

 Access a resource using a token (Figure 3):
Summary: A STS allows the use of resources by establishing trust by verifying proofOfClaims sent

by the requester.

Actors: A Requester

Precondition: The Trust Engine has the required policy to verify the requester’ security token.

Description:

a. The requester asks for a service access by providing the required security token.

b. The receiver sends the security token to the STS for verification.

c. The STS use its Trust engine to verify the security token claims.

d. Once approved, the STS notifies the receiver that the security token is valid and verified.

e. The receiver gives the requester a token that implies the right to use the service.

Postcondition: The requester has a security token that can be used to access services in a Receiver

web service.

:Requester :STS

claimsApproved()

securityTokenResponse(securityToken)

:Policy

verifyClaimsAgainstPolicy()

signatureApproved()

:TrustEngine

checkRequest(claims)

issuersApproved ()

verifySecurityTokenIssuers()

RequestApproved()

verifyAttributesAgainstSignature()

requestSecurityToken(claims,requestType)

:SecurityToken

create (claims)

(security token)

I-14

7

Figure 3: Sequence Diagram accessing a resource using a token

Implementation

In this solution, the concept of trust is realized by obtaining a security token from the web

service (in our diagram, the Security Token Service) and submitting it to the receiver who in turn

validates that security token through the same web service. Upon approval, the receiver establishes a

valid trust relationship with the receiver that lasts as long as the security token is valid.

In order to assure effective implementation, we need to take in consideration the following:

• To communicate trust, a service requires proof, such as a signature to prove knowledge of a

security token or set of security tokens. A service itself can generate tokens or it can rely on a

separate STS to issue a security token with its own trust statement.

• Although the messages exchanged between the involved entities are protected by WS-Security;

still three issues related to security tokens are possible: security token format incompatibility,

security token trust, and namespace differences. The WS-Trust pattern addresses these issues by

defining a request/response protocol (in which the client sends RequestSecurityToken and

receives RequestSecurityTokenResponse) and introducing a Security Token Service (STS) which

is another web service.

• Based on the credential provided by the requester, there are different aspects of requesting a

security token (RST), each of which has a unique format that the requester should follow:

:Receiver :STS

securityTokenIsOK ()

checkSecurityToken ()

verifySecurityToken()

securityTokenApproved()

:Requester

accessService (securitytoken)

:TrustEngine

accessGranted ()

I-15

8

o The issuance process: formed as RequestSecurityToken (RequestType, Claims).This is our

use case Create a security token in the Dynamics section.

o The renewal process: formed as RequestSecurityToken (RequestType, RenewTarget).

o The cancel process: formed RequestSecurityToken (RequestType, CancelTarget).

 By the way, the cancelled token is no longer valid for authentication and authorization.

o The validate process: formed as RequestSecurityToken (RequestType, ValidateTarget).

.

The WS-Trust specification was created as part of the Global XML Web Services Architecture

(GXA) framework, which is a protocol framework designed to provide a consistent model for building

infrastructure-level protocols for web services and applications [Box02]. It was authored by Microsoft,

IBM, Verisign, and RSA Security and was approved by OASIS as a standard in March 2007.

Example Resolved

Ajiad now has the ability to automate its trust relationships with its partners by managing the

registration tasks for all its partners and issuing customers a unique ID’s. In this case, Ajiad provides a

mediator between the customers and its participant partners and plays the role of negotiator and third-

party player who is trying to satisfy both sides.

Ajiad now can offer a Security Token Service for its business partners, who may find useful

ways to take advantage of credit processing and other services offered by Ajiad, which now has new

business opportunities.

Consequences

The WS-Trust pattern presents the following advantages:

• Security. By extending the WS-Security mechanisms, we can handle security issues such as

security tokens (the possibility of a token substitution attack), and signing (where all private

elements should be included in the scope of the signature and where this signature must include a

timestamp).

• Trust. With this solution, we have the choice of implementing the WS-Policy framework to

support trust partners by expressing and exchanging their statements of trust. The description of

this expected behavior within the security space can also be expressed as a trust policy.

• Confidentiality. We can achieve confidentiality of users’ information. Since Policy providers

now can use mechanisms provided by other web services specifications such as WS-Security

[ibm09b] to secure access to the policy, XML Digital Signature [w3c08] to authenticate sensitive

information, and WS-Metadata Exchange [w3c09].

• All the security tokens exchanged between the involved parties are signed and stamped with

unique keys that are known only to the recipients.

I-16

9

• Time validity. We can specify time constraints in the parameters of a security token issued by

STS. This constraint will specify for how long that security token is valid. Upon expiring, the

security token’s holder may renew or cancel it.

The WS-Trust pattern presents the following liabilities:

•••• The efficiency of WS-Trust may suffer from the repeated round-trips for multiple token requests.

We need to make an effort to reduce the number of messages exchanged.

•••• The WS-Trust standard is a lengthy document and several details were left to avoid making the

pattern too complex. The interested reader can find more details in the WS-Trust Standard web

page [oas09].

Known Uses

• DataPower's XS40 XML Security Gateway [dat05] is a device for securing web services that

provides web services access control, message filtering and field-level encryption. It centralizes

policy enforcement, supporting standards such as WS-Security, WS-Trust, WS-Policy and

XACML.

• SecureSpan™ XML Firewall [lay09] enforces WS* and WS-I standards to centralize security

and access requirements in policies that can be run as a shared service in front of applications.

• Vordel Security Token Service [vor09] is used to issue security tokens and to convert security

tokens from one format to another. The security tokens created by an STS are bound to the

messages travelling between web services..

• PingTrust, a standalone WS-Trust Security Token Server [pin06] creates and validates security

tokens that are bound into SOAP messages according to the Web Services Security (WSS)

standard.

Related Patterns

• The Trust Analysis Pattern, [Fay04]. The objective of this pattern is to provide a conceptual

model that embodies the abstract aspects of trust to make it applicable to different domains and

applications.

• The Credential Pattern [Mor06]. This pattern addresses the problem of exchanging data between

trust boundaries and how to resolve the problem of authenticating and authorizing a principal's

identity over different systems.

• The Circle of Trust pattern allows the formation of trust relationships among service providers in

order for their subjects to access an integrated and more secure environment [Del07]. The WS-

Trust pattern could be used to establish trust between providers.

 3. Conclusions

I-17

10

This pattern describes how to build trust relationshsips and how existing trust relationships may

be used as the basis for brokering trust through the creation of security token issuance services. These

security token issuance services build on WS-Security to transfer the requisite security tokens in a

manner that ensures their integrity and confidentiality.

Future work will include designing patterns for other web services standards such as WS-

Federation and WS-SecureConversation that depend on WS-Trust as a prerequisite foundation. This will

give us a good chance to analyze and discover how WS-Trust fits with other web services standards and

how much it could simplify the implementation of theses specifications in real-life business applications.

Acknowledgements

We thank our shepherd Takao Okubo for his comments. We also thank our PC member Yann-

Gael Gueheneuc for his discussion about the value of patterns describing standards.

References

[Box02] D. Box, Understanding GXA, Microsoft Corporation, http://msdn.microsoft.com/en-

us/library/aa479664.aspx - Last accessed on December 15, 2009

[dat05] IBM Corporation, WebSphere DataPower XML Security Gateway XS40, http://www-

01.ibm.com/software/integration/datapower/xs40/ – Last accessed at November 25, 2009

[Del07] N. Delessy, E.B.Fernandez, and M.M. Larrondo-Petrie, "A pattern language for identity

 management", Procs. of the 2nd IEEE Int. Multiconference on Computing in the Global

 Information Technology (ICCGI 2007), March 4-9, Guadeloupe, French Caribbean.

[Fay04] M.E.Fayad, and H. Hamza, “The Trust Analysis Pattern”, in Proceedings of the Fourth

Latin American Conference on Pattern Languages of Programming (SugarLoafPLoP 2004),

Porto Das Dunas, Ceara, Brazil. August 10-13, 2004.

 http://sugarloafplop2004.ufc.br/acceptedPapers/ww/WW_1.pdf - Last accessed on

December 15, 2009

[Fer06] E.B.Fernandez and N. Delessy, ""Using patterns to understand and compare web services

 security products and standards", Proceedings of the Int. Conference on Web Applications

 and Services (ICIW'06), Guadeloupe, February 2006. IEEE Comp. Society, 2006.

[ibm09a] Security in a Web Services World: A Proposed Architecture and Roadmap,

http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/ws-secmap.pdf - Last

accessed on December 3, 2009

[ibm09b] IBM Corporation, Web Services Security 2004,

http://www.ibm.com/developerworks/library/specification/ws-secure/ – Last accessed on

December 07, 2009

I-18

11

 [lay09] Layer 7 Technologies, The SecureSpan XML Firewall,

http://www.layer7tech.com/main/products/xml-firewall.html – Last accessed on December

09, 2009

[Mad03] WS-Trust: Interoperable Security for Web Services, by Paul Madsen,

http://www.xml.com/pub/a/ws/2003/06/24/ws-trust.html - Last accessed on November 30,

2009

[Mor06] P. Morrison and E. B. Fernandez, “The credentials pattern”, in Proceedings of the 2006

conference on Pattern languages of programs (PLoP 2006), Portland, OR, USA. October

21–23, 2006. http://portal.acm.org/citation.cfm?id=1415472.1415483 - Last accessed on

December 15, 2009

 [oas06] OASIS, Web Services Security: (WS-Security 2004), http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf -

Last accessed on December 15, 2009

[oas09] OASIS Standard, WS-Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-

1.4-spec-os.pdf - Last accessed on December 07, 2009

[pin06] Ping Identity Corporation, PingTrust, a standalone Security Token Server,

http://www.pingidentity.com/about-us/news-press.cfm?customel_datapageid_1173=1404 -

Last accessed on December 15, 2009

[vor09] Vordel Limited, Vordel STS,

 http://www.vordel.com/solutions/security_token_services.html - Last accessed on December

15, 2009

[w3c07] W3C, Web Services Policy 1.5 – Framework, 4 September 2007,

 http://www.w3.org/TR/ws-policy/- Last accessed on December 15, 2009

[w3c08] W3C Working Group, XML Signature Syntax and Processing (Second Edition) 2008,

http://www.w3.org/TR/ws-gloss/ – Last accessed on December 15, 2009

[w3c09] W3C Working Draft 2009, Web Services Metadata Exchange, http://www.w3.org/TR/ws-

gloss/ – Last accessed on December 15, 2009

I-19

I-20

 A Worm misuse pattern

 Eduardo B. Fernandez
1
, Nobukazu Yoshioka

2
, and Hironori Washizaki

3

1 Dept. of Comp. Science and Eng., Florida Atlantic University, Boca Raton, FL, USA,

ed@cse.fau.edu

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan,

nobukazu@nii.ac.jp

3 Waseda University / GRACE Center, National Institute of Informatics, 3-4-1, Okubo,

Shinjuku-ku, Tokyo, Japan, washizaki@waseda.jp

Abstract
We have proposed a new type of pattern, the misuse pattern. This pattern describes, from the point of view

of the attacker, how a type of attack or misuse is performed (what system units it uses and how), provides

ways of stopping the attack by enumerating possible security patterns that can be applied for this purpose,

and helps analyzing the attack once it has happened by indicating where can we find forensics data as well

as what type of data. A catalog of misuse patterns is needed to let designers evaluate their designs with

respect to possible threats. We present here a misuse pattern for a generic worm, which describes the

essential and typical characteristics of this type of malware. We consider how to stop this malware and we

also discuss some examples and variations.

Introduction
In order to design a secure system, we first need to understand the possible threats to the

system. Without this understanding we may produce a system that is more expensive than

necessary, it is hard to administer, and has a large performance overhead. We have

proposed a systematic approach to threat identification starting from the analysis of the

activities in the use cases of the system and postulating possible threats [Bra08]. This

method identifies high-level threats such as "the customer can be an impostor", but once

the system is designed we need to see how the chosen components could be used by the

attacker to reach her objectives. For this purpose we proposed the use of misuse patterns

(which we called initially attack patterns) [Fer07]. A misuse pattern describes, from the

point of view of the attacker, how a type of attack is performed (what units it uses and

how), analyzes the ways of stopping the attack by enumerating possible security patterns

that can be applied for this purpose, and describes how to trace the attack once it has

happened by appropriate collection and observation of forensics data. It also describes

precisely the context where the attack may occur. We built a catalog of misuse patterns

for VoIP [Pel09] and we characterized precisely some aspects of misuse patterns [Fer09].

We describe this type of patterns using a template based on the one used in [Bus96],

which is commonly used for architectural patterns as well as security patterns. This

catalog is not only useful to test a new system but also to evaluate an existing system.

To make misuse patterns of practical value we need a catalog of typical attacks. As we

said above, until now we have only misuse patterns for VoIP environments, this is our

first misuse pattern of a more general scope.

I-21

Worm

Intent

Propagate to as many places as possible (or to specific systems), usually indicating its

presence, and maybe performing some damage.

Context

Sites connected through the Internet or another type of network. The Internet provides a

variety of services such as email, file transfer, and web services (Figure 1). Any of these

services can be used for propagation. Both fixed and wireless networks can be used by

the worm. Portable storage devices such as memory sticks can also propagate worms.

Problem

A worm tries to take advantage of any input to invade a system. Users might open

attachments carrying worms and some ports of a system may be unprotected or have

vulnerabilities; all of these give the worm a chance to invade. Mail systems and file

transfer systems for example, include lists of addresses which can be used by the worm to

find places where to propagate. Many systems do not control access to their system

directories and do not restrict Internet traffic, which facilitates a worm invasion.

 Figure 1. Context for worm propagation

The solution is affected by the following forces :

Server

(SMTP, httpd, etc)

Client

(SMTP, httpd, etc)

Client

(SMTP, httpd, etc)

I-22

 Objectives. Its objectives may be political, monetary, or vandalism. A political worm

typically tries to produce damage to an antagonist; a monetary worm tries to reach

many places to collect information or drop spyware; a vandal worm tries to destroy or

damage information.

 Reach. Try to reach as many places as possible or to specific sites. For most worms,

reaching many places is a basic objective.

 Presence manifestation. Try to show its presence in the system so victims know about

it. Exceptions to this are cases where the objective is to drop spyware.

 Credit. To embed an identification or mark so that the creator can take credit for it.

 Misuse. Perform some destruction and/or other misuses (confidentiality, integrity, or

availability). The misuse may be delayed (time bomb).

 Obfuscation. Try to hide its structure to make harder its detection and removal.

 Collateral damage. In addition to specific misuses, the worm may require costly

operations for its removal, stopping or disrupting business activities. Its propagation

may affect the normal traffic in the network.

 Latency. Its propagation must be as fast as possible to avoid detection and

countermeasures.

 Activation. This can be done by enticing offers which may tempt users to open email

attachments or download procedures (social engineering). Other possibilities are

invading through unprotected ports or taking advantage of vulnerabilities.

Solution

Attach a core portion of the worm to email messages or to files. When the user opens

the message attachments or executes the file the core of the worm starts executing.

Alternatively, invade through an unprotected or flawed port. Download remaining

portions from complementary network sites. Use some procedure to hide the structure of

the worm. Perform its mission and propagate. Figure 2 shows the propagation of a typical

worm; speed comes from a tree-like propagation.

Structure

Figure 3 shows a class diagram of the units involved. Class Node represents any node in

the network, defined by its address (URL in the Internet). Any node can be the origin of a

worm and any node can be its target (and be invaded). Some nodes are complementary

sites from which commands or other parts of the worm may be retrieved. Class Worm

represents the worm itself, including procedures for initial setup, to bring complementary

parts, to hide the worm, to perform its mission, and to propagate.

I-23

 Figure 2 Worm propagation

 Figure 3. Class diagram for the Worm pattern.

.

.

.
.

.

.

.

.

.

Worm

Origin

Node

Nodes

Nodes

comesFrom

coreProcedure

auxProcedure

hidingProcedure

performMission

propagate

Worm

URL

Node

invades

complementarySite

*

*

* *

*

1

origin

target

I-24

Dynamics

Use cases for a worm may include Create a Worm, Remove a Worm, and Activate a

Worm. Create and Remove are specific to the type of worm (see Variants). We describe

here Activate a Worm because it is the most important for defenders. Its scenario (Figure

4) includes:

 Triggering: After the attacker sends a message, a target (user) may activate an

executable procedure with a core part of the worm.

 Assembly: Download remaining parts via the Internet (optional)

 Obfuscation: Use some procedure to hide the parts of the worm, e.g. encryption or

dispersion.

 Address Search: Find destination addresses as new targets for propagation. Addresses

may also be generated randomly.

 Manifestation: Display some messages (optional)

 Propagation: Send the core part via the connection to another node in the address list.

This operation is repeated for all the found or generated addresses.

 Figure 4. Sequence diagram for activating a worm

I-25

Variants

A passive worm requires a user to activate an executable program and it usually

propagates through email. Melissa, ILOVEYOU, Anna Kournikova, and Bagle are

examples of this type.

An active worm takes advantage of some system flaw to provoke a buffer overflow or

another attack to get in through some port. It may scan looking for unprotected ports.

Code Red is an active worm. Storm can be active or passive [Smi08].

A virus attaches itself to some program (infects an executable file) and when the user

executes this program it gets activated. Jerusalem, Christmas, and Chernobyl are

examples of viruses.

Some worms have several versions with different purposes; for example, Storm has

variants that perform different types of misuses, including targeted spam and DDoS

attacks [Smi08].

Some worms are multimode (multivector) worms, which can use a variety of ways to

invade their targets; for example the Storm virus infects computers using multiple

payloads [Smi08].

Known uses

Typical examples of worms include:

 ILOVEYOU [ILO, wor09]. This was an email attachment worm that appeared in 2000.

It relied in social engineering to entice users to open the attachment. It also used

specific weaknesses of Microsoft Windows. It propagated using the addresses in the

address book of the mail system.

 Bagle. It was a mass-mailing worm written in assembly language [bag] and affecting

all versions of Windows. After activation, it copies itself to the Windows system

directory and downloads a SMTP engine to mail its core to other nodes as an

attachment (see the Implementation section for its typical behavior).

 Code Red [Ber01]. It appeared in July of 2001. It propagated through port 80,

indicated its presence by defacing web pages, propagated using a random IP address

generator, and later would activate a denial of service attack from infected sites.

 Nimda [nim]. Nimda is a multivector worm that can use several ways to propagate:

email, visiting an infected site, seeking out vulnerable servers to upload files, or

through the network.

 Slapper [Arc03]. Can launch denial of service attacks. Propagates finding addresses

in files. The nodes invaded by the worm communicate using a P2P protocol to

collaborate in their misuses.

I-26

 Conficker [con09, wor09]. This is a multivector worm with an autoupdate facility

(signed updates) and encrypted communications. It downloads parts of the worm

from some Internet sites.

These worms are really worm types from where many variants can be derived. It is

possible to define separate patterns for each type of the generic Worm pattern. For

example, the Slapper worm and the Apache Scalper operate in a similar way [wor09], the

Conficker is really a series of worms [wor09].

Implementation

We show a typical implementation of the Bagle worm. It follows very closely the

sequence diagram of Figure 4. A scenario in a Microsoft environment would include:

 A user invokes an executable code by clicking a MS Word file, then automatically

VBA macro code is interpreted.

 The worm downloads the remaining parts from a web server via the Internet.

 The worm finds target addresses in the Outlook address book using VBA and a

SMTP server name from outlook settings.

 The worm displays some messages using a VBA function.

 The worm opens a SMTP connection to mail its core to the next target. This operation

is repeated for all the found addresses.

Active worms take advantage of vulnerabilities such as buffer overflows and can get in

through port 80 or unprotected ports. In the case of worms such as Code Red the core of

the worm was sent to the input buffer of port 80 in Microsoft’s IIS server [Ber01]. A

virus or worm may send a web address link as an instant message to all the contacts of

the invaded site and if the recipients answer, they bring the virus to their sites.

Consequences

This misuse has the following advantages for the attacker:

 Objectives. Its economic objectives can be reached if the worm has a long reach and

clever social engineering. Its political objectives can be reached if the worm reaches

the intended audience and manifests its presence and reasons. Its vandalism

objectives can be obtained if the worm does considerable damage.

 Reach. If the system has easily accessible address lists the worm can find many new

targets. Random address generation is not so effective.

 Manifestation of its presence. A good procedure for display can make its presence

well noticed. This may intimidate its victims, which brings satisfaction to the attacker.

 Credit. The mark should be distinctive but not identify the attacker. The creator can

get negative recognition for his effort.

I-27

 Misuse. A worm can perform destruction and/or other misuses (confidentiality,

integrity, denial of service, drop spyware or spam).

 Obfuscation. Encryption and dispersion can make harder its detection and removal.

Some worms mutate, i.e. they change their structure when they propagate.

 Side effects. A fast-propagating worm can produce a lot of traffic and if it is hard to

detect its cost increases.

 Latency. A fast-propagating worm can do much damage before being stopped.

 Activation. Good ways to activate the worm are necessary since all its objectives

depend on this step.

A worm also can have some liabilities for the attacker:

 A worm can be used to detect infected nodes or to destroy viruses or other worms.

Countermeasures

The following policies and their corresponding mechanisms (realized as patterns), can

stop or mitigate the worm:

 Policy about attachments: Users should be trained to recognize trustable attachments

and they should be forbidden to open unknown or suspicious attachments.

 Need-to-know policy to define access by system processes to resources. For example,

address lists should use authorization to control access to their contents.

 Control of network communications: Connections should be established with only

trusted addresses (control through the firewalls). This policy may avoid downloads

from complementary sites.

 Intrusion detection: An IDS can detect some attacks in real time and alert the firewall

to stop it.

 Use of antivirus software: Can help detect and clean worms after the fact

 Backups. Checkpointing files and keeping backup images of them is a fundamental

precaution against data destruction or unauthorized modification.

 Specialized hardware. Process communication controls in the operating system can

be enforced through specialized hardware [Shi00]. It is possible to define partitions in

the operating system that can be enforced by hardware and will prevent a worm from

performing its actions.

Forensics

I-28

The pieces of the worm may be scattered in different units within a site. The specific

places to look for worm components depend on the specific variant or type of worm. The

places where worms normally penetrate include mail attachments, files, unprotected ports,

and these must be inspected. One should also look for the specific parts of the work, e.g.

core procedure, obfuscation procedure, etc.

Web logs can help in finding parts that might have been downloaded. GUIs may have log

records of the use of procedures to display the worm announcements. Units that contain

addresses may contain indications of search.

Related patterns

 Authorization and Reference Monitor. These patterns together can prevent access to

address lists, thus stopping the worm propagation [Sch06].

 Firewall. Can filter attempts to download further pieces of the worm [Sch06].

 Intrusion Detection. Can detect a worm invasion in real time and collaborate with the

firewall to block its traffic [Fer05].

Acknowledgements
We thank our shepherd, Tsukasa Takemura, for his useful comments that significantly

improved the quality of the paper. We also thank Eiiti Hanyuda for supervising our paper

shepherding.

References
[Arc03] I. Arce and E. Levy, An analysis of the Slapper worm”, IEEE Security and

Privacy, Jan./Feb. 2003. 82-87.

[bag] “Bagle (computer worm), http://en.wikipedia.org/wiki/Bagle_(computer_worm)

[Ber01] H. Berghel, “The Code Red worm”, Comm. of the ACM, vol. 44, No 12,

December 2001, 15-19.

[Bra08] F. Braz, E.B.Fernandez, and M. VanHilst, "Eliciting security requirements

through misuse activities" Procs. of the 2nd Int. Workshop on Secure

Systems Methodologies using Patterns (SPattern'07). In conjunction with the

4th International Conference onTrust, Privacy & Security in Digital Business

(TrustBus'07), Turin, Italy, September 1-5, 2008. 328-333.

[con] “Conficker”, http://en.wikipedia.org/wiki/Conficker

[Fer05] E.B.Fernandez and A. Kumar, “A security pattern for rule-based intrusion

detection”, Proceedings of the Nordic Conference on Pattern Languages of Programs,

Viking PLoP 2005, Otaniemi, Finland, 23-25 September 2005.

I-29

http://en.wikipedia.org/wiki/Bagle_(computer_worm)
http://en.wikipedia.org/wiki/Conficker

[Fer07] E.B. Fernandez, J.C. Pelaez, and M.M. Larrondo-Petrie, "Attack patterns: A new

forensic and design tool", Procs. of the Third Annual IFIP WG 11.9 Int. Conf. on Digital

Forensics, Orlando, FL, Jan. 29-31, 2007. Chapter 24 in Advances in Digital Forensics

III, P. Craiger and S. Shenoi (Eds.), Springer/IFIP, 2007, 345-357.

[Fer09] E.B. Fernandez, N. Yoshioka and H. Washizaki, "Modeling misuse patterns",

Procs. of the 4th Int. Workshop on Dependability Aspects of Data Warehousing and

Mining Applications (DAWAM 2009), in conjunction with the 4th Int.Conf. on

Availability, Reliability, and Security (ARES 2009). March 16-19, 2009, Fukuoka, Japan.

[ILO] “ILOVEYOU”, http://en.wikipedia.org/wiki/ILOVEYOU

[Nim] “F-Secure Virus-descriptions:Nimda”, http://www.f-secure.com/v-

descs/nimda.shmtl

[Pel09] J. Pelaez, E.B.Fernandez, and M.M. Larrondo-Petrie, "Misuse patterns in VoIP",

Security and Communication Networks Journal. Wiley, published online: 15 Apr 2009

http://www3.interscience.wiley.com/journal/117905275/issue

[Sch06] M. Schumacher, E. B.Fernandez, D. Hybertson, F. Buschmann, and P.

Sommerlad, Security Patterns: Integrating security and systems engineering, Wiley

2006.

[Shi00] T. Shinagawa, K. Kono, T. Masuda, “ Exploiting Segmentation Mechanism for

Protecting Against Malicious Mobile Code”, Tech. Report 00-02, Dept. of Information

Science, University of Tokyo, May 2000.

[Smi08] B. Smith, “A Storm (worm) is brewing”, Computer, IEEE February 2008, 20-22.

[wor09] “Worm evolution”, May 2009, http://www.digitalthreat.net/?p=17

I-30

http://en.wikipedia.org/wiki/ILOVEYOU
http://www.f-secure.com/v-descs/nimda.shmtl
http://www.f-secure.com/v-descs/nimda.shmtl
http://www3.interscience.wiley.com/journal/117905275/issue
http://www.is.s.u-tokyo.ac.jp/tech-reports/TR00-02-a4.pdf
http://www.is.s.u-tokyo.ac.jp/tech-reports/TR00-02-a4.pdf
http://www.digitalthreat.net/?p=17

Design Decision Topology Model for Pattern Relationship Analysis

Kiran Kumar, Prabhakar T.V.

 Department of Computer Science and Engineering

Indian Institute of Technology Kanpur, India

{vkirankr, tvp}@iitk.ac.in

Abstract

Software design patterns are solutions to recurring

design problems. Analyzing and managing the large

and ever increasing number of design patterns is a

problem. Non-uniform and incomplete pattern

descriptions further complicate the task.

 Existing literature defines different pattern

relationship types and many relationships among

patterns. These relationships are analyzed based on

designer's experience and their formal basis is unclear.

We propose a novel graph based model to capture the

semantics of a design pattern using design decisions

and their side-effects. The relationships are analyzed

using various graph properties which enable

automation of relationship analysis.

1. Introduction
A design pattern describes a particular recurring

design problem that arises in a specific design context,

and presents a well-proven generic scheme for its

solution [9, 5]. Patterns are increasingly being used not

only to capture and disseminate best practices, but also

to turn named patterns into a shared vocabulary for

expressing and communicating technical knowledge [9,

5, and 13]. The large number of existing and

continuously increasing patterns (one source states that

there are 250 patterns for Human-Computer interaction

alone [19]) introduce new problems to designer who

use them - like the management of a pattern knowledge

base.

We propose a graph based model called Design

Decision Topology Model (DDTM) to deal with the

relationship analysis problem. The objective of this

model is to reduce pattern semantics to syntax- a graph

which delivers the pattern functionality (quality)

through elementary functionality (quality) – nodes of

the graph are elementary functional functionality and

edges are dependencies. Conceptually, the DDTM

technique is analogous to the Decision view [8, 16, 25]

in the architecture domain. The utility of the DDTM for

a pattern can be derived from the utility of Decision

view for architecture. Researchers of architecture

domain [8, 16, 25] propose Decision views to enable:

• Enriching architecture description

• Codifying crosscutting and intertwined design

decisions present in multiple views.

• Traceability of quality requirements.

• Providing thumbnail or compact forms of the

architecture.

 Traceability and Thumbnail problems are considered

important at pattern level also [6]. We apply

architecture level techniques at pattern level to derive

the DDTM of a pattern. This representation enriches

pattern descriptions, helps analyze quality requirement

traceability and relationships amongst patterns.

This model treats each pattern as a micro-

architecture and defines the pattern as a topology of a

set of design decisions. Using this model, different

relationships are analyzed using graph properties. For

example,

Patterns A and B are duplicates if Graph(A) ≡

graph(B),

Pattern A comprises-of patterns B and C if

Graph(B) ⊂ Graph(A) AND Graph(C) ⊂ Graph(A).

The rest of the paper is structured as follows:

Section 2 provides the required background

terminology. In section 3, we discuss briefly how a

pattern is described as a DDTM. In section 4, we

demonstrate the tactic topology model which is a kind

of DDTM. Section 5 discusses related work, and

section 6 concludes the paper suggesting some future

directions.

2. Terminology
In this section, we review some software

architecture terminology used in this paper.

• Quality requirement [27]: is a requirement which

is not specifically concerned with the functionality

I-31

of the software. Quality requirements specify the

external constraints the software should meet.

• Quality Attribute [2]: is a set of related quality

requirements.

• Design Decision [15]: is a strategy that is applied

to solve a particular part of the problem.

• Tactic [2]: A tactic is a design decision that

influences the control of a quality attribute

parameter. For example, the Increase available

resources design decision (upgrading 512 MB

RAM to 1 GB RAM) controls (minimizes) the

response time parameter.

• Implications/Side-effect [3, 25]: A design

decision comes with many implications. For

example, a design decision might introduce a need

to make other decisions, create new requirements,

or modify existing requirements; pose additional

constraints to the environment. For example, the

Increase available resources tactic which is an

alternative to achieve Reduce response time

quality requirement imposes side-effects like

Increase in cost, Change in resource management

(scheduling) policy etc.

 Relationship Type Synonyms Description

1 Is-Duplicate-of -- Patterns A and B provide same solution to same problem. [14]

2 Is-an-Alternative-to Similar-to A and B are similar patterns, solving the same problem, but

proposing different choices. [26, 17]

3

Comprises

• Uses

• Is-made-of

• Decomposes -into

When building a solution for the problem addressed by pattern

A, one sub-problem is similar to the problem addressed by B.

Therefore, the pattern A uses the pattern B in its solution. [26,

21, 17]

4 Refines • Is-variant-of

• Subsumes

Patterns A and B address same problem but pattern A provides

more refined (with less side-effects) solution than B. [26, 17]

Table 1: Description of different Relationship types.

3. How to describe a pattern – the Design

Decision Topology Model (DDTM)
 Analyzing the relationships for a given set of

patterns can be considered as 3-step process:

• Analyze design decisions of the patterns.

• Analyze the topology of the design decisions.

• Analyze the relationships from the topologies.

3.1. Analyze design decisions of the patterns.

 The key-information of a pattern is usually embedded

in the essential sections of the pattern-form/template;

Context, Problem, Solution, Consequences sections are

considered to be essential sections [9, 5, 6]. Additional

sections such as Implementation, Example etc often

appropriate to provide meaningful guidance on where a

pattern applies and how to apply it [6]. Hence we use

the key-information provided in Problem, Solution,

Consequences sections as clues to analyze design

decisions.

3.2. Analyze topology of design decisions.

 DDTM provides a structure to the design decisions

of a pattern by explicitly representing the dependency

among them. DDTM primarily provides rationale for

existence of a particular design decision. This

information is modeled as edges among design

decisions in our graph model. An edge A → B in

DDTM means the side-effect of design decision A is

resolved by design decision B.

 The DDTM of a pattern can be viewed as a graph of

design decisions. The Intent section specifies the

primary design decision(s) of the pattern; they are

modeled as source-nodes in the DDTM. Based on the

implications of the current stage design decisions, the

design decisions in the next stage are analyzed. For

example, consider the Master-slave pattern [5]. The

intent of Master-slave pattern is given as: the master

component distributes the work to slave components to

support parallel computation. It specifies Work

partitioning as the primary design decision; and it is

modeled as the source node in the DDTM of Master-

slave pattern. One of the implications of Work

partitioning design decision is the work distribution

details need to be hidden from clients; hence Restrict

communication paths design decision is used to

overcome this implication. The continuation of the

design process leads to an edge from Work partitioning

to Restrict communication paths nodes in the DDTM

of Master-slave pattern; the label on the edge

represents the implication of Work partitioning design

decision. Figure 1 shows a fragment of DDTM of

Master-slave pattern.

Figure 1: DDTM of Master-slave pattern.

I-32

 Relationship Type Description

1 Is-Duplicate-of Graph(P1) ≡ Graph(P2). (Graph equivalence property)

2 Is-an-Alternative-to Source-Node(P1) = Source-Node(P2) AND Graph(P1) ≠ Graph(P2).

3 Comprises Graph(P2) ⊂ Graph(P1). (Sub-graph property)

4 Refines Source-Node(P1) = Source-Node(P2) AND Graph(P2) ⊂ Graph(P1).

Table 2: Graph rules of different Relationship types.

3.3. Analyze relationships from the topologies.

 Various relationships among patterns can be

analyzed using some graph properties, when patterns

are described with DDTM. The graph model we

propose is currently applicable to analyze four

relationship types (see Table 1):

(1) Is-Duplicate-of,

(2) Is-an-Alternative-to,

(3) Comprises, and

(4) Refines.

 Table 2 describes how these relationship-types map

into properties of graphs.

4. Evaluation
This section demonstrates the utility of DDTM. We

define Tactic Topology Model (TTM), an instance of

DDTM where the design decisions are tactics. Using

TTM we describe some patterns such as Abstract

factory, Builder, MVC, Observer, and Publisher-

Subscriber to analyze relationships between them.

4.1. Tactics as design decisions of a pattern –

Tactic Topology Model (TTM).
Conceptually, there can be a variety of design decisions

that can model the semantics of patterns. Choosing

tactics as design decisions has these benefits:

• DDTMs can be communicated easily when its

design decisions refer to a standard body of

knowledge such as tactics.

• Tactics are classified according to different quality

attributes; this allows easy indexing of a tactic when

its quality requirement is known.

Tactic Topology Model (TTM) is a kind of DDTM

where the design decisions of a pattern are captured

through tactics which are more elementary than

patterns. Intuitively, if a pattern provides a solution to

achieve multiple primitive quality requirements, a

tactic provides a solution to achieve a single primitive

quality requirement [2].

Bass et al define a catalogue of tactics [2, 4] for

various quality attributes. This catalogue seems

insufficient to precisely capture the semantics of the

considered patterns. Also, Bass et al explicitly mention

in [2] that “the list of tactics is necessarily incomplete”.

We defined an additional set of tactics to completely

model the tactic topologies for the considered patterns.

Table 3 lists the tactics along with the quality

requirements they achieve and the quality attributes of

the quality requirements.

Bass et al tactics

Tactic Quality

requirement

Quality

Attribute

Apply

Polymorphism

Variant modules

need to be

exchangeable at

runtime.

Substitutability

Restrict

communication

paths

Hide a set of

modules/services.

Modifiability

Maintain

Semantic

Coherence

High-level

decomposition of

an application.

Modularity

Maintain

Multiple views

Handle

multiplicity in

user-interface

requirements.

Usability

Parameterize

representative

Abstraction over

variant modules.

Extensibility

Register at

runtime

Dependents of an

object are known

at runtime.

Adaptability

Additional tactics

Compose

whole from

parts

Represent module

groups.

Maintainability

Notify

modification

State change in

one object requires

state change in

other objects.

Adaptability

Enumerate

representatives

Abstraction over

variant modules.

Extensibility

Table 3: Tactics used in pattern topologies.

4.2. Analyze tactics from pattern description.
 The problem part of the pattern provides information

of some of its design decisions in the form of its

benefits. The described benefits or quality requirements

are used as clues to recover some of its constituent

tactics by mapping the pattern benefits upon the quality

requirements of the tactics.

I-33

 The UML structure in the solution part of the pattern

also provides information of some of its design

decisions. UML templates of tactics are used to analyze

the tactics from pattern UML structure.

 In this section, we provide details of analyzing the

inherent tactics for the Observer pattern - tactic

analysis for other patterns can be found at

http://www.cse.iitk.ac.in/users/vkirankr/Patterns_to_Ta

ctics.doc.

 Table 4 illustrates the tactic analysis of

Observer (a GoF [9]) pattern. Table 5 illustrates the

tactic analysis of MVC (a POSA1 [5]) pattern.

 It is to be observed from Tables 4 and 5 the

differences in pattern description templates of GoF and

POSA1 patterns. The template of GoF patterns

contains Intent, Motivation, Applicability, Structure,

Participants, Collaborations, Consequences,

Implementation, Sample Code, Known Uses, and

Related Patterns sections. Whereas, the POSA1

patterns template contain Intent, Example, Problem,

Solution, Structure, Dynamics, Implementation,

Variants, Known Uses, Consequences, See Also

sections. Although these two templates differ in naming

conventions, the two templates are nearly similar to

each other. Henninger et al [14] also discusses the

similarities and differences among GoF, POSA, and

PLML templates.

Applicability section of Observer Pattern description

Requirement Elaboration of requirement Achieved through

tactic(s)

“When a change to one object requires

changing others.”

State change in one object requires

state change in other objects.

Notify modification

“You don't know how many objects need to

be changed.”

Dependents of an object are known

at runtime.

Register at runtime.

“When an object should be able to notify

other objects without making assumptions

about who these objects are. In other words,

you don't want these objects tightly coupled.”

Variant modules need to be

exchangeable at runtime.

Apply

Polymorphism

Consequences section of Observer Pattern description

“Abstract coupling between Subject and

Observer.”

Variant modules need to be

exchangeable at runtime.

Apply

Polymorphism

“Support for broadcast communication.” Variant modules need to be

exchangeable at runtime.

Apply

Polymorphism

UML diagram of Observer Pattern

Tactic UML Textual form from [9] (↑ means inheritance)

Register at runtime Subject.attach(), Subject.detach()

Notify modification Subject.notify()

Apply Polymorphism

Instance 1:

• Subject, ConcreteSubject

• Subject ↑ ConcreteSubject

Instance 2:

• Observer, ConcreteObserver

• Observer ↑ ConcreteObserver

Table 4: Analysis of tactics for Observer pattern [9].

Problem section of MVC Pattern description

Requirement Elaboration of requirement Achieved through

tactic(s)

“Different users place conflicting

requirements on the user interface.”

Handle multiplicity in user-

interface requirements.

Maintain Multiple

views

“Building a system with the required

flexibility is expensive and error-prone if the

user interface is tightly interwoven with the

functional core.”

High-level decomposition of an

application.

Maintain Semantic

Coherence

I-34

“The same information is presented

differently in different windows, for example,

in a bar or pie chart.”

Handle multiplicity in user-

interface requirements.

Maintain Multiple

views

“Changes to the user interface should be

easy, and even possible at run-time.”

State change in one object requires

state change in other objects.

Notify modification

“Supporting different 'look and feel'

standards or porting the user interface

should not affect code in the core of the

application.”

High-level decomposition of an

application.

Maintain Semantic

Coherence

“The display and behavior of the application

must reflect data manipulations

immediately.”

State change in one object requires

state change in other objects.

Notify modification

Consequences section of MVC Pattern description

“Multiple views of the same model.” Handle multiplicity in user-

interface requirements.

Maintain Multiple

views

“Synchronized views.” State change in one object requires

state change in other objects.

Notify modification

“'Pluggable' views and controllers.” Dependents of an object are known

at runtime.

Register at runtime

“Exchangeability of 'look and feel'.” Variant modules need to be

exchangeable at runtime.

Apply

Polymorphism

Solution section of MVC Pattern description

Solution description Tactic

“The MVC architectural pattern comprises three types of participating

components: clients, model, views, and controllers.”

Maintain Semantic Coherence

“There can be multiple views of the model.” Maintain Multiple views

“The separation of the model from view and controller components allows

multiple views of the same model.”

Maintain Semantic Coherence

“If the user changes the model via the controller of one view, all other

views dependent on this data should reflect the changes. The model

therefore notifies all views whenever its data changes.”

Notify modification

“The change-propagation mechanism maintains a registry of the

dependent components within the model.”

Register at runtime

“Changes to the state of the model trigger the change-propagation

mechanism.”

Notify modification

UML diagram of MVC Pattern description

Tactic UML Textual form from [5] (↑ means inheritance)

Maintain Semantic Coherence Model, View, Controller

Maintain Multiple views View

Notify modification Model.notify()

Register at runtime Model.attach(), Model.detach()

Apply Polymorphism • Observer, View, Controller

• Observer ↑ View

• Observer ↑ Controller

Table 5: Analysis of tactics for MVC pattern [5].

4.3. Analyze topology of tactics.
 Figures 2 through 6 illustrate the tactic topologies of

Observer, Abstract factory, Builder, MVC, and

Publisher-Subscriber patterns respectively. Table 6

provides the intent of these patterns for ready

reference. Here, we discuss the topology analysis of

Observer pattern; other topologies can be analyzed in

the similar way.

 The intent of the Observer pattern (refer table 6)

specifies the design decision Automatic update

notification as the primary design decision; hence

Notify modification tactic is made as the source node in

Observer TTM.

I-35

 References to dependent modules are to be known

and all dependent modules need to implement a

uniform interface in order to notify an update to its

dependents. Register at runtime and Apply

Polymorphism tactics achieve the above two quality

requirements respectively. Hence, the implication of

Notify modification tactic provides the rationale for

using Register at runtime and Apply Polymorphism

tactics. The TTM of Observer pattern depicted in

Figure 5 illustrates the tactic dependency.

4.4. Analyze relationships from topologies.
 When patterns are represented as tactic topologies,

the relationships among patterns can be analyzed by

applying the graph rules given in Table 2.

 It is to be noted that the label on the edges in TTM

represent the rationale of the dependency between the

two tactics. In order to improve understandability, the

rationale for the same pair of tactics may differ from

one pattern to other. But the rationale can be equalized

at some higher level of abstraction. Hence, mismatch in

the rationale does not affect the relationships among

patterns.

Using these rules, the following relationships can be

inferred from figures 5 through 9:

• Abstract factory (Figure 3) and Builder (Figure 4)

have the same source node but TTMs are different.

Hence from Table 2 Abstract factory is is-an-

Alternative-to Builder pattern. Zimmer [26] comes

to the same conclusion independently.

• The TTM of MVC pattern (Figure 5) includes

TTM of the Observer pattern (Figure 2). Hence

MVC comprises-of the Observer pattern.

Avgeriou et al [1] and Buschmann et al [5]

propound the same relationship.

• Publisher-Subscriber pattern (Figure 6) refines

Observer pattern (Figure 2). This relationship is

also mentioned by Avgeriou et al [1].

4.5 Utility of the TTM: The TTM is a decision view

of a design pattern and is a useful description of how

the pattern works.

 Traceability: The direct linkage from a quality

requirement to its corresponding UML fragment is

missing in the pattern description. Analyzing tactics

from the description bridges the gap between quality

requirement and UML fragment and eases the

traceability analysis. For example, consider a quality

requirement of Observer pattern (Table 4) - don't know

how many objects need to be changed. This

requirement is mapped to Register-at-runtime tactic.

Analyzing the UML fragment of Register at runtime

tactic - Subject.attach(), Subject.detach(), we obtain the

traceability link between the quality requirement - don't

know how many objects need to be changed, and its

UML fragment - Subject.attach(), Subject.detach().

 Relationships: By comparing the TTMs of Observer

and MVC, we were able to infer that MVC uses

Observer. Similarly as shown in Section 4.4,

Publisher-Subscriber refines Observer.

Figure 2: TTM of Observer pattern.

Figure 3: TTM of Abstract factory pattern.

Figure 4: TTM of Builder pattern.

Figure 5: TTM of MVC pattern.

Figure 6: TTM of Publisher-Subscriber pattern.

I-36

5. Related Work
 Pattern relationship analysis, a sub-problem of the

pattern ontology problem, could help in managing the

large number of patterns. Zimmer [26] defined three

types of relationships and analyzed some relationships

between design patterns. Similarly, Avgeriou et. al. in

[1] analyzed relationships between architectural

patterns. Those relationships were analyzed based on

their experience with little or no formal support.

Currently, many pattern relationships are specified

informally through semantics-free "related to"

relationship type [11, 12], but this level of abstraction

is unsatisfactory for a designer. Noble in [21] defined

and classified various pattern relationship types into

primary and secondary categories based on designer

needs. Kruchten in [17] defined various relationship

types between design decisions.

 Analyzing design alternatives (patterns) for a given

set of requirements is considered as a knowledge-

intensive task [31]. Providing tool support to manage a

patterns knowledge base will significantly improve the

productivity of the designer. VanHilst and colleagues

[32] propose a novel knowledge formalization

technique called Multi-dimensional Concern Matrix to

model the knowledge of Security patterns along various

stakeholder concerns. This paper also discusses various

issues like Primary dimensions, Secondary dimensions

etc to model pattern knowledge. The other advantages

of this technique are: gaps in the problem space that

lack pattern coverage can be identified easily, and the

model is easily extensible to add new dimensions of

concern. Our DDTM (or TTM) knowledge modeling

technique is orthogonal to Multi-dimensional Concern

Matrix technique. TTM addresses the queries related to

relationships between tactics, patterns (and quality

requirements) such as:

• What are the patterns which use Restrict

communication path tactic to improve Security? –

Authentication proxy pattern.

• What are the patterns which use Compose from

parts tactic? – Composite, Whole-part, Abstract

factory, Builder patterns.

It is to be noted that these queries can be modeled

using multiple dimensions as: Tactic, Relationship

type, Quality requirement.

 Similar to our UML templates to analyze tactics,

Riele [33] defined UML collaboration templates for

patterns to analyze patterns from existing designs of

frameworks such as JUnit, Geo system, KMU Desktop,

and JHotDraw. Riele also defines Design pattern

density metric to measure what percentage of the

framework design can be analyzed through pattern

instances. This metric is used to discuss the indications

on framework maturity such as: As the framework

matures, the Design pattern density increases etc.

Non-uniform pattern descriptions [14, 20, 7, 22]

and the large number of patterns [14, 13, 19]

complicate the problem of pattern relationship analysis.

What we need is a uniform pattern description and a

formal basis for the analysis of pattern relationships.

Uniform pattern description with natural language is

clearly an impractical solution. Modeling pattern

semantics through traditional UML semantics seems to

be insufficient, modeling patterns precisely using UML

is under research [28, 29, 30]. Describing patterns with

formal approaches such as eLePUS [23], DiSCO [18],

and BPSL [24] is best suited for code generation but

not for relationship analysis [14]. Describing patterns

as set of property-value pairs [10] enables automation

of relationship analysis, but defining a set of properties

which is consistent and complete for all the patterns is

very difficult.

In recent years, software architecture researchers

[25, 16 and 8] proposed that documenting design

decisions as first class entities overcomes the

architecture knowledge vaporization problem.

Currently, for pattern relationship analysis, different

formal pattern descriptions exist, such as: eLePUS

[23], DiSCO [18], BPSL [24], signs [22], mathematical

structures [13], OWL-DL [13]. But these languages are

not designer's languages and are hard to use for a

designer. Our model helps the designer in ease of

describing patterns, enabling the designer to use design

decision vocabulary.

6. Conclusions and Future work
. We observe that a decision view of a pattern is

useful to analyze relationships amongst patterns. A

design decision topology model (DDTM), a decision

view, reduces the semantics of a pattern to some

syntactic properties of a graph. We propose a particular

kind of DDTM, called Tactic Topology Model (TTM)

which models design patterns using tactics. This TTM

is constructed from the pattern description and its UML

diagram. We discussed how our model helps analyze

quality requirement traceability and relationships

amongst patterns.

Analysis of our Pattern TTMs converges to the same

conclusions (relationships between patterns) as

described in literature. Our mechanism is amenable for

automation and should enable discovery of new

relationships.

The work presented in this paper, addresses a sub-

problem of a designer's decision support system –

ontology of design patterns.

I-37

7. Acknowledgements
We are very grateful to our shepherd Eduardo B.

Fernandez who had tirelessly read and re-read many

versions of the paper and improved both the form and

content. Program Committee Member Eric Platon gave

several useful and important suggestions which greatly

helped. The shepherding process is indeed a very

useful practice.

 Pattern Intent

1 Observer. Notify the updated state to its dependents automatically, when object state dependency exists

between multiple objects.

2 Abstract

factory

Separate the representation of a product family from the representation of products. Provide the

common interface of product families to create its products and hide the representation of

products.

3 Builder Separate the representation of a complex object from representation of parts. Provide a common

construction process to create different complex object representations.

4 Model-View-

Controller.

An interactive application is divided into three components – model (core functionality and data),

views (user interface), and controllers (handling user input). State changes in a view or in the

model are notified to the other views.

5 Publisher-

Subscriber.

One publisher notifies any number of subscribers about changes to its state. Publishers register

themselves to a broker and subscribers discover publisher from broker.

Table 6: Some patterns from [5, 9].

8. References
[1] P. Avgeriou and U. Zdun, “Architectural patterns

revisited - a pattern language”, In Proceedings of 10th

European Conference on Pattern Languages of

Programs 2005.

[2] L. Bass, P. Clements, and R.Kazman, “Software

Architecture in Practice”, Second Edition. Addison-

Wesley 2003.

[3] Bass. L., Klein. M. and Bachmann. F, “Quality

Attribute Design Primitives and the Attribute Driven

Design Method”, In: Proceedings of the Product

Family Engineering vol. 4, Springer-Verlag, Berlin.

[4] F. Bachmann, L. Bass, and R. Nord,

“Understanding and Achieving Modifiability in

Software Architecture”, CMU/SEI-2007-TR-002.

[5] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal, “Pattern-Oriented System

Architecture: A System of Patterns”, John Wiley &

Sons, 1996.

[6] F. Buschmann, K. Henney, D. C. Schmidt,

“Pattern-Oriented Software Architecture, Volume 5:

On Patterns and Pattern Languages”. Wiley & Sons,

2007.

[7] J. Dietrich, and C. Elgar, “Towards a Web of

Patterns”, Proc. Semantic Web Enabled Software

Engineering (SWESE), 117-132, Galway, Ireland,

2005.

[8] Dueñas, J.C. and Capilla, R, “The Decision View of

Software Architecture”, Proceedings of the 2nd

European Workshop on Software Architecture (EWSA

2005), Springer-Verlag, LNCS 3047, pp. 222-230

(2005).

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

“Design Patterns: Elements of Reusable Object-

Oriented Software”, Addison-Wesley, 1994.

[10] S. Hasso and C.R. Carlson, “Linguistics-based

Software Design Patterns Classification”, In

Proceedings of the Thirty-Seventh Annual Hawaii

International Conference on System Science (HICSS-

37). IEEE Computer Society Press, 2004.

[11] S. Henninger, “An Organizational Learning

Method for Applying Usability Guidelines and

Patterns”, in Engineering for Human-Computer

Interaction (revised papers, EHCI 2001), vol. LNCS

2254, Springer, 2001, pp. 141-155.

[12] S. Henninger, and P. Ashokkumar, “An Ontology-

Based Infrastructure for Usability Design Patterns”,

Proc. Semantic Web Enabled Software Engineering

(SWESE), Galway, Ireland, pp. 41-55, 2005.

I-38

[13] S. Henninger, and P. Ashokkumar, “An Ontology-

Based Metamodel for Software Patterns”, In

Proceedings of 18th Int. Conf. on Software

Engineering and Knowledge Engineering 2006.

[14] S. Henninger, V. Corrêa, “Software Pattern

Communities: Current Practices and Challenges”,

Pattern Languages of Programs (PLoP 07),

(submitted), 2007.

[15] C. Hofmeister, P. Kruchten, R. L. Nord, H.

Obbink, A. Ran, and P. America, “Generalizing a

model of software architecture design from five

industrial approaches”, In Proceedings of the 5th

Working IEEE/IFIP Conference on Software

Architecture (WICSA5), Pittsburgh, Pennsylvania,

2005.

[16] A. G. J. Jansen and J. Bosch, “Software

architecture as a set of architectural design decisions”,

In Proceedings of WICSA 5, pages 109-119,

November 2005.

[17] P. Kruchten, “An ontology of architectural design

decisions in software intensive systems”, In 2nd

Groningen Workshop on Software Variability, pages

54-61, December 2004.

[18] T. Mikkonen, “Formalizing Design Patterns”, Int'l

Conf. Software Engineering, pp. 115-124, 1998.

[19] S. Montero, P. Díaz, and I. Aedo, “A Semantic

Representation for Domain-Specific Patterns”, Int'l

Symp. on Metainformatics, U. K. Wiil, Ed., Springer-

Verlag, LNCS 3511, 2005, pp. 129-140.

[20] J. Noble, “Towards a Pattern Language for

Object-Oriented Design”, Proc. of Technology of

Object-Oriented Languages and Systems (TOOLS

Pacific), 28, IEEE Comp. Soc., pp. 2-13, 1998.

[21] James Noble, “Classifying relationships between

object-oriented design patterns”, In Australian

Software Engineering Conference (ASWEC), pages

98-107, 1998.

[22] James Noble, and Robert Biddle, “Patterns as

Signs”, Proceedings of the 16th European Conference

on Object-Oriented Programming, p.368-391, June 10-

14, 2002.

[23] S. Raje, and S. Chinnasamy, “eLePUS-A

Language for Specification of Software Design

Patterns”, Proc. 2001 ACM Symp. Applied

Computing, pp. 600-604, 2001.

[24] T. Taibi, and D. C. Ling Ngo, “Formal

Specification of Design Patterns - A Balanced

Approach”, Journal of Object Technology, 2(4), pp.

127-140, 2003.

[25] Tyree, J. and Akerman, A, “Architecture

Decisions: Demystifying Architecture”, IEEE Software,

vol. 22, no 2, pp. 19-27, (2005).

[26] Walter Zimmer, “Relationships Between Design

Patterns”, J. Coplien and D. Schmidt, editors, Pattern

Languages of Program Design, pages 345_364.

Addison-Wesley, 1995.

[27] G. Kotonya, I. and Sommerville. “Requirements

Engineering: Processes and Techniques”. John Wiley

& Sons, 1998.

[28] G. Sunyé, F. Pennaneac’h, W.M. Ho, A. L.

Guennec, and J. M. Jézéquel, “Using UML action

semantics for executable modeling and beyond.” In

Proceedings of the 13th International Conference on

Advanced Information Systems Engineering, pages

433-447, 2001.

[29] Robert B. France, Dae-Kyoo Kim, and Sudipto

Ghosh, Eunjee Song, “A UML-Based Pattern

Specification Technique”. IEEE Transactions on

Software Engineering, pages 193 – 206, 2004.

[30] J. K. H. Mak, C. S. T. Choy, and DPK Lun.

“Precise Modeling of Design Patterns in UML.” In

Proceedings of the 26th International Conference on

Software Engineering, pages 252-262, 2005.

[31] Pierre N. Robillard, “The role of knowledge in

software development”, Journal of Communications of

the ACM, pages 87-92, 1999.

[32] VanHilst Michael, Fernandez Eduardo B, and

Braz Fabricio, “A Multi-dimensional Classification for

Users of Security Patterns”, Journal of Research and

Practice in Information Technology, pages 87-97,

2009.

[33] Dirk Riehle, “Design pattern density defined”,

Proceedings of the 24
th

 ACM SIGPLAN conference on

Object oriented programming systems languages and

applications, pages 469-480, 2009.

I-39

I-40

AsianPLoP 2010

Learning Patterns: A Pattern Language for Creative Learners II

Takashi Iba
Faculty of Policy Management, Keio University

MIT Center for Collective Intelligence, Massachusetts Institute of Technology

Toko Miyake
Faculty of Environment and Information Studies, Keio University

Abstract
In this paper we present a pattern language for learners who want to learn better without killing

their creativity. In order to tell a ‘knack’ about the way of learning we apply the method of pattern

language, which was originally proposed in architectural design and became famous in software

design. Our proposed pattern language for creative learners, which we named “Learning Patterns”,

consists of 40 patterns. Each pattern is described in the same format; pattern number, pattern name,

introduction, illustration, context, problem, forces, solution, actions, and related patterns. Although

Learning patterns were originally developed in order to support learning of university students, we

think it can be applied to any learners in various situations like engineering, business, science, and

everyday life due to their fine abstract descriptions as a pattern language. In this paper, we show the

overview of 40 patterns and four patterns in detail. Note that other five patterns have been presented

in our previous paper at PLoP09 (Iba, et. al., 2009).

I-41

AsianPLoP 2010

1. Introduction

In recent complex society, it is essential to find problems and think of solutions from various point

of view with a creative mind. People need to learn ability to practice their ideas, and create new

viewpoints and ways of thinking. It is also necessary to construct their own living knowledge based

on their situation, not just by memorizing existing information1. Under present circumstances, a few

people can realize such a creative way of learning, but others do not seem to know how to do so.

 As it is well known in the scenes of education, there is a difficult problem how one can teach how

to learn. While it is quite easy to show the guideline to follow, it may shut learners out of the chance

for thinking their own way of learning themselves. Furthermore, there is another difficulty to

provide appropriate guideline for all learners who are under various situations. So, is it possible to

provide something to help the learners under various situations to think their way of learning? In

this paper, we would like to provide a solution for these problems.

 In the following sections, we present a pattern language for learners in order to share several

`knacks' against the way of creative learning. It means that we refer the mind and the writing format

of pattern language into “learning design”, as well as architectural design (Alexander 1977),

software design (Beck and Cunningham. 1987; Gamma, et. al. 1995), organizational design

(Coplien and Harrison 2004; Manns and Rising 2005), and pedagogical design (Anthony 1996;

Bergin 2000).

 We think that a pattern language is good way to help the student to design their learning, because

it focuses on providing a new view for the reader so that they can think. It is quite important that the

method is not easy way to get the result without thinking themselves. It is not, however,

irresponsible way to leave all up to individual ability. It is considered as the way that tolerates

individual ability while making a good use of abstract rules of past experience. The patterns are

mainly for the learners, but they are also for the educators. The patterns will become a good tool for

sharing the way of thinking.

1 Against the backdrop, “Project-based Learning” (PBL) and “Learning by doing” are spotlighted, however
they are the method to manage the classes or workshops that are usually closed. Although their aim is
related to us, our aim is to support learning in everyday life rather than controlled classroom.

I-42

AsianPLoP 2010

2. The Prehistory of the Learning Patterns
Learning patterns, which are presented in this paper, were developed by Learning Patterns Project,

Keio University. We have handed out the catalog booklet of learning patterns to undergraduate

students (Figure 1). The catalog was handed out to approximately 3,600 students of two faculties:

Faculty of Policy Management and Faculty of Environment and Information Studies. These

faculties have implemented a unique curriculum that is interdisciplinary and non-graded. It means

all undergraduate students can study any kind of academic areas, for example social innovation,

public policy, global strategy, environment, life sciences, and information studies, without reference

to their grades and experience. Therefore the students should design their own learning, and it is the

reason why we made the learning pattern for supporting learning design.

Figure 1: Catalog Booklet of Learning Patterns

3. Patterns Overview
Learning Patterns consist of 40 patterns. Figure 2 shows the overview of the whole language of the

learning patterns. Learning patterns is organized in three layers according to the abstract level. In

the top layer, there is a root pattern: Learning Design (0). This pattern provides an introductory

explanation about why and how to use Learning Patterns. Such an explanation is usually provided

outside patterns, however we put it in patterns as a self-referential pattern. In the second layer, there

I-43

AsianPLoP 2010

are three fundamental patterns: Making Opportunities for Learning (1), Creative Learning (2) and

Open-Process Learning (3). These patterns show important attitudes that summarize more specific

patterns in next third layer. In the third layer, there are thirty-six patterns as concrete `knack' of

learning: Tornado of Learning (4), Academic Excitement! (5), and so on.

Figure 2: Overview of Learning Patterns

4. Pattern Format
Learning patterns are described in the format which consists of following items; “Pattern Number”,

“Pattern Name”, “Introduction”, “Illustration”, “Context”, “Problem”, “Forces”, “Solution”,

“Actions”, “Related Patterns.” Especially in the catalog of learning patterns, each pattern is printed

in a double page spread (Figure 3), which is handed out for university students, as I mentioned

above.

I-44

AsianPLoP 2010

 In the first half of pattern, which is printed at the left page in the catalog, the overview of the

pattern is described. At first, Pattern Number is sequential number. Pattern Name is named as

attractive and memorable phrase. Next, Introduction and Illustration is provided in order to help for

the reader to imagine the meaning of the pattern lively. Then, there is a list of when the reader can

use the pattern as Context. The reader can search his/her necessary pattern from his/her context with

using the context navigation.

 In the last half of pattern, which is printed at the right page in the catalog, the detail of the pattern

is described. At first, Problem that is often occurred is described. Problem is emphasized in bold

type. In succession to Problem, Forces are written as laws that are not able to or difficult to be

changed. The difficulty to solve the problem comes from the existence of these forces, because your

solution needs to meet all of them. After the Forces, the separator is placed. Next, Solution is

written in bold type. Then, in the part of Actions, more concrete advice like examples or

alternatives is introduced. After the Actions, the separator is placed again. At the last, Related

Patterns are provided. Good learning is effectively achieved by combining some patterns. The

reader can understand the meaning of the pattern deeper through reading the section of Related

Patterns.

 Note that it was a conscious choice not to show item names, such as “Problem” and “Solution”,

in the format because of readability for students. Our format is midst between Alexander’s patterns

and the design patterns.

I-45

AsianPLoP 2010

Figure 3: Pattern Format of Learning Patterns

 In the catalog booklet, there is some navigation to find the patterns. One of the navigation is

based on contexts of patterns. There are five categories of contexts: “at beginning”, “for goal

setting”, “in activity”, “for output”, and “at dead end” (Figure 4). Each category consists of four

contexts, which indicate to related patterns respectively. Therefore the reader can find patterns that

are relevant to their situation.

Figure 4: Context List of Learning Patterns

 Another navigation in the catalog is provided in association with the curriculum of our university.

Each course indicates to related patterns, therefore the student can find the patterns that are relevant

to the classes they are taking.

5. An Example of Usage
Take, for example, a pattern of Acceleration to Next (36). This pattern is supposed to be needed

under the context like “When you are researching” or “When you are studying”. The problem

I-46

AsianPLoP 2010

frequently occurred is “It not seldom happens that people slack off their efforts subconsciously just

before the goal”, and the solution is “Set next goal and pass through the current goal without slow

down” (See more details in the next section of this paper).

 The student who read this pattern may find new idea to design his / her learning activities,

because pattern languages can become concept to comprehend the reality and amplify the ability of

recognition. Thus, the method of pattern language provides the way to understand the existence of

problem and the clue of the solution. Moreover, by virtue of the name of each pattern, it is getting

easier to mention some aspect of learning. With using the example above, the teacher can advice the

student with using the pattern name; “Don’t forget Acceleration to Next! ”. Otherwise, student can

ask the teacher “Do you think I should increase Acceleration to Next?” Like this, pattern languages

contribute to increase the vocabulary about learning among teachers and students. These are the

reason why pattern language is called “language” of patterns.

6. Four Learning Patterns
Here we take four patterns as examples: Learning Design (0), Brain Switch (22), Community of

Learning (28), and Acceleration for Next (36).

I-47

AsianPLoP 2010

No.0

Learning Design

Design your learning.

 Always when you want to learn

I-48

AsianPLoP 2010

It is not easy to learn “how to learn”, while it is essential ability in complex and liquid society.

 Human is not able to learn everything because the time and memory is limited.

 There are several ways to study.

 People who learn effectively have a knack for good learning, which is independent on their

fields or themes.

Learn the ‘knack’ of learning from the experienced learners, and design your way of learning

based on them.

 You can work on your activity with “learning patterns” which tells you the knack of effective

learning.

 First, read roughly whole patterns to understand what “learning patterns” is like, especially the

first half of each pattern; pattern name, introduction, illustration, and context. It is better to

remember the pattern name and the illustration.

 Read the detail of patterns in which you are interested. In the last half of each pattern, there are

description of “problem”, difficulties why the problem is a hard to solve as “forces”,

“solution”, and “actions” which are for solving the problem.

 You can find a learning pattern according to your situation with using the list of “context”.

 Use “pattern name” of learning pattern as a common language, when you talk about learning

with other students or teachers.

Learning Design is important to do Making Opportunities for Learning (1). For cultivating the

opportunity, keep the tips of Creative Learning (2) in mind, and you can learn with excitement.

Open-Process Learning (3) helps you recognize the significance of communities that you are in.

I-49

AsianPLoP 2010

No.22

Brain Switch

Logic and Intuition —— Both are absolutely essential.

 When you are making research

 When you are creating something

 When you are writing a paper

 When you need to get a new view or idea

 When you are at a dead end

I-50

AsianPLoP 2010

Thinking tends to be leaning to only logic or intuition, which each is not enough to achieve a

breakthrough.

 Logical thinking (left brain) inspires acute analysis and inference, and has persuasion.

 Intuitive thinking (right brain) inspires good ideas and expressions, and gives impression.

 It is difficult to use both modes of thinking at the same time.

Think, switching two modes of logic and intuition.

 When you begin to think with your “left brain”, think logically as deep as possible. When you

begin to think with your “right brain”, think intuitively as deep as possible.

 Switch your brains when you are at a dead end or think sufficiently. If you have thought with

“left brain” by then, try to think about beauty and wealth of expression. For example, when

you are writing something, draw pictures of what you express by words. In contrast, if you

have thought with “right brain”, try to think about coherence and depth of logic. For example,

when you are drawing a picture, think about the logic of the picture. By switching brains, you

can find a new aspect of a matter.

Brain Switch means switching “ways of thinking” that are logical and intuitive. In contrast, Bird’s

Eye, Bug’s Eye (23) means switching “viewpoints”. If you are used to switching ways of thinking

and viewpoints, you will provide Attractive Expression (34).

I-51

AsianPLoP 2010

No.28

Community of Learning

It is not necessary to study alone.

 When you begin to research

 When you begin to study

 When you are bored with study

 When you want to learn a new skill

 When you want to improve your skill

I-52

AsianPLoP 2010

Individual’s capacity is limited.

 The time we can spend is limited.

 Everyone has his/her own knowledge and viewpoints.

 By getting various viewpoints, human can deepen their understanding.

 Human can work harder with partners together than do alone.

Find people with common objectives and build a community of learning to stimulate each

other.

 First of all, plan for making “community of learning”. For example, you plan that what kind of

workshop or research project you can do.

 Gather some members of your surroundings who are interested in your plan. Then, you launch

your project and make some concept and rough schedule with them.

 Decide how you show your efforts of your learning. For example, you can make a paper, and

publish it on the web site or have a conference. This makes you keep your motivation.

 On the basis of this plan, accept applications for your “community of learning”, preferably on

a large scale beyond your acquaintances. It may be that you can gather more members who

have similar interest than those of your acquaintances. Moreover, with the member of people

who you don’t know, you can avoid loose meeting and keep focusing on.

 To keep the member’s motivation, confirm what you have done with each other regularly. If is

necessary, you should reset your goal.

There are no fixed rolls such as “teacher” or “student” in Community of Learning. So, all

participants have opportunities for Release of Thought (29) and Learning by Teaching (31) as well

as learning from others. One may find Good Rival (30) in the community. Your Tornado of

Learning (4) based on your interests grows together with the other member’s, and grows bigger and

bigger. As a result, you will encounter Academic Excitement! (5) more and more.

I-53

AsianPLoP 2010

No.36

Acceleration to Next

Just before the goal, people tend to press the brake pedal subconsciously.
Now is the time to set next goal and press down on the accelerator.

 When you are making research

 When you are writing a paper

 When you are creating something

 When your activity is in the final stage

 When you are at a dead end

I-54

AsianPLoP 2010

It not seldom happens that people slack off their efforts subconsciously just before the goal.

 Just before achieving the goal, human tend to lose their motivation unconsciously.

 Finishing work is always tough.

 Human can work hard in active, just in the process of pursuing our goal.

Set next goal and pass through the current goal without slow down.

 Think of the meaning of your activity, and imagine what you should do after achieving its

goal.

 Set the next goal on the extension of your activity temporarily, and consider the immediate

goal as a passing point. With an image of bigger goal, you can avoid losing the end work.

Even if you work on your activity with the mind of Passion for Research (6) and Firm

Determination (38), it seems be tough to finish the work before its goal. When you are in the

situation like this, it is important to put Acceleration to Next. Work on your activity with Bird’s eye,

Bug’s eye (23) for taking the immediate goal as a part of next big goal. With “Bird’s eye” for

looking down a whole of your project, think of what you can do now, and take next goals. In this

way, if you keep on progressing while you take your goals as passing points, you will be Be

Extreme! (39).

I-55

AsianPLoP 2010

Appendix: Other Learning Patterns
Here, we shall show a summary of all 40 patterns together form a language for creative learning.

We begin with the part of the language that defines learning design itself. This is the root and

premise to use this pattern language;

 Next, we shall go through the part of the language that gives fundamental attitudes for learning;

1. Making Opportunities for Learning

2. Creative Learning

3.

Fundamental Attitudes

Open-Process Learning

 Now we start the part of the language that tells how you can achieve to learn more actively in

detail. This part can be roughly divided into twelve groups of patterns, where each group consists of

three patterns respectively.

4. Tornado of Learning

5. Academic Excitement!

6.

For Motivation and

Fundamental Aspect
Passion for Research

7. Jump in

8. Mimic Learning

9.

Key to Start

Good Learner

10. Embodied Learning

11. Discovery of Growth

12.

Acquire and Improve the Skill

Shower of Language

13. Output-Driven Learning

14. Prototyping

15.

Make Your Learning More Interesting

Learning for Fun

0. Core Learning Design

I-56

AsianPLoP 2010

16. Thinking in Action

17. Field Dive

18.

For Active Effort

Weak-Linked Encounter

19. Frontier Antenna

20. T-Shape Learning

21.

Scope of Learning

Hidden Connections

22. Brain Switch

23. Bird's Eye, Bug's Eye

24.

 For Innovative Thinking

Quality from Quantity

25. Self-Thinking

26. Appropriate Approach

27.

The Way of Going about

 Activity and Learning
Strategic Discard

28. Community of Learning

29. Release of Thoughts

30.

Social Aspect of Learning

Good Rival

31. Leaning by Teaching

32. Everyday in Foreign Language

33.

Improve the Skill or Works

Start Small, Let it Grow

34. Attractive Expression

35. Writing up is Halfway

36.

Idea for the Final Phase of Activity

Acceleration to Next

37. Self-Producing

38. Firm Determination

39.

Strategy for the

Medium and Long Term
Be Extreme!

 The sequence presented here is not only one possible sequence, because “A pattern language has

the structure of a network” (Alexander 1977). We can capture and trace the relation among the

patterns in many ways. This is related to one of Alexander's significant findings that the design of a

building and a town cannot be reduced to the structure of tree, but can be considered as semi-lattice.

I-57

AsianPLoP 2010

Acknowledgment
We would like to do our best to thank you for other members of Learning Pattern Project at Keio

SFC; Tsuyoshi Kato, Yuji Kobayashi, Kazeto Shimonishi, Natsumi Yotsumoto, Mariko Hanabusa,

Mayu Iida, Mami Sakamoto, and Miyuko Naruse. Wonderful pattern language and this paper would

not have happened without their collaboration. We want to thank to workshop participants who gave

us great advices for previous paper at PLoP09. Furthermore, we are grateful to Yuji Yamano for

shepherding in AsianPLoP2010. In the last, we are grateful to Christopher Alexander for inventing

the idea of pattern languages and taking a great step to open collaboration.

References
Alexander, C., S. Ishikawa, and M. Silverstein. A Pattern Language. Oxford University Press, 1977.

Alexander, C., The Timeless Way of Building. Oxford University Press, 1979.

Alexander, C., H. Davis, J. Martinez, and D. Corner. The Production of Houses. Oxford University Press, 1985.

Anthony, D. L. G. “Patterns for classroom education” in J. M. Vlissides, J. O. Coplien, and N. L. Kerth, editors, Pattern

Languages of Programming 2. AddisonWesley, 1996.

Beck, K. and W. Cunningham. “Using pattern languages for object-oriented programs”, in OOPSLA-87 workshop on the

Specification and Design for Object-Oriented Programming, 1987.

Bergin, J. “Fourteen pedagogical patterns”. In European Conference of Pattern Languages of Programs, 2000.

Coplien, J. O. and N. B. Harrison. Organizational Patterns of Agile Software Development. Prentice Hall, 2004.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

Iba, T., Miyake, T., Naruse, M., and Yotsumoto, N. Learning Patterns: A Pattern Language for Active Learners. In 16th

Conference on Pattern Languages of Programs, 2009.

King, I. F., Christopher Alexander and Contemporary Architecture: a+u Architecture and Urbanism, August 1993 Special

Issue. a+u Publishing, 1993.

Kobayashi, Y., M. Yoshida, A. Sasaki, and T. Iba. Research patterns: A pattern language for academic research. In 15th

Conference on Pattern Languages of Programs, 2008.

Manns, M. L. and L. Rising. Fearless Change: Patterns for Introducing New Ideas. Addison-Wesley, 2005.

Naruse, M., Y. Takada, Y. Yumura, K. Wakamatsu, and T. Iba. Project patterns: A pattern language for promoting project.

In 15th Conference on Pattern Languages of Programs, 2008.

I-58

Metamorphosis – A Successful
Organizational Change Management
Pattern

I-59

Table of Contents

Table of Contents

1. Abstract ... 3

2. Introduction .. 4

2.1. Problem .. 4

3. Solution ... 5

3.1. Change Management ... 5

3.2. Mind-Wheel .. 6

3.3. Managing Success Quantitatively ... 7

3.4. Process Standardization & Improvement .. 9

3.5. Education ... 10

3.6. Optimized use of Automation .. 11

3.7. Governance .. 11

3.8. Independent Visibility & Feedback .. 11

3.9. Reporting, Improvement, Correction & Prevention 12

3.10. Communication ... 12

3.11. Rewards & Recognition .. 13

4. Consequences .. 14

5. Known Uses .. 15

6. A Scenario - Offshoring ... 16

6.1. Context ... 16

6.2. Problem Statement ... 16

6.3. Forces .. 16

6.4. Solution .. 17

6.4.1. Example of approach followed: .. 19

7. References .. 23

7.1. QUOTES .. 23

8. Acknowledgements .. 24

I-60

(3)

 Proprietary and Confidential

1

Abstract

Organization change management initiatives of various kinds including process changes, organization
structure changes and policy changes are often met with a lot of apprehension and skepticism. To
ensure the success of the change in an organization, a certain series of actions need to be in place
and this usually tends to have a particular pattern. Successful change management initiative is an
attempt through this pattern. This paper is an attempt to demonstrate a pattern that will help
successfully implement, change management initiatives in an Organization

In our organizational context as in our personal lives, change is an essential part. Rather than meeting
change head on and resisting it, we should rather embrace it and move along in the changed context.
Establishing this pattern will help us individually and as an organization deal with change in a suitable
manner.

Metamorphosis originates from biology and has a connotation of drastic transformation, like in the
case of a larva turning to a pupa and then transforming itself into a butterfly, which has little or no
resemblance to the previous phase. However for a butterfly to exist, it has to pass through the stages
of Pupa and larva.

Metamorphosis is an organizational pattern; every Organization is greater than sum of its parts. We
have focused on the “big picture” or the “forest” rather than granular areas viz.”Individual Trees”. As
in nature, a large change cannot be attributed to few changes; it is often a result of large number of
small changes.

Likewise, the actions proposed and smaller things achieved through this pattern, will not have a direct
resemblance to the final outcome, we believe the outcome will be colorful and successful.

I-61

(4)

 Proprietary and Confidential

2

Introduction

After some natural caution and hesitation, a number of people get enthusiastic about a change in the

organization (this could be various type of changes including organization structure, new process

initiation, etc.), throw themselves into this new style of working and things begin to move on. The
work force begins to smell success in the environment of change and they can now see the causes of

many chronic problems.

The team begins with greater sense of self confidence, a belief that can actually nail some long

standing issues. Most people they speak to, already know about the right things to do but they speak
about how lack of time, ownership and lack of right direction is hindering them doing the right thing.

The organization gives a mandate to some people to independently report the causes of issues.

However, some people in position begin to get uncomfortable with the situation; although they are too
anxious to see the results. People who are used to evaluating and screening information before it is

reported see this as publicizing embarrassing shortcomings; some they are aware of but haven’t got

the time to fix the issues themselves.

This eventually leads to a cascading situation where the changes are eventually even on the verge of

being rolled back.

2.1. Problem

The move to the new building is announced, everyone wants to be in the new building.
The management expects for such a simple task people have the common sense to
make their way over to the new building allocate spaces, move furniture, hook phones
and all these to happen over the weekend. What is the likelihood of this project being
successful? None. The shift may happen but with lot of chaos.
Whether we are looking at an office move or a major organizational change; unless
someone takes responsibility for masterminding the whole affair, either nothing will
happen or there will be complete chaos.
Organizations go through turmoil, while institutionalizing processes, Tools, Policies,
Frameworks etc. which meet with partial success, soured relationships and submissive
compliance.
Success is never an accident: it is always the result of high intention, sincere effort,
intelligent direction and skillful execution. It represents wise choice of many alternatives.

"There is nothing more difficult to take in hand, more perilous to conduct, or more

uncertain in its success, than to take the lead in the introduction of a new order to

things." – Niccolo Machiavelli

I-62

(5)

 Proprietary and Confidential

3

Solution

Newton‟s First Law of Motion states “A body continues to maintain its state of rest or of

uniform motion unless acted upon by an external unbalanced force”. Arguably, no

other law holds good more for a change management initiative. As human beings, our

tendency to be comfortable in continuing with “things as they are” is similar to that of a body

described by Newton‟s first law. For a change management initiative, it is critical that an

external unbalanced force is provided to ensure that the initiative kicks off and is carried out

successfully. Many analogies can be provided for this and one such analogy would be that of

a satellite. To position a satellite in a geo-synchronous orbit, continuous rocket propellers

are used till the satellite reaches its orbit. A change management initiative requires similar

continuous “external unbalanced forces” to make it successful.

3.1. Change Management

“The only thing constant in life is change itself”. A successful change management

initiative requires various conscious steps to be carried out to ensure its success. We believe

that a change management initiative is akin to a machine that has a motor driving various

gears – these gears along with the motor working together ensure that the initiative chugs

forward. The figure below indicates our depiction of the change management initiative as a

pattern:

I-63

(6)

 Proprietary and Confidential

Mind-Wheel

Managing

Success

Quantitatively

Process

Standardization

& Improvement

Education

Optimized Use of

Automation

Governance

Independent

Visibility &

Feedback

Reporting

Improvement,

Correction &

Prevention

Communication

Rewards &

Recognition

Leadership

Passion Drive

CultureAttitude

Perseverance

Fig. 3.1A

The central motor in the change management engine is what we refer to as the Mind-Wheel.

This is perhaps the most critical component of the engine and without this wheel; the engine

itself would cease to function. Along with the Mind-Wheel, there are nine other gear wheels

that contribute to the success or failure of a change management initiative depending on

how these are applied. All these peripheral wheels are important for a change initiative to be

successful and should be applied in the right direction with required force.

Embracing change is a mindset, like in agile methodology, change if anticipated, expected

and embraced; only then it can be successfully implemented.

Sections below explain each one of these wheels starting with the motor.

3.2. Mind-Wheel

“I think therefore I am”. The Mind-Wheel is the core of the engine and holds the key to

success or failure. There are various key elements that contribute to this wheel. The core

team that is formed to lead a change initiative forms the essence of the Mind-Wheel.

I-64

(7)

 Proprietary and Confidential

While the other wheels manage various functions, the Mind-Wheel or the motor is the soul

that keeps everything together. In the event that one of the wheels slows down or stops

performing its function, the motor is the one that gets it started again. During the course of

implementing the change, the motor helps overcome the hurdles that come in the way of the

change being successfully implemented. The motor provides the huge energy that is

required to overcome the tendency of the organization or organizational entity that is

impacted by the change to remain in a state of inertia. While a change initiative is underway,

there are various opportunities for things to go astray and in such an event; the motor

provides the situational leadership to overcome the current situation and to move on.

Resistance to change is the balancing force that creates the inertia to change. The core

team provides the first level of “external unbalanced force” to move out of that inertia.

However, without the larger team being influenced, there is a chance that the resistance is

greater than the unbalanced force trying to overcome it. Hence, the core team that forms the

motor should be able to influence the larger group that is impacted by the change and

therefore is a part of the change initiative.

That being said, resistance to change is a good thing and a necessary part of change

management. The absence of this resistance could often mean “submissive compliance”

which results in less desirable results and defeats the purpose of change. Doing something

“because it should be done” versus “because I want to do it” often determines the amount of

success from the change initiative.

Leadership, Culture, Perseverance, Attitude, Passion and Drive forms the oil that makes the

efficient functioning of the central motor – The Mind-Wheel

“A leader is a person who people opt to follow to a place where they would not go by

themselves” – Joel Barker. In the change initiative, the leader is a person of utmost

importance.

3.3. Managing Success Quantitatively

“To be or not to be – that is the question”. The strategic objectives of a change initiative

should be clearly articulated and communicated. Special emphasis should be placed on how

these connect to the bigger picture at an organization level. The impact on the organization

in terms of a positive benefit should be clearly brought out.

The strategic objectives should be driven top down and the very fact that it is part of the

senior management goals sends a strong message about the importance of the initiative

itself. These should be carried forward through the line function downwards. This mode will

ensure that everybody in the line function will breathe these objectives and will make it a

success.

The objectives should have clear measurement criteria that are monitored at regular

intervals to know the progress. Necessary corrective action needs to be taken if they fall

short of the expectations. Measurable incentives can be tied to these objectives, to make

them attractive and to provide strategic importance.

I-65

(8)

 Proprietary and Confidential

The management should carry and “live the message” about the initiative day in and day out.

This will ensure that importance is visible and the criticality felt. Apart from formal reports,

corridor chats, or even any casual remarks one might make in a meeting, should have

questions revolving around these. This will keep the message alive.

The right team must be put in place to take the initiative forward. Right team will consists of

the following:

 Capable team, possessing necessary skills

 Team that has right authority and power

 From the line function, where this change is affected

While choosing the right team, it‟s important to choose members that are passionate about

the initiative at hand. This brings positive thrust and will act as additional gear during heavy /

tough loads when needed.

The following criteria to be used while framing the goals and objectives:

 Objectives to be realistic

 Objectives to be time bound

 Objectives to be measurable

The key to note here is that the ultimate target and hence any applicable objectives should

not change midway through, unless the situation really demands.

A step by step approach is to be used towards goal achievement. Each step in this cycle will

have an upper and lower control limit, within which the output of the step is expected. This

way, it will be easy to predict whether the next step can be achieved or not, and if not action

plan can be formulated to achieve this.

…

LCL

UCL

LCL

UCL

LCL

UCL

Fig. 3.3A

Moral authority plays a vital role in terms of achieving the objectives during execution. The

moral support can add boost if things are falling short and to get that extra bit done.

In addition to line function goal setting, other informal ways like networking through channels

can provide added value, as depicted below. The use of boundary spanners across various

organizational social networks is critical to the permeation of the message across the

organization. This way any hurdles that might come across can be overcome.

I-66

(9)

 Proprietary and Confidential

Madhup

Raju

Ranjith

Fig. 3.3B

It‟s important for the core team (change management team) to know the informal team

networks involved and who are the real boundary spanners that connect different teams.

While the objectives set will get things done, in parallel, the informal networking should be

used to emphasize the message. This will re-enforce the need, and have the required buy-in

to get things done.

Another important aspect one should remember is related to the responsibilities. The

boundary of responsibilities needs to be very clearly understood. If activities are falling

outside these boundaries, then right help to be sought at the right time, rather than getting

involved in it and then realizing later that enough help was not provided by the concerned

party.

3.4. Process Standardization & Improvement

“Citius, Altius, Fortius – Swifter, Higher, Stronger”. The way in which the processes are

carried out needs standardization, meaning procedures executed in a uniform manner. By

doing this the following benefits are achieved.

 Brings in consistency – uniform working across entities

 Gives predictability – so that one can know what‟s coming

 Sets basis for further improvement

 Makes the process individual independent rather than person dependent

Once the given process is standardized, then it has to be improved and can be taken up to

the next level. Once higher level is achieved, it should be standardized and then this

becomes the base for the next improvement. The following picture articulates this perfectly.

I-67

(10)

 Proprietary and Confidential

Standardization

Standardization

Standardization

In
n
o
v
a
ti

o
n

In
n
o
v
a
ti

o
n

Fig. 3.4A

Constant improvement is needed, because

 we will lose ground, as someone else or the competition will reach high before us

 someone else will catch up at where we are, and hence it‟s important to go higher level

 it acts as encouragement and inspiration for the team, bringing in challenge

 by nature we want to be best at what we do

 there is also another angle, customer wants to know how we are improving day by day

3.5. Education

“None of us are as smart as all of us” – One cannot over-emphasize the importance of

“collective learning”. A change management initiative needs to be ably supported through

education to help people answer the critical question “What‟s in it for me?” This is intended

to cover both the negative and positive aspects of the change initiative and it is important

that the larger team realizes the impact of the change, be it positive or negative. Preparing

people for change is as critical as the change itself and unpreparedness or under-

preparedness can often lead to the collapse of the change initiative. To educate a person

implies setting an expectation in terms of the individual‟s contribution to the initiative as well

as what the individual is to expect from the core team. There are various dimensions of

education as depicted in the figure below:

Education

Across the core team

A
c
ro

ss
 t
h
e
 O

rg
a
n
iz

a
ti

o
n
a
l S

tr
u
c
tu

re

Fig. 3.5A

I-68

(11)

 Proprietary and Confidential

An important aspect of Education is that before educating others, it is important that one

educate oneself. This is an essential step to developing the required conviction and belief in

the message that is to be passed on.

The core team must profile the people and provide relevant education based on the

dimensions given in Fig 3.5A.

3.6. Optimized use of Automation

“Let the machines analyze – let humans apply judgment and take decisions”. The goal

of automation is to ensure maximum productivity. To achieve this, it is necessary to reduce

the impact of manual errors and also ensure repeatability and reproducibility of the gauge

itself. Errors in the gauge should not impact decision making. For improved speed of

decision making, one should use automation optimally so that the analysis speed is

increased. An important caveat of using automation is that we should not use automation for

automation sake – the end result should be the “achievement of the goal” and should not be

confused with “use of automation” as the goal itself.

3.7. Governance

“In God we trust, rest bring data”. Governance provides the “scaffolding” for a

successful change initiative. Just as the scaffolding needs to be in place prior to the actual

task being taken up, the Governance mechanism should be set in place ahead of the

change initiative being kick-started. The Governing body is analogous to the brain which

requires the sensory perceptions from nerve endings to be fed back to it before it can react

with an adequate and appropriate response. The sensory perceptions are received from the

other wheels in the form of information, issues, communication, success stories, data, etc.

through the change actors who are part of the core team. Occasionally, the perceptions can

be obtained through feedback from other channels as well. Governance should be a formal

process that is “cast in stone” and should be treated that way – in essence, what is defined

as the governance process during the change initiative should be resistant to change!

3.8. Independent Visibility & Feedback

“He who told me that I wasn’t doing the right thing was my well-wisher”. While the

governance will ensure that monitoring and control happens through the central vertebrae,

there should be host of other mechanisms that need to be used to get the visibility.

Some of the mechanisms that can be deployed are:

 Outside representative assigned for monitoring the workings and reporting independently

to the leader

 Informal chats, corridor, water fountain conversations

 Feedback from the team where the change is being done, formal or informal

 Body language of the team during discussions

 Informal networking, through boundary spanning

I-69

(12)

 Proprietary and Confidential

These inputs should be used to control directly or indirectly the things that need attention.

The feedback loop ensures that the process self corrects itself in order to run smoothly.

At times it is noticed that the vital feedback actually comes through the independent

channels. This feedback in conjunction with the governance will ensure proper monitoring

and bring in required control.

3.9. Reporting, Improvement, Correction &

Prevention

“An apple a day keeps the doctor away”. Prevention of an issue from occurring helps

ensure the fastest possible way to drive through a change initiative. However, prevention is

not always possible given the context that the change initiative often involves getting into

previously uncharted waters.

Given this, Reporting is a mechanism to help monitor the overall change initiative. This does

not imply that the reporting is only done for consumption of senior management but it

essentially has to work hand in hand with communication to ensure that the right details are

reported to the right audience. For example, the measurement of a parameter against

control limits should be reported to the group that has concerned itself with the monitoring of

this parameter. Reporting provides a platform for recognition of problems and hence kick-off

of corrective action.

Correction involves fixing the issue and also includes setting in place a feedback mechanism

so as to prevent the same issue from occurring in the future. This cycle leads to

improvement and resulting success for the initiative.

3.10. Communication

“What surprised me was not the surprise itself, but the fact that it was a surprise”.

This should be the basic tenet with regards to communication in a change management

initiative. The quality, quantity, timing and audience of the communication are all to be given

equal importance. The importance of communication too cannot be over-emphasized and

there should be a belief that there is no such thing as over-communication.

At the onset of a change initiative, communication helps in education and setting objectives.

Once the change initiative is in progress, communication helps governance, feedback and

reporting. In essence, communication works in tandem with the other wheels to act as a

vehicle facilitating the change by supporting the other wheels. The various dimensions of

communication are indicated in the figure below:

I-70

(13)

 Proprietary and Confidential

Communication

Across the core team

A
c
ro

ss
 t
h
e
 O

rg
a
n
iz

a
ti

o
n
a
l S

tr
u
c
tu

re

Fig. 3.10A

The core team must profile the people and send the relevant communication to the teams as

depicted in Fig 3.10A.

3.11. Rewards & Recognition

“Reward me not for what I am but for what I have achieved and how I have achieved

it”. Rewards & Recognition and Reprimand are two sides of the same coin. During the

change process, it is essential that people within the organization who help facilitate the

change and act as “change agents” be rewarded appropriately and in a timely manner.

There are various ways in which to use Rewards & Recognition. While these can be used at

times to “recognize” the efforts of people, these can be used to send a powerful message in

terms of setting an example for the “water cooler crowd”. The same is true of using a

reprimand. There are innovative ways of applying these concepts and sometimes reward for

some can be used as a reprimand as illustrated by the following anecdote.

Six Sigma folklore has it that when GE decided to use Six Sigma as a driver within the

organization, Jack Welch requested his leadership team to pool in their best people for the

initiative. It didn‟t take him long to realize that not the “best people” were driving the initiative.

To counter this, he proposed an incentive where he recommended that the annual bonus be

paid only to the best people and since the best people are in the six sigma initiative, only

they would be eligible for the bonus!

I-71

(14)

 Proprietary and Confidential

4

Consequences

In the example where the change to a new building is announced, if the management used

the Metamorphosis pattern the move would have been without any hiccups.

A core team could have been formed and a goal of successful movement could have been

given to them. A seat allocation plan could have been created and people would have been

allocated seats, cabins, prime locations based on designations or other pre-defined criteria.

People could have been educated on staggered move and a process could have been

established to be followed. Some rewards for the organizing team could have been planned

by the management for a successful move within specified time. A complete report of

number of seats, number of network connections, phones, etc could have been published if

the pattern was used.

“The satisfaction of a thing well done is to have done it!” A change management

initiative is successful if the objective of the initiative sees the light of day.

I-72

(15)

 Proprietary and Confidential

5

Known Uses

This Metamorphosis pattern can be used for any change initiative, small or large. Depending

on the initiative the emphasis of each of the wheels will vary. Following are indicative areas

where this can be used:

 Process Changes: Changes or introduction of quality processes and standards

 Behavioral Change: Building a high performance team

 Organizational Change: Implementation of a strategic vision or goal – e.g. Becoming a

Billion Dollar Company

Please refer Section 6 for an example

I-73

(16)

 Proprietary and Confidential

6

A Scenario - Offshoring

6.1. Context

An Organization called MR2 wants to experiment with the offshore model. MR2 is an

organization that designs and develops applications in the area of Learning and education.

MR2 works with various universities within the country.

6.2. Problem Statement

A new policy of the government which encourages distance learning had enabled

universities from other countries to provide learning and training solutions. One day while

CEO was having a meeting with the board members, they pointed out on the declining sales

figures of the organization. The sales head was almost giving up as none of the normal

sales methods were proving to be yielding the results that their competitors were

demonstrating. The competition was nowhere near MR2 during the last 2 years and they

seem to be doing very well now; in fact they were happy due to the change in the

government policy.

Competition analysis was done, they found that the competition was able to build the

solutions faster; they were agile with changes in the products. Another startling thing that

the competitive analysis showed was that significant portion of the revenue was coming from

outside the country. MR2‟s management took note, they decided to make changes to the

way MR2 thinks, manages itself and operates.

MR2 had 50 year old legacy of methods of doing things which were not yielding results in the

changed market scenario. They analyzed culture being the root cause of it. Culture which

was built over time and they were proud of it once was holding the organization back.

6.3. Forces

The forces identified were:

 Business trend

o Globalization of market; competition started using offshore as a value partner

 Changed Government policy

I-74

(17)

 Proprietary and Confidential

o Government policy of opening of the domestic market to international players

thus encouraging distance learning program.

o Government was providing tax holiday for organizations dealing in Foreign

exchange

 Declining sales

o Sales were declining as competition was providing solutions at competitive

price

o Competition was charging premium pricing for value added services

 Reputation at stake

o Customers were getting attracted to competition

o It was difficult to attract new and fresh talent

 Impacted morale of workforce

o It was no longer „cool‟ to say I work for MR2

o Declining sales and profitability was adding to the misery

o Work force perceiving greener pastures outside the organization

6.4. Solution

Management decided to take a few steps; they needed to embark on the offshore model.

But it was not as simple as it seemed. They were faced with resistance to bring in this

change due to change in work timings, working with folks who speak different language,

need of traveling, collaboration issues, etc.

They managed the solution by using the gears as depicted in the pattern in the following

manner:

I-75

(18)

 Proprietary and Confidential

Mind-Wheel

Managing

Success

Quantitatively

Process

Standardization

& Improvement

Education

Optimized Use of

Automation

Governance

Independent

Visibility &

Feedback

Reporting

Improvement,

Correction &

Prevention

Communication

Rewards &

Recognition

Leadership

Passion Drive

CultureAttitude

Perseverance

I-76

(19)

 Proprietary and Confidential

6.4.1. Example of approach followed:

The central gear serves as the engine to get the process rolling. Although there is no one

sequence that is mandated through this pattern, an organization needs to discover its own

sequence, size of the gears, and intensity with which they need to be applied. Every

problem is different and so will be the application of the pattern. The pattern suggests that

all gears need to be necessarily applied for successful change, only the size and intensity

might vary.

The approach that was followed by MR2 is depicted in the table below; they used the various

gears and outlined actions to bring about the needed change.

I-77

(20)

 Proprietary and Confidential

Name of Gear Weight/Size

Low - High(1,

2, 3, 4, 5)

Solution/Action

MindWheel 5

* A core team was identified along with a Mentor who had worked in

multiple countries
 * The Mentor explained the importance of change management within

the organization

 * A vision was articulated to bring in the change.
* A three month plan was prepared

* Key people were identified to work on the plan (now these people

were the best people they had in the Organization not the ones who
were available)

* The criteria to select the task force was people with - High energy,

positive mindset, perseverance, respected for their area of work, who

can think differently
* Three pilots projects were chosen for offshoring

* Part two of the vision was to sustain the changed way of working

without slipping back

Education 3

* A week long workshop was planned with the identified task force led
by the mentor

* Senior management was involved

* When one of the Senior Directors talked about not attending the
complete program the mentor explained the importance of driving from

the front. CEO requested the Director to spend full time during the

workshop (part of change management)

* Mentor trained people on cultural aspects
* Team Communication skills were refined

* Culture appreciation trainings were conducted

* Core Team was educated about offshore model and its pitfalls
* Identified skeptics were educated on the concept of offshoring

Communication 4

* Advantages of offshore were communicated to everyone through a

newsletter
* Advantages like working with offshore, time difference, cost

arbitrage, higher productivity were emphasized

 * Out of the three pilots, two pilots were managed well, the third pilot
ran into issues. Learning from both the experiences were documented

and communicated

* First they started with monthly meeting and then changed to

Newsletter every month and meeting every two months. The
management went around doing road show within the organization

about benefits of offhosring and showcasing people who were being the

role models at that time
* The work force was asked to speak freely about what could be

hindering the progress, people were being rewarded and news

communicated
* Case studies were published on how offshoring is increasing the

market share demonstrating the value add with numbers

I-78

(21)

 Proprietary and Confidential

Name of Gear Weight/Size

Low - High(1,

2, 3, 4, 5)

Solution/Action

Independent

visibility and

Feedback
3

* Management appointed a small group to review and report the
progress

 * The management wanted to make sure that all actions that were being

suggested by the core team were getting implemented completely
 * There was some early visibility given by this group on the third pilot

not going well. This helped in mitigating the actions. Though the third

pilot was delayed, it finally got accomplished due to the early visibility

provided

Reporting,

Improvement,

Correction and

Prevention

3

* Weekly reports were published as per the quantitative goals set for the

offshore partner, some of these included the following:

 - Progress on the scheduled plan, percentage completion
- Percentage of bandwidth released for MR2 managers

- indication on cost savings

- Service level agreements tracking

* The reporting format/data was fine tuned with the pilot phase
concluding.

* Corrective actions were put in place, especially related to the third

pilot learning, where things didn't go that well.
* By the end of the third pilot, the management and the core team had a

handle on the steady state method of operation

Governance 4

* Weekly meetings were conducted to review and monitor progress of

the three pilots, involving Project Managers from MR2 and offshore

partner
* Monthly steering reviews were held with MR2 management and

offshore partner management

* All numbers (wins and losses) were reviewed every fortnight
 * Actions were taken against underperformance and non-performance

Process

Standardization

and

improvement

4

* The working process at MR2 and at the offshore partner was

analyzed. A common understanding was arrived at by looking at the

best of the two process models, with minimal investment required by

MR2.
* At the end of the pilot phase improvements were listed and the

processes were fine tuned, taking the learning into account.

Managing

success

quantitatively
4

* Two small teams were sent to two identified locations to study

feasibility of offshoring
* Due diligence was done and offshore partner was chosen

* Three pilots were chosen for the three month pilot phase

* The partner was given quantitative goals to demonstrate their
competence, which were monitored through the pilot phase.

Rewards and

recognition
5

* The 2 successful pilots were rewarded.

* During the steady state phase, Bonus was declared for the first 5 units

to move work offshore and also for the first 5 business wins outside the
country

 * There was a press release issued quoting the names of the managers

that successfully piloted the offshore initiative.

I-79

(22)

 Proprietary and Confidential

Name of Gear Weight/Size

Low - High(1,

2, 3, 4, 5)

Solution/Action

Optimized use

of automation
1

* Collaborative tools were put in place to encourage distributed
development, leveraging different time zones.

* Various Dashboards were put in place for reporting metrics, so that all

data is available at one place on a real time basis; which is core to
taking management decisions

I-80

(23)

 Proprietary and Confidential

7

References

7.1. QUOTES

The only thing constant in life is change itself - François de la Rochefoucauld

I think therefore I am - René Descartes

To be or not to be – that is the question – William Shakespeare

Citius, Altius, Fortius – Swifter, Higher, Stronger – Olympics Motto

None of us are as smart as all of us – Japanese Proverb

Let the machines analyze – let humans apply judgment and take decisions: One of Us

In God we trust, rest bring data - W. Edwards Deming

He who told me that I wasn’t doing the right thing was my well-wisher – One of Us

An apple a day keeps the doctor away – Idiom

What surprised me was not the surprise itself, but the fact that it was a surprise – One
of Us

Reward me not for what I am but for what I have achieved and how I have achieved it –
One of Us

The satisfaction of a thing well done is to have done it! – One of Us

Some goals are better not met – One of Us

I know not fear when I dive into the deepest realms of my imagination – One of Us

I-81

(24)

 Proprietary and Confidential

8

Acknowledgements

We acknowledge all individuals who have triggered our thoughts and have been examples of

resistance to change. They have essentially quite literally set the wheels in motion.

I-82

(25)

 Proprietary and Confidential

MindTree Limited

 Contact Information
Email: madhup_jain@mindtree.com

Raju_dani@mindtree.com

Ranjith_kutty@mindtree.com

Phase 1, West Campus,

Global Village, RVCE Post

Behind RV College of Engineering,

Mysore Road, Bangalore

INDIA – 560059

I-83

mailto:madhup_jain@mindtree.com
mailto:Raju_dani@mindtree.com
mailto:Ranjith_kutty@mindtree.com

I-84

Analyzing the HCI Design Pattern Variety

Christian Kruschitz
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt, Austria

chris@isys.uni-klu.ac.at

Martin Hitz
Department of Informatics-Systems

University of Klagenfurt
Klagenfurt, Austria

hitz@isys.uni-klu.ac.at

ABSTRACT
Human-Computer Interaction (HCI) design patterns are an
often used tool for developing user interfaces. They render
the communication among stakeholders more efficient and
allow for a faster design of user interfaces. However, today
there exists a vast amount of patterns written by many
different authors, published on Web repositories, in scientific
papers, and books. This causes the form or structure of
the patterns to vary according to the authors’ preferences.
This paper presents the results of a survey that analyses the
structure and relationships of HCI design patterns from 21
different design pattern resources.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Theory and methods; H.5.2 [User
Interfaces]: Style Guides

General Terms
Design Pattern, Formalization, Human-Computer
Interaction, Pattern Structure, Usability, Survey,
Standardization

1. INTRODUCTION
We investigated a selection of 21 HCI pattern languages and
collections that were published through Web repositories,
scientific papers and books between 1996 and 2007. Our
main goal of this survey was to analyze the similarities
in the pattern form in order to specify a unified HCI
design pattern format that should be used as the basis of
XPLML (eXtended Pattern Language Markup Language).
An unification of the pattern structure should be achieved
to exploit the full reuse potential of patterns, which does
not constrain pattern authors in their work but supports
pattern users by easing the process of understanding and
instantiating patterns to specific design problems[12].

Four books, eight scientific papers and nine online resources
were examined. Three out of four books deal with pattern

languages [5, 24, 10] and one is a pattern collection [21]. Two
papers describe a pattern language [9, 15, 27] and five papers
portray pattern collections [6, 7, 18, 20, 25]. Finally, nine
pattern collections were found online [11, 13, 16, 17, 23, 22,
28, 29, 30], the most important resource for design pattern
users, because of the easy access and high availability.

The survey is divided into seven subcategories which are
described in more detail. These categories are:

• Publication Year/Publication Medium

• Arrangement of Design Patterns

• Device Categories for HCI Design Patterns

• HCI Design Pattern Domains

• HCI Design Pattern Categorization

• HCI Design Pattern Structure

• Pattern Relationships

From the vast amount of design patterns available, we have
chosen the above-mentioned repositories and pattern sources
because we believe that they reflect the current state of
efforts in the HCI design pattern community well.

2. DEFINITION
We are talking from pattern languages, design patterns and
pattern collections. To make it clear what we mean with
this terms we provide a short definition of each of them.

2.1 HCI Design Pattern
An HCI design pattern describes a recurring user interface
design problem together with a proven solution. An HCI
design pattern, in the following referred to as “pattern” or
“design pattern”, has a well defined form, which is dependent
on the individual author’s preferences. A pattern form
should be used consistently across a pattern language or
pattern collection. This makes it easier for pattern users to
understand the problem, context, and solution of a pattern
throughout a pattern collection/language. The pattern
itself, when it is a part of a collection or a pattern language,
may have references to other patterns.

I-85

2.2 Pattern Catalogue/Collection
Patterns stored in so-called DESIGN PATTERN
CATALOGUES or COLLECTIONS are categorized to
support faster navigation within the repository. However,
they show almost no relationships among each other and
thus do not form a fully interconnected system. The
catalogue/collection contains several patterns that stand
alone and have no connections to predecessor or successor
patterns. Furthermore, such a collection usually does not
completely cover a specific application domain.

2.3 Pattern Language
In contrast to a pattern catalogue / collection, a “pattern
language” is a complete collection of patterns for a given
family of design problems in a given domain. A pattern
language describes problems by means of high-level design
patterns, which are solved by low-level design patterns. The
design patterns are connected through relationships, so that
they constitute a network.

In a pattern language, the “words” are the patterns, while
the connections between patterns represent the “rules of
grammar” which are situated in the pattern itself. When
words and rules of grammar are combined, a “sentence” is
generated. Sentences can be built in many different forms
when the rules are followed. So there is not only one path
through a pattern language, it offers several possibilities to
solve a design problem. A good example is “The Design of
Sites” by van Duyne et al., a pattern language that allows
designers to articulate an infinite variety of Web designs [24].

3. SURVEY RESULTS
3.1 Publication Year / Publication Medium
The cornerstone of design patterns as a tool of knowledge
was laid back in the late 1970s when the mathematician and
architect Christopher Alexander published several books [1,
3, 2] in which he proposed the concept of design patterns
and pattern languages. Ward Cunningham and Kent Beck
have adopted this principle to object-oriented programming
(OOP) and user interface (UI) implementation in 1987
[4, 19]. They presented five patterns for designing
window-based user interfaces in Smalltalk.

In Human-Computer Interaction, the start of the design
pattern era was when Coram et al. [7] published the
first design patterns of a pattern language for user-centered
interface design (see Fig. 1). The objective of this design
pattern language was to provide high-level patterns with
which user interface designers could build graphical user
interfaces which are pleasurable and productive to use.

In the following years several other pattern collections
and pattern languages were published. The publishing
activity in scientific papers recently slowed down because
of the publication of four seminal books in the HCI design
pattern community. The first in 2001 [5], two books in 2003
[10, 24] and one in 2005 [21]. At the same time, pattern
writers have focused on developing repositories on online
platforms. Due to the hypermedia characteristics and the
24/7 availability of data on the Internet, it is much easier to
reference to other patterns and disseminate patterns across
the HCI community. A further benefit of online resources

0

1

2

3

4

5

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Online Resource

Scienti�c Paper

Book

Figure 1: Year and Type of HCI Design Pattern
Publications

is that users can contribute in writing and improving
HCI design patterns using Web 2.0 features, for example,
van Welie’s Online Repository [29] and the Yahoo!Design
Pattern Library [30] allow users to post comments on a
design pattern, while it is not allowed to make changes
directly to specific design patterns.

3.2 Arrangement of Design Patterns
Design patterns can be arranged in pattern collections or
languages (cf. Section 2). The latter connect design patterns
to an interconnected network whereas collections do not.

Five pattern languages were published in books consisting
of 10 to 90 interconnected design patterns, and three were
published in scientific papers. Due to the spatial limitations
of scientific papers, these pattern languages are composed of
8 to 9 design patterns.

Beside pattern languages, 15 design pattern collections were
found. One was published in a book, five were published
in scientific articles and 9 were published through online
repositories. The book consists of 94 design patterns, the
scientific papers of 5 to 45 patterns and the online resources
of 18 to 130 patterns.

A reason for the predominance of books as a publication
media for complete pattern languages – besides the volume
aspect – may be the scientific incentive for the intensive and
time consuming research necessary to discover and describe
a pattern language. A disadvantage of casting patterns
in books, however, is the updating process. It is difficult
to add to or improve already published pattern languages,
whereas the nature of design patterns mandates to update
them on a regular basis since interaction techniques change
over time due to the invention of new hardware and novel
interaction methods. Therefore, several books come with
companion websites where pattern language updates are
published regularly (e.g., [21], [24]).

Many design pattern collections can be found online,
because of the easy updating and dissemination of patterns
to a large audience. Some of these resources are, however,
not maintained very well - last updates have occurred years
ago - perhaps a typical fate of short term academic projects.
Beside these not maintained online collections there are a

I-86

Domain Book Scientific Paper Online Resource

Web User Interface Design 2 2 7
User Interface Design (Desktop Applications) 2 5 1
Interactive Exhibits - 1 -
Software Design (UI Related Programming) - 1 -
Hypermedia Applications - 1 -
Ubiquitous Computing - 1 -

Table 1: Domain and Publication Medium of HCI Design Pattern Languages / Collections

few which are updated regularly. These are the Little Spring
Design – Mobile UI Design Resources [13], UI Patterns
– User Interface Design Pattern Library [23], Welie.com
– Patterns in Interaction Design [29] and Yahoo!Design
Pattern Library [30]

3.3 Device Categories for HCI Design
Patterns

Several design patterns are applicable for specific
hardware devices. Our research showed that most
design patterns have been discovered for desktop and
handheld/smartphone applications. Handheld/smartphone
applications applications differ from desktop applications
in the fact that the display and input devices available are
smaller and cannot be used as easy as those from desktop
applications. Therefore, different interaction methods are
used.

In most cases it was not explicitly mentioned which design
pattern applies to which platform. Normally, design
patterns should be written in a platform independent
manner, but hardware limitations as mentioned before force
specific interaction methods. When no specific platform is
mentioned to which a design pattern applies, the forces,
the context, the problem, and the solution element of the
design pattern constrain the platform where the pattern
can be implemented. To make an HCI design pattern more
effective, the author should mention the hardware platform
in the head of the pattern.

3.4 HCI Design Pattern Domains
Each domain has its specific forces. Thus, forces should
be resolved in a domain specific way. Therefore, HCI
design patterns are written for a specific domain they can
be applied to. Our survey showed that the predominant
domains are web design and interface design for desktop
applications. Web design patterns were almost exclusively
published online, while interface design patterns for desktop
applications mostly appear in scientific papers (see Table 1).

3.5 HCI Design Pattern Categorization
Patterns are grouped according to the basic idea they
address. As shown in Table 1, prominent domains are
Web user interface design and interface design for desktop
applications. Table 2 and Table 3 are showing which
informal categorizations design pattern authors have used
to subdivide the design patterns in the respective domain.
These categories are the most popular but should not be
considered as a formal standard categorization in the field
of HCI design patterns. Research approaches in categorizing

HCI design patterns are mentioned in the literature [8, 14,
26].

These categorization schemes differ in a few elements.
The basis of the Web user interface design categorization
(Table 3) is the interface design for desktop application
categorization (Table 2) without the elements Visibility,
Data Representation and Natural Mapping but enriched by
Site Genres, E-Commerce, Optimization and Accessibility.
Due to the nature of the Web design domain, these
supplements are necessary to complete the solution space.

3.6 HCI Design Pattern Structure
The content elements of a design pattern can vary due to
the preferences of a pattern author. Several authors are
using the Alexandrian form to describe discovered patterns
in a structured way. However, the Alexandrian form is not
taken as the preferred structure in all design patterns and
therefore many different pattern forms and content elements
exists in the HCI design pattern domain.

We have analyzed the design patterns according to their
structure and their content elements. Table 4 shows all
discovered content elements and which author is using
which content elements. The pattern structure was divided
into 4 parts, namely the Head, the Body, Additional
Information and References. To understand each of
the content elements described in Table 4 we have brievely
described each of them below.

The minimal set of common content elements throughout
all analyzed design patterns can be used as a basis of a
“standard” HCI design pattern form. These are:

• HEAD

– Pattern Name

– Sensitizing Image

– Short Problem / Content Description (Summary)

• BODY

– Context

– Forces

– Solution

– Example / Pattern Instance Gallery

• REFERENCES

– Related Patterns

I-87

Category Description

Visibility How to design something so that the user knows immediately how to
use it just by looking at it

Feedback Describes how feedback should be generated if a task is being correctly
or incompletely completed.

Natural Mapping Creates a clear relationship between what the user wants to do and the
mechanism for doing it.

Content Organization Information architecture and application structure.
Navigation How to get around efficiently in the application.
Layout Shows how to layout application screens for a satisfying result.
Data Representation Techniques how to represent large data sets.
Getting Input from User Provides appropriate input methods.
Search Describes how search methods can be incorporated into the application.
Accessibility Techniques and methods to adopt the website for people with

disabilities.

Table 2: Categorization of Design Patterns in the Interface Design for the Desktop Application Domain

Category Description

Site Genres Describes various site genres, e.g., News Site, Personal Homepage,
Shopping Site, Information Site, etc.

E-Commerce Shows methods which can be used to enrich websites with e-commerce
functions.

Optimization Technical advices to speed up the website.

Table 3: Additional Categories of Design Patterns in the Web User Interface Domain

These elements can be considered as a mandatory set of
content elements of a well-defined HCI design pattern.
There is enough information to understand the problem,
context, and solution of the addressed design pattern.
Beside these basic elements, authors should have the
possibility to add their own elements to enrich the patternŠs
content with useful information for easier implementation of
the pattern. The following resources are using the minimal
set of content elements together with others:

• Ian Graham, “A Pattern Language of Web Usability”,
[10],

• Douglas van Duyne, “The Design of Sites”, [24],

• Carol Stimmel, “Hold Me, Thrill Me, Kiss Me, Kill
Me”, [20], and

• “User Interface Design Patterns”, [22].

Below we give a description of each of the content elements
mentioned in Table 4.

3.6.1 HEAD
The HEAD or introduction paragraph of the pattern gives
the pattern user a short overview of the problem which the
pattern addresses. A short context description and an image
which shows a successful solution to the addressed problem
are placed at the top of the patter structure. The image (or
sensitizing image) ensures that the pattern is remembered
more easily. The description of the problem and context

must be as short as possible while it must give as much
information as possible to get a rough idea of the patterns
problem space. Along with this information some metadata
is also placed in the head of the pattern. Below there is a
short description of each of the content elements which were
found in the head of the analyzed HCI design patterns.

Pattern Number
The number uniquely identifies a pattern within a pattern
language/collection. It is useful for referencing. An
alphanumerical code is used when it should encode the
categorization of the pattern as well.

Pattern Name
The pattern name is the reader’s first “contact” to the
pattern proper and - beside the sensitizing image - the most
important cue to remember the pattern. Therefore, it should
be chosen wisely to give a significant hint to the content of
the pattern. A unique name should be used which is easy
to remember and to use for unambiguous communication
within design documents, meetings and other situations.

Alternative Pattern Name
Also known as “AKA”. Indicates the alternative names of a
pattern.

Rating/Ranking
This item indicates how the author or the pattern users are
rating the pattern. It should help pattern users to decide
if they can use it without worries or should rather consider
another pattern.

I-88

Sensitizing Image
“A picture is worth more than a thousand words”. Beside
the name, the sensitizing image creates the user’s first
impression of the design pattern. A good screenshot or
- even better - sketch can help to grasp the idea behind
the pattern’s solution much faster. If the solution has a
dynamic character, a short animation may be appropriate
to demonstrate it to the user.

Short Problem/Content/Context Description
This content element should give a short overview of the
problem, content and/or the context of the pattern. For a
more detailed description of the problem and/or context, the
context and the detailed problem description content
element in the BODY part of the pattern should be used.

Author Name
The author name designates the contact person and writer
of the pattern.

Pattern Classification/Group
Pattern in languages/collections are grouped according to a
common underlying idea. (see Pattern Number)

Creation Date
Shows when the pattern was first created.

Last Revision Date
Together with Creation Date the Last Revision Date
content element is very useful to show when the pattern
was revised. Ideally all revision dates are published so the
user knows how often and when a pattern was updated since
patterns tend to change over time due to the invention of
new hardware and interaction methods.

Hardware
Shows on which device the solution of a design pattern can
be implemented.

Level
Indicates if it is a high-, medium- or low-level pattern.
High-level patterns describe problems and solutions in a
very abstract way. These patterns lead to more detailed
patterns such as medium- and low-level patterns. Low-level
patterns are the most detailed, describing e.g. the function
of a certain interaction widget such as an action button.

3.6.2 BODY
After a user has decided to use a pattern, the BODY section
offers the user detailed information about the problem,
forces, context, solution, as well as many more additional
information for a better understanding of the design idea
addressed. The information provided in the BODY section
extends the information of the HEAD section and is more
detailed. The BODY of a pattern consists of the following
(unordered) content elements.

Context
Beside the problem and the solution content element, the
context is essential for the understanding of a design pattern.
This element makes a pattern distinct from a style guide or
guideline document. It shows designers the preconditions in
which situation the problem and its solution occur, and thus

defines the applicability of a particular pattern.

Detailed Problem Description
This element describes the problem the pattern solves. A
detailed analysis of the problem and background information
is provided to clearly understand the design problem.

Forces
This element discusses the forces and constraints relevant
to the pattern and how they conflict and/or interact with
each other. Forces help the user to better understand the
problem and the connection to the context.

Solution
The Solution addresses the reuse of recurring design
practices and how to resolve the forces discussed in the
Forces element. It is written in a way that the designer
has an idea how to resolve those forces in an efficient way.
But it is not like a guideline where you only need to follow
the instructions step-by-step to get a solution. Therefore the
designer’s creativity is necessary to produce a good solution.

Rationale
The Rationale element describes why the pattern works.
It describes how and why the current pattern resolves its
forces. It goes deep into the mechanisms which are used to
get the forces into harmony. In other words, it is a proof of
concept.

Diagram
Sometimes diagrams or sketches are used to summarize the
solution of a pattern. It is not a working instance of a
pattern, but it rather gives the user another view of the
solution and it supports the design decision of a UI engineer.
When the solution has a time dimension, a storyboard may
be a better tool to demonstrate the solution.

Resulting Context
After resolving the forces of the current pattern, it builds
a new context for other patterns. This content element
discusses the resulting context and which patterns may be
applied next.

Examples
Links and screenshots or working instances of the design
pattern’s solution are presented in this content element. It
is good practice to show many different solutions, to give
the UI designer a better understanding of how to implement
the pattern’s solution.

Known Uses
It gives information where to find good, already
implemented solutions on different platforms.

Counter Examples
Shows bad design in the context of the current design
pattern’s problem/solution approach. Usually a link and
short description or screenshot to the faulty design is
provided.

3.6.3 Additional Information
These elements do not fit in the two sections above, but
enrich the pattern with more information. The elements

I-89

shown below are used by a few authors. Actually, there is
no order of the content elements.

Related Ideas / Literature
This element comprises references to basic literature and/or
ideas regarding the interaction mechanisms the design
pattern describes.

References to Implementations
Authors provide direct links to good solutions. Because of
the nature of a link, it is used in online resources. It supports
the element Examples in the BODY part of the design
pattern.

Code Examples
Whereas code examples are very often used in software
engineering patterns, in HCI they are not so popular
because of the many different possibilities to implement an
interaction mechanism. Sometimes there are code examples
provided for better understanding of the pattern’s solution.
This content element is provided only in online resources.

Accessibility
It shows how to extend the pattern solution in such a
way that the application can be accessed by people with
disabilities.

3.7 Pattern Relationships
References are essential when working with pattern
languages. They must be incorporated into the design
pattern structure. Authors must take care to link the
patterns in the right way and order so that they can build a
network. In pattern collections references to other patterns
are not so essential because there are many pattern which
are not connected to another pattern. References are also
used to indicate which other patterns can be applied after
having implemented a certain pattern.

During our survey it was interesting to find out that many
authors as inter-pattern relationships used association and
aggregation. Specialization was used by two authors.

A new relationship is also pointed out. It is named the
“anti-association” connection. This connection is similar to
the association but it references to an anti-pattern. An
anti-pattern describes, in contrast to a design pattern, a
problem statement with a bad solution. But only one author
used an anti-pattern to show the user how not to solve a
problem [20]. This is an interesting concept since it can
show user interface designers common pitfalls to learn from.

References in Text
This relationship indicates if references to other design
patterns are made within the Problem, Forces, Solution,
etc. content elements. The benefit of referencing design
patterns in such a way is that when a problem occurs that
the design pattern does not solve, the user can be guided
to more appropriate patterns without having to search the
design pattern for the Related Patterns content element.

Related Patterns
Unlike References in Text, no references were made in
the design pattern itself. The Related Patterns content

element encapsulates all references to other patterns.
Usually, it includes references to lower-level patterns.

Specialization
Specialization of a design pattern means to add more
attributes to it. The SEARCH pattern, for example, only
provides a basic search mechanism. To extend the concept
of this pattern a more specialized pattern is generated. It
inherits the attributes from SEARCH and adds new ones to
fulfill the purpose of advanced searching. This leads to the
specialized pattern ADVANCED SEARCH (see Fig. 2).

is-a
SEARCH AD. SEARCH

Figure 2: Design Pattern Specialization

Aggregation
When a pattern consists of more than one sub-pattern,
an aggregation relationship is used to connect them. As
an example, consider the SHOPPING CART pattern in Fig.
3. This pattern consists of many sub-patterns, like LIST

BUILDER, WIZARD, etc. After applying these patterns in a
way suggested by SHOPPING CARD, the problem and forces
of SHOPPING CART are solved.

....

SHOPPING
CART

LIST BUILDER WIZARD

Figure 3: Design Pattern Aggregation

Association
An association (see Fig. 4) between design patterns is
a unspecific connection between them. When referencing
patterns, the words “related to” and “similar to” are often
used to indicate an association with another design pattern.

related-toPRODUCT
COMPARISON

SHOPPING
CART

Figure 4: Design Pattern Association

Anti-Association
Anti-Association is similar to Association. It is a connection
to an anti-pattern. It shows how a pattern should not be
implemented. This is a good way to demonstrate common
pitfalls and bad design solutions.

4. CONCLUSION
This survey shows in which way HCI design pattern authors
are writing design patterns. Most HCI design patterns are

I-90

published through websites or Web portals. Basically a good
idea, but it is also necessary to maintain the site to provide
up-to-date information, since over time, a design pattern
may change because of the invention of new interaction
mechanisms. Therefore, patterns published online should
be updated regularly. Only a few portals are maintaining
their pattern collections, one reason being possibly the lack
of tool support.

Structure and organization of patterns vary due to their
authors’ preferences. Thus, there is no consensus on how
patterns should be formulated and categorized in order to
provide appropriate information to produce good interface
design. Many authors are using the Alexandrian form,
possibly because it was the first form used to encapsulate
design knowledge. So pattern authors have transferred the
Alexandrian pattern structure to software engineering and
then to the HCI domain. It seems necessary, however, to
identify out the most important elements for HCI design
patterns to better support the work of HCI designers and
pattern authors, respectively. This survey has analyzed the
most frequently used content elements. But to propose a
unified pattern form for the HCI domain, workshops and
discussions in the HCI community are necessary to develop
an generally acceptable basic HCI design pattern structure.

Finally, during our research on freely accessible HCI design
patterns it was interesting to find out that most patterns
are written for Web design issues. In the last years Web
design was one of the hottest issues in UI design, where UI
designers have adapted many principles of ordinary desktop
interface design to the special needs of websites.

5. FUTURE WORK
With the results of this survey and a study of categorization
schemes in usability literature we will be able to propose a
classification scheme or a taxonomy for HCI design patterns.
It should help pattern authors to identify overlapping design
patterns and define patterns according to their problem
group or scope. For pattern users a taxonomy is useful
when searching for solutions to a specific design problem
and alternative solutions can be found more easily.

6. ACKNOWLEDGMENTS
We would like to thank Prof. Dinesha from the Indian
Institute of Technology Bombay, for his suggestions and
discussions on this topic which helped us to improve the
quality of this paper.

7. REFERENCES
[1] C. Alexander. The Oregon Experiments. Oxford

University Press, 1975.

[2] C. Alexander. The Timeless Way of Building. Oxford
University Press, 1979.

[3] C. Alexander, S. Ishikawa, and M. Silverstein. A
Pattern Language, volume 2. Oxford University Press,
New York, 1977.

[4] K. Beck and W. Cunningham. Using Pattern
Languages for Object-Oriented Programs. In
OOPSLA 87 workshop on the Specification and Design
for Object-Oriented Programming, 1987.

[5] J. Borchers. A Pattern Aproach to Interactive Design.
Software Design Patterns. Wiley, 2001.

[6] E. S. Chung, J. I. Hong, J. Lin, M. K. Prabaker, J. A.
Landay, and A. L. Liu. Development and Evaluation
of Emerging Design Patterns for Ubiquitous
Computing. In DIS ’04: Proceedings of the 5th
conference on Designing interactive systems, pages
233–242, New York, NY, USA, 2004. ACM.

[7] T. Coram and J. Lee. Experiences - A Pattern
Language for User Interface Design. 1996. Available
at: http:

//www.maplefish.com/todd/papers/Experiences.html.

[8] S. Fincher and P. Windsor. Why patterns are not
enough:some suggestions concerning an organising
principle for patterns of UI design. In CHI ’2000
Workshop on Pattern Languages for Interaction
Design: Building Momentum, 2000. http://www.cs.
kent.ac.uk/people/staff/saf/patterns/chi00.pdf.

[9] A. Garrido, G. Rossi, and D. Schwabe. Pattern
Systems for Hypermedia. In Pattern Languages of
Programming 1997, 1997.

[10] I. Graham. A Pattern Language of Web Usability.
Addison-Wesley, 2003.

[11] Hypermedia Design Patterns Repository. Online.
Available at:
http://www.designpattern.lu.unisi.ch/index.htm,
Accessed on December 27, 2009.

[12] C. Kruschitz. XPLML: a HCI pattern formalizing and
unifying approach. In CHI EA ’09: Proceedings of the
27th international conference extended abstracts on
Human factors in computing systems, pages
4117–4122, New York, NY, USA, 2009. ACM.

[13] Little Spring Design - Mobile UI Design Resources.
Online. Available at: http://patterns.

littlespringsdesign.com/index.php/Main_Page ,
Accessed on December 27, 2009.

[14] M. J. Mahemoff and L. J. Johnston. Pattern
Languages of Usability: An Investigation of
Alternative Approaches. In J. Tanaka, editor, APCHI
98 Proceedings, pages 25–31. IEEE Computer Society,
Los Alamitos, CA, 1998.

[15] M. J. Mahemoff and L. J. Johnston. The Planet
Pattern Language for Software Internationalisation. In
Pattern Languages of Programs 1999 Proceedings,
Monticello, IL, 1999.

[16] PatternCube - Design Pattern Portal. Online.
Available at:www.patterncube.com, Accessed on May,
2008.

[17] Patterns for Personal Web Sites. Online. Available
at:http://www.rdrop.com/~half/Creations/Writings/
Web.patterns/index.html, Accessed on December 27,
2009.

[18] K. Perzel and D. Kane. Usability Patterns for
Applications on the World Wide Web. In Pattern
Languages of Program Design 1999 Proceedings, 1999.

[19] R. Smith. Panel on Design Methodology. In OOPSLA
’87: Addendum to the proceedings on Object-oriented
programming systems, languages and applications
(Addendum), pages 91–95, New York, NY, USA, 1987.
ACM.

[20] C. L. Stimmel. Hold Me, Thrill Me, Kiss Me, Kill Me:
Patterns for Developing Effective Concept Prototypes.

I-91

In Pattern Languages of Program Design 1999
Proceedings, Monticello, IL, 1999.

[21] J. Tidwell. Designing Interfaces. OReilly, 2005.

[22] UI Patterns - User Interface Design Pattern Library.
Online. Available at: http://ui-patterns.com/,
Accessed on December 27, 2009.

[23] User Interface Design Patterns. Online. Available at:
http://www.cs.helsinki.fi/u/salaakso/patterns/ ,
Accessed on December 27, 2009.

[24] D. K. van Duyne, J. A. Landay, and J. I. Hong. The
Design of Sites : Patterns, Principles, and Processes
for carfting a Customer-Centered Web Experience.
Addison-Wesley, 2003. Website
http://www.thedesignofsites.com/.

[25] M. van Welie and H. Traettenberg. Interaction
Patterns in User Interfaces. In 7th. Pattern Languages
of Programs Conference, 2000.

[26] M. van Welie and G. C. van der Veer. Pattern
Languages in Interaction Design: Structure and
Organization. In Human Computer Interaction -
INTERACT 2003, pages 527–534. IOS Press, 2003.

[27] W. C. Wake. Patterns for Interactive Applications. In
Pattern Languages of Programm Design 1998
Proceedings, 1998. Available at: http://jerry.cs.uiuc.

edu/~plop/plop98/final_submissions/P44.pdf.

[28] Web Patterns - A UC Berkeley Resource for Building
User Interfaces. Online. Available at:
http://groups.ischool.berkeley.edu/ui_

designpatterns/webpatterns2/webpatterns/home.php ,
Accessed on May, 2008.

[29] Welie.com - Patterns in Interaction Design. Online.
Available at: http://www.welie.com, Accessed on
December 27, 2009.

[30] Yahoo! Design Pattern Library. Online. Available at:
http://developer.yahoo.com/ypatterns/, Accessed on
December 27, 2009.

I-92

BOOKS SCIENTIFIC PAPERS ONLINE RESOURCES

[10] [24] [5] [21] [25] [18] [7] [27] [9] [20] [15] [6] [29] [30] [11] [16] [23] [17] [13] [22] [28]

HEAD

Pattern
Number

! ! ! ! - - - - ! - ! ! - - - - - - - - -

Pattern Name !

Alternative
Pattern Name

! - - - ! - - - - - - - ! - ! - - - - - !

Rating/Ranking ! - - - ! - - - - - - - ! - ! - - - - - !

Sensitizing
Image

! ! ! ! - - ! - - ! - - - ! - - - - - ! !

Problem-
Context
Summary

! ! ! ! ! ! ! ! ! ! ! - - ! ! - ! ! ! ! !

Author Name ! - - - ! - - - - - - - - - ! ! - - - - !

Pattern
Classification

- ! - - ! ! - - - - - - - - - ! - - - - -

Creation Date - - - - - - - - - - - - - - ! - - - - - -

Last Revision - - - - ! - - - - - - - - - ! ! - - - ! -

Hardware - - - - - - - - - - - - - - - - - - ! - -

Pattern Level -

BODY

Context ! ! - ! ! - - ! - ! - ! ! - - ! ! - ! ! !

Problem
Description

! ! ! - - - ! - - - - ! - - - - - - - - -

Forces ! ! ! - - ! ! ! ! ! ! - - - ! - - - - - -

Solution ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! - ! ! ! !

Rationale - - - ! ! ! ! - - ! ! - ! ! - ! - ! ! ! -

Diagram - - ! - - - - - - - - - - - - - - - - - -

Resulting
Context

! ! ! - - ! - - - ! ! - - - ! - - - - - -

Examples - - ! ! - ! - ! - - ! - ! ! ! ! ! - ! ! !

Known Uses - - - - ! - - - ! - - - - - ! - - - - - -

Counter
Examples

- - - - - - - ! - - - - - - - - - - - - -

ADD. INFO.

Related Ideas
/ Literature

- - - - - - - ! - - ! ! ! - - - - - - - -

Ref. to
Implement.

- - - - - - - - - - - - ! - - - - - - - -

Code
Examples

- - - - - - - - - - - - ! ! - - - - ! - !

Accessibility - - - - - - - - - - - - - ! - - - - - - -

REFEREN.

Ref. in Text ! ! - ? - - - - - ! ! - ! - - - - - ! ! -

Related
Patterns

- - ! - ! ! ! ! ! - - ! - ! ! ! ! ! - - -

Types of Ref.

Specialization - - - - - - - - - - - ! ! - - - - - - - -

Aggregation ! ! ! ! - ! ! ! ! ! ! ! ! - - - - - - - -

Association ! ! - ! - ! ! - ! ! ! ! ! ! ! - - ! ! ! -

Anti-
association

- - - - - - - - - ! - - - - - - - - - - -

Table 4: HCI Design Pattern Content Elements

I-93

I-94

Research Organization Servicelization Patterns
Yuriko Sawatani

IBM Research-Tokyo
1623-14, Shimotsuruma, Yamato,

Kanagawa, Japan
Tel: +81-462-5157

yuriko@jp.ibm.com

ABSTRACT
Innovation in services has become a topic of interest to
researchers due to the worldwide shift to “services” economics.
This comes from the growth of services economies and the shift
to services businesses by manufacturing industries, including IT-
related industries. Innovations, in particular, service innovations
are difficult to articulate their structures and mechanisms, due to
intangibility coming from services characteristics, and a lack of
languages to describe them. In the previous paper [1], we discuss
the following two items for service innovation cases: 1. How can
we capture the characteristics of innovations as patterns? 2. What
are the categories of patterns for innovations? In this paper, I
would like to focus on organizational and process aspect of
research and service activities, which create service innovations.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Systems], K.6.1
[Project and People Management]

General Terms
Management, Human Factors

Keywords
Servicelization, Service Innovation, Organization, Process

1. INTRODUCTION
Patterns and pattern languages are widely adapted not only
technical area, but also social, organizational and management
area. Fearless Change: Patterns for Introducing New Ideas” [2]
provides patterns to introduce a new idea into an organization.
The objective of those patterns is to build a community to discuss
interesting ideas spreading the formal business organization. It
includes the following pattern categories, Roles (Champion
Skeptic, Connector, Corporate Angel, Early Adopter, Early
Majority, Dedicated Champion, Evangelist, Innovator, Local
Sponsor, Mentor, Respected Techie), Keeping the Idea Visible
(e-Forum, Group Identity, In Your Space, Plant the Seeds, Stay
in Touch, Treasure, Token), Dealing with Skeptics (Adopt a
Skeptic, Champion Skeptic, Fear Less), etc. The structure of
these patterns is Name, Context, Problem, Solution, Related
patterns. James O. Coplien’s “A Development Process
Generative Pattern Language” [3] initially takes the structure of
Name, Problem, Context, Forces, Solution, Resulting context,
and Design Rationale. His book, “Organizational Patterns of

Agile Software Development” [4], just follows the same structure
of Alexander’s pattern language. He developed four pattern
languages, such as “Project Management Pattern Language”,
“Piecemeal Growth Pattern Language”, “Organizational Style
Pattern Language”, and “People and Code Pattern Language”,
which have intersections of patterns each other.

Patterns and pattern language are widely adapted to software
engineering areas, from an architecture level to a programming
code level. Adding to the technical design areas, the pattern
approach is used in organizations, processes and management
areas. In this paper, I look into service delivery process which
research organization is involved with to create service
innovation. In service delivery projects, some level of
involvement of the service receivers is necessary and inevitable.
The involvement of the service receivers does not happen only at
the beginning of the service delivery, but throughout of the
service delivery process. The presence of service receivers
creates strong functional interdependencies in a service delivery
organization. This functional interdependence between service
delivery and service research affects the research lifecycle and its
management [5].

In the next section, I describe the following three key patterns of
service delivery process.

2. Research Organization Servicelization
Patterns
In service delivery, most of information is in intermediary project
artifacts, which are hard to transfer, so I focus on the processes of
the service delivery. To understand service research activities, I
looked into ODIS projects as case studies. First I modeled
traditional research activities as three steps: 1. Knowledge
proposition, 2. Knowledge creation, 3. Knowledge repository,
and the service activities are modeled as the following two steps:
1. Value proposition, and 2. Value co-creation. Knowledge
Proposition (KP) is a planning step, when the initial idea of a
research plan is developed. The following step Knowledge
Creation (KC) is an execution step, which creates knowledge.
After the knowledge is created, then it is described in papers and
saved in repositories, such as research journals.

Figure 1. Research activities

Knowledge
proposition

Knowledge
creation

Knowledge
repository

I-95

mailto:yuriko@jp.ibm.com

Figure 2. Service activities

For service activities, Value Proposition (VP) is the step in
which a proposal is presented to the receivers of the services.
When the proposal has been accepted, then proposed value will
be co-created by the service providers and the service receivers.
The Value Co-creation (VC) step may include operations in
which the service receivers use the created value in a value co-
creation step.

Due to the interdependencies of the service delivery
functions and the dynamic changes of the service project inputs
from the service receivers, service research activities are not
limited to traditional research activities, but include service
activities in the research coverage. Based on the observed paths
of the service research activities, ODIS, the following three
patterns were found by focusing on the value co-creation step. An
evaluation phase was excluded since it was the same in all cases.

Closed pattern

Interactive pattern

Open pattern

1.1 Examples
The inputs and outputs of service research activities are

considered as information processing for service systems. The
service systems include people, such as service receivers and
service providers. The outputs of the service systems are
knowledge and knowledge embedded service systems, which are
IT-based systems into which the created knowledge is embedded.
The inputs of these service systems are mainly information from
the service receivers, including end-users, who use the output of
the service systems, such as knowledge embedded service
systems. The inputs are based on intensity of the communications
with the service receivers.

Using these two types of outputs (knowledge base and
knowledge embedded service system), and inputs (high intensity
and low intensity), we developed a conceptual framework of
service systems, as showed in Table 1. Typical service projects
are described in each quadrant of each pattern. Projects in the
High intensity x Knowledge base quadrant are professional
services. The open pattern of service research activities is
mapped to this quadrant.

People involved process enhancement, such as CRM, and
supported tools, such as Computer Aided Design (CAD), are
typical projects in the High intensity x Knowledge embedded
service system. These focus on the front stage of a service system,
such as service receivers, referring to the theatre model of
services by James Teboul. The interactive pattern of service

research activities is mapped to this quadrant. Optimization
projects using standardized processes, such as SCM, are example
of projects in the Low intensity x Knowledge embedded service
system quadrant, which are mainly in the back stage of a service
system. A part of the back stage service activities needs to be
integrated with the front stage of the service system.

TABLE 1
SERVICE SYSTEMS FRAMEWORK: SERVICE

PROJECTS CATEGORY

2.1 Closed Research Organization
Servicelization Patterns
The traditional research activities for product innovation follow
this pattern, so this may not have a problem to execute for
research organization.

Example:

Figure 3 Closed Research Organization Servicelization
Patterns

Context: The closed pattern in Figure 3 includes the patterns
that end with the step of value co-creation (VC). This pattern is
specifically used to solve the predefined problems in service
systems. It tends to create knowledge without understanding the
current service system. Output examples for this pattern are
optimization of IT systems, which are IT-supported systems with
enhanced logic created by automating standardized processes.

Problem: Requirements from service receivers are well
defined. Research organization provides appreciate technology
for the defined requirements from service receivers. If there is no

IT supported
back stage
services

(Closed pattern)

IT supported
front stage
services

(Interactive pattern)

Knowledge
embedded

service system

NAProfessional
services

(Open pattern)

Knowledge
base

Produ
ced
value

LowHigh
Intensity of service receivers

IT supported
back stage
services

(Closed pattern)

IT supported
front stage
services

(Interactive pattern)

Knowledge
embedded

service system

NAProfessional
services

(Open pattern)

Knowledge
base

Produ
ced
value

LowHigh
Intensity of service receivers

Knowledge
creation

Knowledge
proposition

Value
proposition

Value co-creation
Operation

Value
proposition

Value co-
creation

(+Operation)

I-96

communication gap between service receivers and research, then
this shows the similar process with the traditional research
activities for product innovation.

Solution: Not so much difference than research activities for
product innovation. When there is communication gap between
service receivers and research organization, then it needs to have
a translator role to have effective communication, such as
consultants, science communicators, etc…

2.2 Interactive Research Organization
Servicelization Patterns
In this pattern, knowledge are created after the value co-creation
activities, which service receivers and providers (in this case,
researchers) work together.

Example:

Figure 4 Interactive Research Organization Servicelization
Patterns

Context: The interactive pattern in Figure 4 is for creating
differentiated values for the current service system, so the
researchers need to understand the current service system and do
the activities for value co-creation. Output examples of this
pattern are Customer Relationship Management (CRM) and
Business Process Management (BPM), which are IT-supported
systems to improve human-related processes by applying
technologies, such as text analytics.

Actors are service receivers, and researchers. Service
receivers are persons in service organization, who have request to
improve the current situation. Researchers have research area
and related technologies which might help a request of service
receivers. The responsibility of service receivers is to describe
the current issues and requests to solve the issues. The
responsibility of researchers is to solve the issues and create
service innovation to meet service receivers’ requests.

Problem: Service receivers might not be able to express
their request clearly. In addition, researchers do not understand
their request or issues clearly due to a lack of local knowledge of
service environment.

Researchers tend to stick to the current discipline area, and
do not explore the issues from service receivers’ point of views
even though the issues might be solved by the technologies
which research organization have or the extension of them.

Even if the key technology could be provided by researchers,
but to realize requirements from service receivers, enabling
technologies would be required to complete the solution. It
would be necessary for researchers to keep interests to solve the
entire solution.

Solution: Researchers need to learn local knowledge from
service receivers by hearing and data analysis to understand
issues and requirements of service receivers in the service system.
Researchers work with service receivers to identify where
research technologies could contribute.

Researchers need to recognize that research activities for
service innovation could not be executed separately from service
receivers.

2.3 Open Research Organization
Servicelization Patterns
In this pattern, the initial step starts from understanding the
issues of the service system which service receivers might not
recognize.

Example:

Figure 5 Open Research Organization Servicelization
Patterns

Context: The open pattern in Figure 5 starts to understand
the current operations by analyzing the service system, and the
staring point of these service research activities is the VC.
Output examples of this pattern are R & D management services,
and innovation management services which mainly produce
knowledge for service receivers.

Actors are service receivers, and researchers. Service
receivers are persons in service organization, who have issues in
the current service environment. Researchers have research area
and related technologies which might help a request of service
receivers, but mainly need to formalize the current service
environment issues as research questions. The responsibility of
service receivers is to describe the current issues. The

Value
proposition

Value co-creation
Operation

Knowledge
creation

Knowledge
proposition

Value
proposition Value co-creation

Operation

Knowledge
creation

Knowledge
proposition

I-97

responsibility of researchers is to formalize and analyze the
issues, create service innovation with service receivers (value co-
creation).

Problem: Service receivers might not be able to come up
with service innovation to solve the current issues. Researchers
do not understand their issues clearly due to a lack of local
knowledge of service environment.

Researchers tend to stick to the current discipline area, and
do not explore the issues from service receivers’ point of views
even though the issues might create a new research area to
explore.

In addition, service receivers do not know what service
researchers could help and do not expect that their current
problems could be solved.

Solution: Researchers need to learn local knowledge from
service receivers by hearing and data analysis to understand
issues and requirements of service receivers in the service system.
Researchers work with service receivers to identify where
research technologies could contribute.

Researchers need to recognize that research activities for
service innovation could not be executed separately from service
receiver. Researchers need to understand issues and

requirements of service receivers in the service system of service
receivers, where a new research area will be created, by learning
local knowledge in the service environment.

Management of service research needs to support for
researchers to explore are service research area.

Researchers and service receivers need to create a longer
relationship to build trust for the future research activities.

3. REFERENCES
[1] Yuriko Sawatani, et. al, "Innovation Patterns", SSC, 2007
[2] Mary Lynn Manns, Linda Rising, “Fearless Change:

Patterns for Introducing New Ideas”,
http://www.cs.unca.edu/~manns/intropatterns.html

[3] James O. Coplien , ”Process patterns”
http://users.rcn.com/jcoplien/Patterns/Process/process.html

[4] James O. Coplien, ”Organizational Patterns of Agile
Software Development”, Prentice Hall, 2004

[5] Yuriko Sawatani, Kiyoshi Niwa, “Service Systems
Framework Focusing on Value Creation: Case Study”,
IJWET, printing

I-98

http://www.cs.unca.edu/~manns/intropatterns.html
http://users.rcn.com/jcoplien/Patterns/Process/process.html

Adaptable Load Balancing

Sung Kim, Youngsu Son, Gaeyoung Lee

Home Solution Group

Samsung Electronics

ABSTRACT

The proposed load balancing system includes multiple counts
of servers for processing network traffics and a client for
transmitting connection request signals to those network
traffic processing servers.
First, the client sends request signals to all the servers. After
receiving those request signals, based on the server resource
availability, they calculate the wait time before it sends a
response signal back to the client. The client makes the
connection to the first server that transmits the response signal
and ignores all servers response. Delay time is calculated from
system resource availability and predefined maximum tolerance
response time for the service. This system combines the use of
both local load balancing and global load balancing. By
controlling the delay time, it decides which one to put more
focus than the other one.
By using this system, the client request can be efficiently
distributed. This system is cost efficient because it does not
need load balancer and it has flexible architecture.
.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and

Features – patterns.

D.2.11 [Software Engineering]: Software Architectures –

patterns.

General Terms

Algorithms, Design

Keywords

Load Balancing, RTT Control, Delay time, Maximum response
time, Flexible architecture

1. INTRODUCTION
As requests from the client increases, the servers have to process

more transactions.

As the transaction increases, the number of servers in the system

has to increase in order to handle those transactions. To efficiently

control those increased servers, load balancing method is used.

Normally, Load Balancer is needed in order to perform load

balancing. However, in this method, it does not require one.

Because Load Balancer is the center gateway of all the transaction,

as the transaction count increases, it gets overloaded. Complex

load balancing algorithm also adds additional stress to the Load

Balancer. In here, for some reason, if Load Balancer breaks down,

it will cause the entire service to stop. However, our proposed

system does not get this issue since it does not require a load

balancer [1].

In the proposed system, the combination of the local load

balancing and the global load balancing system is used to adjust

the system dynamically depending on the situation/environment.

2. BACKGROUND

Local Load Balancing - Local load Balancing System distributes

the clients request to multiple server. With distribution of the load,

availability of systems is enhanced. This cause the smart use of

servers resource, thus it produce efficient system. Load balancing

servers are placed in same location and set up. When the client

makes requests to the servers, the client will connect to the server

with the lowest load [2].

Global Load Balancing – Global load Balancing System are used

when the servers are located in different networks. It is used to

located the server with fastest network response. So this considers

efficiency of network. The global load balancing system uses

redirection method [3]. Load balancing servers are deployed to

other place on network. When client request to server, client will

connect server that is fastest response.

3. EXAMPLE
For example, let’s assume that we are developing an office

automation system for buildings located closely together in a

downtown. There are various types of devices in the system and

they are connected to a wired or wireless network. In addition, it is

required to keep software in each device up-to-date. The server

will provide the latest software via client-server model. In Polling

method, each client requests data from the server without

considering any other clients. So, it would cause server overload.

On the other hand, in Push method, a client that is turned off or

malfunctions at the time of upgrade wouldn’t be updated.

Let’s take a specific example with the figure below. The server has

to update various types(green, yellow, red) of devices that are

placed in different location. Some office would have all types of

devices but some would not. In this situation, it is possible for the

server to manage devices in a way that groups them by device

type or location.

4. CONTEXT
Environments like websites which services various type of

contents, such as video feeds, html/image rendering, puts stress to

both network and server resources. These require 2 types of load

balancing. The global load balancing focuses on network related

I-99

issues. The local load balancing focuses on server resource related

issues [4].

In Local Load Balancing, a load balancer is located at the server

side and distributes clients' requests only based on the resource

availability of the servers. It does not take into consideration of

the network status or service type (whether it is video streaming

service or html data transmission service)

Global load balancing balances the load by taking into

consideration of requests Round Trip Time(RTT).

The local load balancing is able to balance the server overload, but

it is difficult to consider external conditions, e.g. network

bandwidth, systematic vaccine update, and so.

The global load balancing is apt for providing clients with fast

response.

5. PROBLEM
Due to the workload of server and the status of network changes

constantly, these changes should be considered and reflected in

real time. So to balance the load, we should consider multiple

factors, e.g. Round Trip, Load of Sever, Weight of Load, load item

count, maximum response time, Delay time, RTT

6. FORECES
The following items should be regarded as forces:

 Providing load balancing without the load balancer.

Thus prevents the service stop when the load balancer

breaks down. Being able to adjust which one to focus

more, between local load balancing and global load

balancing, depending on the situation.

 Ignoring any server that does not respond, from the load

balancing list.

7. SOLUTION

7.1 Structure

Figure 1. Half-Push/Half-Polling Structure

multiple count of servers for processing network traffics and a

client for transmitting connection request signals to those network

traffic processing servers. The proposed method includes multiple

counts of servers for processing network traffics and a client for

transmitting connection request signals to those network traffic

processing servers. The proposed load balancing method structure

is shown in Figure 1.

SessionCtrl Component controls the session between server and

client. Sender Component performs connection and

disconnection.

 GetInstance : Start load balancing.

 GetServerList : Get loading balancing target server list..

 MakeSession : Make session to server.

 SetSession : Set session that connects to a server

transmitting the first received response signal.

 ConnectSession : Sends request signal to server.

 DisconnectSession : Disconnects all others except to the

first session.

 SessionMgr Component transmits connection request signals

and registers client session. LoadMgr Component computes delay

time according to the algorithm.

 ListenSession : Receives client request signal and

responses to the client after delay time

 Set(Register)Session : Registers a client session.

 ComputeDelayTime : Compute the delay time from the

server load.

 GetLoadInfo : Get values of server load items.

 SeLoadInfo : Set weight of load items.

7.2 Algorithm
An algorithm exists that controls the server response time. Clients

transmit connection request signals to the servers. The servers

receive clients connection request signals and compute the delay

time (DT) from the server load. During the computed Delay Time

(DT), the servers will delay to send response signal to the client. In

result, if the server load is big, the response time will be delayed

that much.

Variables for load balancing algorithm are shown in table 1.

Variable Value
RTT Round Trip Time
LT Load Type- - CPU, Memory … of server.
LW Weight of load
LC Count of load item
MT Maximum response time
DT Delay time
DRTT RTT considered load.

Table 1. Variables for load balancing algorithm
RTT is the required time for network communication to travel

from the client to the server and back. LT is the server load type –

CPU usage, memory usage, etc. LW is the priorities amongst the

load types. LC is count of LT. MT is the maximum response time

that takes client to get the response back from the server after

sending request signal.Load balancing algorithm is expressed in

following equations.

DT (Delay Time)

I-100

DT

LTi LWi

LC
MTi

LC

1

(, , ...,)i LC12 3

DRTT (RTT considered Server Load)

DRTT RTT DT

(Round Trip Time(RTT) gets added to the delay as well)

The type of data being transmitted/processed affects the load of

server resource, Load Type(LT).

Depending on the data being video steaming or html data, the

server resources would have different load, one resource (such as

CPU) getting priority from other resources. An algorithm can be

used to apply different weight to these resources.

Also server load count (LC) can be increased or decreased

depending on the type of data.. For example, Load Types are

memory usage, CPU usage, disk usage, etc. If server is influenced

by CPU usage the most, The CPU usage will have the biggest

weight. As result, the increase of CPU usage will influence DT, in

turn, DT will be increased. In other words, DT is sensitive to the

CPU usage change.

MT decides how big the delay time can get. If MT is increases,

DRTT will be influenced that much If MT decreases, DRTT will

be influenced that much less. The other hand, if MT decreases,

the influence of RTT will be bigger than DT because the weight of

RTT is more than weight of server load. In result, the balance of

focus between the local load balancing and the global load

balancing is controlled by MT.

7.3 Dynamics
Sequence of load balancing method is shown in Figure 2.

Figure 2. Sequence of load balancing method

Client has server list. It also sends the request signal to server.

First, the client sends request signals to all the servers. After

receiving those request signals, based on the server resource

availability, they calculate the wait time before it sends a response

signal back to the client. The client makes the connection to the

first server that transmits the response signal and ignores all

servers response.

When client sends request signal and receives response signal

from server, DT is influenced by RTT automatically. Thus, RTT is

important. Therefore client is connected to server that has the best

one when considering the low load or the fast RTT.

If a server breaks down, the server will not be able to respond.

Those broken-down servers will be ignored from load balancing.

8. Experiments
In our experiment environment, the system was composed of

two servers and one client. Network is LAN environment. The

experiment compared the round robin method with the

proposed method. Different request types affect server resource

usage differently as shown in below table.

Request Type CPU Usage Memory Usage

HTTP Transaction 1% 1%

DB Transaction (A Type) 3% 1%

DB Transaction (B Type) 1% 3%

Table 2. Assumption values of load

As shown in the table 2, A Type of DB Transaction influence

more on CPU usage than memory usage. B Type of DB

transaction influences more on memory usage than CPU usage.

#Experiment 1 – Were tested with Server1 and Sever2 having

same Value of variables (CPU, Memory, RTT).

Name of variable Value of variable

RTT Server1 : 300ms, Server 2 : 300ms

LW CPU : 50, Memory : 50

LC 2 (CPU, Memory)

MT 3000ms

Table 3. Value of variable for LW experiment

Result of the experiment is shown in Figure 3.

Figure 3. result of LW Experiment

In Result, the number of sessions in two servers came out to be

different. However resource usage between server 1 and server2 is

similar. As Figure3 indicates, the experiment #1, caused the

I-101

server’s load balancing to act like the local load balancing.

Experiment 2 – Servers were setup with different network

environments.

Name of variable Value of variable

RTT Server1 : 100ms, Server 2 : 300ms

LW CPU : 50, Memory : 50

LC 2 (CPU, Memory)

MT 3000ms

Table 4. Value of variable for RTT experiment

Result of the experiment is the same as Figure 4.

Figure 4. Result of RTT experiment

As Equation #1 suggest, the experiment #2 with low MT value

caused DT to be small. Since DRTT is the sum of DT and RTT,

low DT insinuates DT having less influence to the DRTT than the

RTT value influencing DRTT. As Figure 4 indicates, the

experiment #2, caused the server experiment #2, cause to act like

the global load balancing.

Experiment 3 – Added more value on CPU than memory.

Name of variable Value of variable

LW CPU : 70, Memory : 30

LC 2 (CPU, Memory)

MT 3000ms

Table 5. Value of variable for LW experiment

Result of the experiment is shown in Figure 5.

Figure 5. Result of LW experiment

As seen in Figure #5, the experiment result shows the servers

having different session counts and memory usage from each

other. However, CPU usage seems to be similar on those servers.

#Experiment 4 – Increased the values of MT.

Name of variable Value of variable

RTT Server1 : 100ms, Server 2 : 300ms

LW CPU : 50, Memory : 50

LC 2 (CPU, Memory)

MT 10000ms

Table 7. Value of variable for RTT and MT experiment

Result of the experiment is shown in Figure 7.

Figure 6. Result of RTT and MT experiment

As Equation #1 suggest, the experiment #4 with high MT value

caused DT to be high. Since DRTT is the sum of DT and RTT,

high DT value insinuates DT having bigger influence to the DRTT

than the RTT value influencing DRTT.

As Figure 6 indicates, the experiment #4, caused the server’s load

balancing to act like the local load balancing due to having less

influencing RTT value to DRTT.

9. Side Effects
As the number of the servers increases, the difference in the

time that each servers receive the request signal sent by the

client increase. This time difference affects the load

balancing.

10. RESULTING CONTEXT
The proposed method can perform load balancing without the

load balancer. Thus, it automatically ignores any server that does

not respond.

The Value of variable gets set depending on the importance of

each resource in server.

The load balancing is performed by considering these resources

with high values. From observing the resource usage and RTT, the

proposed method uses the load balancing according to the

environment.

I-102

ACKNOWLEDGMENTS
We thank our shepherd Norihiro Yosida for his valuable

comments that contributed to improve this paper. The EVA

(Pattern Evangelist Group), James Chang provided useful

improvements and corrections.

REFERENCES

[1] Valeria Cardellini, Michele Colajanni, Philip S. YU,

“Dynamic Load Balancing On Web-Server System”, IEEE

Internet Computing, June 1999.

[2] Network Load Balancing Technical Overview White Paper

[3] Valeria Cardellini and Michele Colajanni and Philip S. Yu,

"Redirection Algorithms for Load Sharing in Distributed

Web-server Systems", IEEE 1999.

[4] CDN Conference, NetTrend 2001, 2001.

[5] Msurice Castro, Michael Dwyer and Michael Rumsewicz,

“Load balancing and control for distributed World Wide

Web servers”, IEEE, August 1999

[6] Rajkumar Byyya, “high performance cluster computing”,

Prentice Hall PTR, 1999.

[7] R.j. Schemers, “lbmnamed: A Load Balancing Name Server

in perl”, Proc, 9th Systems Administration Conf, Uscnix

Assoc, Berkely, Calif, Sept 1995.

[8] A. Bestavros et al, “Distributed Packet Rewriting and its

Application to Scalable Web Server Architectures”, IEEE

Computer Soc. Press, Los Alamitors, Calif., 1998

[9] Carla Sadtler, John Chambers, Ariane Schuldhaus, “Load

Balancing for eNetwork Communications Server”

International Technical Support Organization

I-103

