ISSN 1884-0760

GRACE TECHNICAL REPORTS

AO Software Behavior Model Evolution and
Synchronization: A Bidirectional Graph
Transformation Approach

Yuting CHEN Zhenjiang HU

GRACE-TR 2009-06 September 2009

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

AO Software Behavior Model Evolution and
Synchronization: A Bidirectional Graph
Transformation Approach

Yuting CHEN Zhenjiang HU

GRACE Center
National Institute of Informatics
chenyt@cs.sjtu.edu.cn hu@nii.ac.jp

September 16th, 2009

Abstract

The application of AO techniques in model driven software devel-
opment still faces strong challenges. Two challenges we focus on in
this report are AO model evolution and synchronization. In this re-
port, we adopt a BiG (Bidirectional Graph Transformation) approach
to AO model evolution and synchronization. The essential idea of
our approach to AO model evolution and synchronization is that we
choose UML activity diagram as the behavior model of the system,
and then conduct model refactoring by extracting aspects from the
activity diagrams. The potential of BiG in this work is that models
evolution is effectively supported based on queries and they can be
synchronized automatically. This research can provide an interesting
example about the application of the bidirectional transformation to
model-driven software development, which will encourage the improve-
ment of BiG so that it can be really applied in practice. The research
is also expected to benefit AO model-driven software development in
that the AO model evolution and synchronization is possible and can
be automated.

1 Introduction

Aspect oriented software development (AOSD) [1], an emerging software de-
velopment technology on the basis of the principle of separation of concerns
(SoC), has drawn great attentions from the research community and indus-
try in the last ten years. A concern is a particular set of behaviors needed by
a computer program, and SoC is the process of separating a software system
into distinct features that overlap in functionality as little as possible. The
modularizations of software systems can therefore be improved and code

tangling be prevented in AOSD because concerns are expressed separately,
in a crosscutting manner, and then automatically unified into the working
systems.

However, the application of AO techniques in model driven software de-
velopment still faces strong challenges. Model-driven software development
is a software development methodology which introduces significant efficien-
cies and rigor to the theory and practice of software development where
models are the main artefacts to be developed. Two challenges we focus on
in this report are AO model evolution and synchronization. Model evolu-
tion refers to a gradual process in which a rough model (say source model)
is transformed to a mature one (say target model), and the target model is
more appropriate to be used for programming. Model synchronization refers
to the process in which the modification of either the source or the target
model will lead to the modification of another one, so that the consistency
between the two models are maintained. The difficulty of conducting model-
driven AOSD is that, although approaches to providing the developers with
support in identifying and separating of concerns do exist, to the best of
our knowledge, there lacks the model transformation approach to AO model
evolution and synchronization. One reason is that the current models used
for AOSD, such as use case diagrams [1], are not precise for describing the
system’s behaviors, and therefore the model evolution and synchronization
requiring precise semantics may be less efficient than expected. Further-
more, the foundation of AO model evolution and synchronization is not
clearly supported. For example, when a source AO model is modified, how
to modify the target model may not be decided if the source model does not
clearly descibe the system’s behaviors and the associated aspects.

In this report, we adopt a BiG (Bidirectional Graph Transformation)
approach to AO model evolution and synchronization [2, 6]. BiG is a project
proposed in NII for providing developers with a new standard for bidirec-
tional model transformations, a novel formal method for evolutionary soft-
ware development, and a trusty tool for artifact synchronization in their
software development. The model transformation approach in BiG is desug-
ared to a core graph algebra which has clear bidirectional semantics and be
efficiently evaluated in a bidirectional manner. The essential idea of our ap-
proach to AO model evolution and synchronization is that we choose UML
activity diagram as the behavior model of the system, and then conduct
model refactoring by extracting aspects from the activity diagrams. The
process of refactoring can be regarded as an instance of SoC, and the re-
sulting model after refactoring can also further provide the programmers
with support in using AOP (Aspect Oriented Programming) techniques to
develop software. After that, the consistency between the models before and
after refactoring needs to be maintained. The potential of BiG in this work
is that models evolution is effectively supported based on queries and they
can be synchronized automatically.

The research is expected to benefit software development in the following
aspects. Firstly, BiG provides a promising approach to model transforma-
tion, which serves as the basis of the model evolution and synchronization.
Therefore the research inspires the research on the AO model driven soft-
ware development in that the AO model evolution and synchronization is
possible and can be automated. Furthermore, the research can further ben-
efit software developers in pervasively using AO techniques in practice in
that AO model development, evolution, synchronization, and even aspect
oriented code generation can be effectively integrated in the development.
In addition, this research can provide an example about the application
of the bidirectional transformation to model-driven software development,
which will also encourage the improvement of BiG so that it can be really
applied in practice.

This technical report is organized as follows. In section 2, we provide an
overview of the application of BiG to AO model evolution and synchroniza-
tion. In section 3, we introduce the graph model which is used to describe
the UML activity diagram in this research. In section 4, we describe the
queries on the graph model which provide developers with support in trans-
forming models during model evolution and synchronization. In section 5,
we describe the related work, and in section 6, we give out the conclusion
and point out the future work.

2 An Overview of the BiG Approach to Model
Evolution and Synchronization

In model-driven software engineering, models serve as a means for commu-
nication, documentation, and requirements capture [4]. In addition, models
are the abstractions from programming languages and computational plat-
forms to simplify the integration of software. We introduce in this section
the models used for describing the software behaviors as well the associated
AO notions. The models then serve as the basis of applying BiG to model
evolution and synchronization.

2.1 Aspect-Oriented Software Behavior Models

We adopt UML activity diagrams for describing the software systems, be-
cause they are pervasively used in industry for the similarity of their struc-
tures (e.g., control flows, processes) to the structures of the program to be
implemented [3]. An UML activity diagram is a loosely defined diagram for
showing workflows of stepwise activities and actions, with support for choice,
iteration and concurrency. Activity diagrams can be used to describe the
business and operational step-by-step workflows of components in a system.
One important feature we focus on in this paper is that an activity diagram

Customer Seller

=] Receive Order Check Order
>{ Logging
N

[request accepte&?// [request rejected

[erder arrived] > Requested Order

[start shorpins] [receive inveice]

Receive Invoice\/ Irvoice i Send Invoice
KShiD Order

Make Payment

Fill Order Form

Submit Order Form

Accept Payment Logging

Receive@ Order & (\/alidate Payment Logging) (Loggingj

Close Order

Figure 1: Online Shopping System in UML Activity Diagram

may contain activity partitions, each of which is a kind of activity group for
identifying actions that have some characteristic in common [3]. Partitions
divide the nodes and edges to constrain and show a view of the contained
nodes. They often correspond to organizational units in a business model.
They may be used to allocate characteristics or resources among the nodes
of an activity.

In the research, we adopt an online shopping system as an example in
order to explain the principle of the approach. As an initial step, we depict
the system by using the UML activity diagram. As Figure 1 shows, the
shopping activity is divided into two partitions: the customer part and the
seller part. The former simulates the activities of a customer in order to
commit an order, and the latter describes the behaviors of the seller when
he/she receives an order form. In order to complete an order, a customer
needs to at first login the system and then fill in and submit the order form.
The seller needs to validate the order form when the order form is received,
and then fill the order. After that, the seller needs to ship the order as well
send the invoice to the customer. Once the customer receives the invoice,
he/she needs to make a payment. The seller will close the order after the
order is shipped and the payment is received. Note that all actions in the
seller part need to be logged.

In spite of using the above mentioned activity diagram to develop the
system, the programmers may also hope to seperate the crosscutting con-
cerns of the system in order to prevent code tangling. For this reason, the
refactoring of the model may be necessary so that aspects can be modelled.
One main advantage of this is that the programmers can use the AOP tech-
nique in their programming and thus the consistency between the model
and the program can be maintained.

However, the UML activity diagram does not provide any explicit fa-

cilities for modelling aspects. In our research, we would adopt the activity
partition above mentioned for describing an aspect, because an activity par-
tition has the similar semantics about crosscutting concerns in that different
parts of a system including aspects can be crosscutly organized using activ-
ity partitions. A partition can therefore contain not only the normal actions,
but also crosscutting concerns (i.e., aspects), which will be explained in the
next subsection.

2.2 AQO Model Evolution

Aspect-Oriented Software Development focuses on the identification, specifi-
cation and representation of crosscutting concerns and their modularization
into separate functional units as well as their automated composition into
a working system [1]. The main purpose of AO model evolution in this re-
search is to extract advice components of aspects from the UML Activity
Diagram (say model before evolution) so that the main concerns and the
crosscutting concerns of the system are separated and clearly described in
the model after evolution. A graphical representation of the AO model
evolution is that the developers can drag some actions and then drop them
in a specific Aspect Partition.

Let’s adopt the online shopping system as an example. As shown in
Figure 2, the actions for logging and authentication can be modelled as
the advice components of an aspect, each of which is further contained in
an individual activity partition. Suppose we have a tool for providing the
developers with support in AO model evolution. A developer using the
tool is expected to ‘drag and drop’ actions (or the associated objects) to
form an Advice Partition in the Aspect Partition. Suppose the developer
wishes to choose the logging action after the condition [request rejected]
to form an advice. A drag and drop of this logging action to the aspect
partition will help to create an advice partition (see Figure 3), and the tool
will help the developer to reorganize the activity diagram so that it holds
precise semantics and comprehensible structure. Note that the extraction
of actions from the activity diagram should be conducted manually, because
only human beings can make correct decisions when choose the actions to
be the advice.

Although we describe the AO model evolution as a ‘drag and drop’ of the
actions in the model, the evolution process in this research is radically on
the basis of the BiG approach. That is, we adopt bidirectional model trans-
formation approach to model evolution, and the drag and drop of actions in
the diagram is intepreted as queries on the diagram.

An activity diagram after evolution is shown in Figure 4. In this figure,
the activity diagram is divided into three partitions: the customer part, the
seller part, and the aspect part. The main concern of the system is composed
of the former two parts, which are consistent to the original model shown

Customer

Seller

[erder arrived]

2] Receive Order

Logeing

[start shopping] [receive invoice]

Fill Order Form Receive Invoice\/

5{ Requested Order

Check Order

Irvoice i Send Invoice

Make Payment

[request accepted\T/ [request rejected]

\Ship Order

Accept Payment Logging

Submit Order Form

Order [(Validate Payment Logging]

(Loggingj

Close Order

Figure 2: Identifying Advices from Online Shopping System

Customer

Seller

Aspects

[order arrived]

[start shopping] [receive invoice]

S Receive Order Check Order

% Requested Order

Gm Order \‘nryD (mee Invmm\}

[request accepted] [request rejected]

>(Logging

Logging

Ship Order

Submit Order Form

Accept Payment

Validate Payment

Logging

Logging

@< (czose Order

Figure 3: Creating An Advice for Online Shopping System

Customer Seller Aspects

Logging After Each Operation

in the Seller Partition

est t
77777777777 o -t ——————— — — — — — — — — —M— 1 >(Checking the user nane and pswd
01

[start shopping] [receive invoice]

- — —{ Validation of Payment

|
|
@11 Order m,D (R{\nmv[\ Invnim\}(— Send Invoice |
L |
l Ship Ord |
L Rk J - 7|~ — >(Checking the request
(ke Payuent Accept. Payment)

Figure 4: AO Model for Online Shopping System

in Figure 1, except that several actions are extracted to form the advice
partition in the aspect partition. Note that the advice ‘Logging After Fach
Operation in the Seller Partition’ is used in this figure for representing all
logging actions in the seller partition. Such a combination of the similar
actions to be one action is also correspondent to the notion ‘Pointcut’ in

AOP.

2.3 AO Model Synchronization

An important activity of model-driven software development is model syn-
chronization. In this research, after the AO model evolution is conducted,
the source and target models usually coexist and may evolve independently.
One reason for this is that the designer may have to discuss with the cus-
tomers and improve the design on the basis of the source model, while may
go through with the programmers by using the target model so that the
programmers can develop the system using AOP techniques. However, it is
usually necessary to modify either the source or the target model in order
to improve the comprehensibility, preciseness, or satisfiability of the model.
How to propagate modifications correctly across models in different formats
and guarantee system consistency remains unsolved. For example, when us-
ing the online shopping system, the seller may require that the order must be
shipped after the payment is validated. In order to satisfy this requirement,
the designer needs to modify the activity diagram by adding the control flow
between the processes ‘Validate Payment’ and ‘Ship Order’, and removing
the control flow between ‘Fill Order’ and ‘Ship Order’ and that between
‘Validate Payment’ and ‘Close Order’, as Figure 5 shows. Thus a modifica-
tion of the target AO model is necessary in order to satisfy this requirement
and be consistent with the source model.

In this research, we would provide support in AO model synchronization
by taking advantage of the ability of BiG approach in maintaining model

Customer Seller

Receive Order Logging > Check Order

[order arrived] > Requested Order

[request accepted\T/ [request rejected]

Fill Order

[start shopping] [receive invoice]

Logging

Receive Invoice |&

Fill Order Form

Invoice ([ngging)((Snnd Invoice

Submit Order Form Make Payment %ﬂcnpr Payment Logging
= Cv’ﬂlidﬁtﬂ Payment Logging) [Logging)

Logging

Close Order

Figure 5: Online Shopping System After Modification

Model Transformation in UnQL+
(Compositional and Functional)

e

Desugaring

-
Graph Algebras

(Graph Construction and Structural Recursion)

&

a8 = - B

m Bidirectional Evaluator ~
@ * Bidirectionalization @ Target Model

* Fusion Optimization

Figure 6: A Compositional Framework for Bidirectional Model Transforma-
tion Framework

consistency. To the best of our knowledge, BiG is one of the few approaches
which provide the developers with support in synchronizing the models be-
fore/after evolution automatically, and any change of the source model leads
to a corresponding change of the target model, or vice versa. The research
issue about this is: the modification of the source model may lead to the
modification of the target model in its behavioral part, aspect part, or both,
how to define the transformation rules still remains unsolved. Furthermore,
any modification of the target model may not only lead to the modification
of the source model, but also cause the consistency violations between the
aspects and the behaviors of the target model. Therefore we need to develop
methods to find out and remove these consistency violations.

2.4 Bidirectional Model Transformation

The aim of BiG is to solve this problem by proposing a linguistic framework
for bidirectional model transformations [2, 6]. The framework includes (1)
a new model transformation language with clear bidirectional semantics,
being equipped with a powerful bidirectionality inference mechanism and
a virtual machine on which bidirectional model transformation can be effi-
ciently realized; (2) an environment for supporting programming, debugging
and maintaining bidirectional model transformations; and (3) a set of appli-
cation examples and domain-specific libraries that can be used in practice.
Figure 6 depicts an architecture (the basic idea) of the compositional frame-
work. A model transformation is described in UnQL+, which is functional
(rather than rule-based as in many existing tools) and compositional with
high modularity for reuse and maintenance. The model transformation is
then desugared to a core graph algebra which consists of a set of construc-
tors for building graphs and a powerful structural recursion for manipulating
graphs. This graph algebra can have clear bidirectional semantics and be
efficiently evaluated in a bidirectional manner.

Phase 1

Figure 7: Consistencies among Models

In the research, since the source model is evolved to a target model
describing the system’s behaviors and the associated aspects, the graph
algebra among the source model, target model, and aspect part need to be
efficiently evaluated. In addition, the aspects need to be woven into the
target model so that the target model provides the expected functionality of
the objective system. Therefore the consistencies to be maintained not only
cover that between the source and target models, but also that between the
source model and the aspect model and that between the target model and
the aspect model, as Figure 7 shows.

3 Graph Data Model for UML Activity Diagram

A UML diagram is usually modelled in XMI 2.1 [7, 8], which provides an
EMF-based implementation of UML 2.x OMG metamodel for the Eclipse
platform. For example, a UML activity diagram containing one activity
partition which includes an initial node, an activity final node, and a control
flow between the two nodes is written in XMI 2.1, as next shows:

<?xml version="1.0" encoding="UTF-8"7>
<uml :Model xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:uml="http://www.eclipse.org/uml2/2.1.0/UML"
xmi:id="_qb8akM37EdqwVrs1YOdUDA"
name="Example">
<packagedElement xmi:type="uml:Activity"
xmi:id="_VoiNIKDoEd6rOcWcxV8kMg"
name="Example">
<node xmi:type="uml:InitialNode"
xmi:id="_eH1UsKDoEd6rOcWcxV8kMg"
name="InitialNodel"

10

outgoing="_£f6RiuqDoEd6r0cWcxV8kMg"
inPartition="_bvF7sKDoEd6rOcWcxV8kMg" />
<node xmi:type="uml:ActivityFinalNode"
xmi:id="_fLVZEKDoEd6r0cWcxV8kMg"
name="ActivityFinalNodel"
incoming="_f6RiugDoEd6r0cWcxV8kMg"
inPartition="_bvF7sKDoEd6r0cWcxV8kMg" />
<edge xmi:type="uml:ControlFlow"
xmi:id="_£f6RiuqDoEd6r0cWcxV8kMg"
name="ControlFlowl"
source="_eH1UsKDoEd6r0cWcxV8kMg"
target="_fLVZEKDoEd6rOcWcxV8kMg"
inPartition="_bvF7sKDoEd6rOcWcxV8kMg">
<guard xmi:type="uml:LiteralBoolean"
xmi:id="_£f6Riu6DoEd6r0cWcxV8kMg"
value="true"/>
<weight xmi:type="uml:Literallnteger"
xmi:id="_£f6RivKDoEd6r0cWcxV8kMg"
value="1"/>
</edge>
<group xmi:type="uml:ActivityPartition"
xmi:id="_bvF7sKDoEd6rOcWcxV8kMg"
name="ActivityPartitionl"
node="_eH1UsKDoEd6r0cWcxV8kMg \
_fLVZEKDoEd6rOcWcxV8kMg"
edge="_f6RiugDoEd6r0cWcxV8kMg" />
</packagedElement>
</uml :Model>

Since the BiG approach accepts only root edge-labeled graphs as inputs
[5, 6], it is necessary to translate the activity diagram in XMI to the root
edge-labeled graph. Next we introduce some translation rules, and a root
edge labeled graph after translation of the above UML activity diagram in
XMI2.1 is given in Figure 8.

e cach element in the xmi file is translated to a subgraph of the root
edge-labeled graph;

e the hierarchy of the diagram is maintained in the root edge-labeled
graph. The attributes of an element A are translated to the children
of A. If an element, say A, belongs to another element B, we need to
add a link with the information ‘has child’ from B to A.

e if the value of an attribute is an id, add a link from the parent to the
associated node or edge.

11

Figure 8: An Example of A Root Edge-Labeled Graph

4 Queries

BiG adopts UnQL+, a graph querying language based on structural recur-
sion, for graph query and transformation. UNQL+ has a convenient and
powerful select-where structure for extracting information from a graph [5,
6]. In addition, UnQL+ provides a new replace-where construct suitable for
specifying model transformation. Another two queries, delete and append,
are also supported for model transformation. In this research, it is neces-
sary to compose the basic query statements to complete the graphical ‘drag
and drop’ for AO model evolution. Here we provides some typical query
examples, including adding or deleting an element, modifying a value on an
edge, and moving a subgraph.

4.1 Add/Delete An Element

The next program shows a query which is used to add an aspect partition
to the activity diagram.

Query 1:

select
letrec
sfun hil({Aspect : $g}) = {Aspect:{elementtype:{"group":{}},
type: {"uml:ActivityPartition":{}},

12

id: {"Aspect":{}},
name: {"Aspect":{}}U $g}}
| h1({$1 : $g}) = {$1: h1($g)}
in h1($tempdb)
where $tempdb in (
select
letrec
sfun h1({_azc1II12Ed6pFZKOSNYKpA : $g})
= {_azc1II12Ed6pFZk08NYKpA:{haschild:{Aspect:{}} }U $g}
| h1({$1 : $g}) = {$1: h1($g)}
in h1($db)
)

In this example, the activity diagram has an id _azc1IlI2Ed6pFZkOSNYKpA.
We have added a child haschild: Aspect to the root of the activity diagram

and then achieved a temp database $tempdb through defining a query on
the database $db by:

$tempdb in(select
letrec
sfun h1({_azc1II12Ed6pFZk0OSNYKpA : $g}) =
{_azc1II12Ed6pFZk08NYKpA: {haschild:{Aspect:{}} }U $g}
| h1({$1 : $g}) = {$1: h1($gx)}
in h1(3$db))

where the function hl is applied to $db. After that, we define the query
on $tempdb in order to add new attributes including the type, id, and name
to Aspect.

The query for deletion of an advice with id Advice_001 is given in the
next part:

Query 2:
select
letrec
sfun h1({Advice_001 : $g}) =
{Advice_001:{elementtype:{"group":{}},
type:{"uml:ActivityPartition":{}},
id:{"Advice_001":{}},
name:{"Advice":{}}U $g}}
| h1({$1 : $g}) = {$1: h1($g)}
in h1($db)

13

4.2 Move An Element

Query 3 is a query statement which supports the finding of a pointcut with
id ‘Pointcut_-001’. The pointcut is then moved to be a subgraph following the
edge with value ‘_qb8akM37EdqwVrslYOdUDA'’. In this example, the name
of the pointcut is changed to ‘newname’.

Query 3:

select
letrec
sfun hl({haschild: $g}) = h2($g)
| h1({$1 : $g}) = {$1: h1($g)}
and sfun h2({Pointcut_001 : $g}) = {}
| h2({_qb8akM37EdqwVrs1YOdUDA : $g}) =
{_qb8akM37EdqwVrs1YOdUDA: {haschild: $child} U hi($g)
| h2({$1 : $g}) = {haschild: {$1:h1($g)}}
in h1($db) where $child in(select
letrec
sfun hi({haschild: $g}) = h2($g)
| h1({$1 : $g}) = hi1($g)
and sfun h2({Pointcut_001 : $g}) = {Pointcut_001 : $g}
| h2({$1 : $g}) = h2($g)
in h1($db)
)

4.3 Modify A Value

Query 4 is a query statement which supports the modification of the at-
tribute value of a pointcut with id ‘Pointcut_001’. In this example, the name
of the pointcut is changed to ‘newname’

Query 4:

select
letrec
sfun h1({Pointcut_001 : $g}) = {Pointcut_001: h2($g)}
| h1({$1 : $g}) = {$1:h1($e)}
and sfun h2({name : $g}) = {name:{"newname":{}}}
| h2({$1 : $g}) = {$1: h2($g)}
in hi1($db)

14

Two transformation queries that are useful but still unsolved are: (1)
replacing several values on the edges of the graph. (2) add/remove an edge
from a specified node to another.

4.4 Composition of Queries and Optimization

Simple queries can be composed to a complex query (see Query 1). Suppose
two simple transformations (say fi and f2) should be conducted on a graph
g, and f1 and fs do not affect each other. We can then compose f; and fo
in that f1 receives the graph g as its input, and 2 receives the output of the
transformation f1 as its input, as next formula shows. The query should be
optimized because it may not be necessary to achieve a new database (i.e.,
f2(g)) in order to perform a second query.

(fr® f2)(9) = fi(f2(9))

However, the transformations to be composed may be tangled and the
order of performing the transformations may be crucial. For example, the
resulting graph of performing two transformations (deletion an element e
and adding e to the graph) can be different if the order is reversed. The
approach to composition and optimization of queries is an important issue,
part of which has been addressed in BiG.

5 Related Work

This section introduces some potential applications of BiG in practice.

e Model driven software development [10-13]. A promising domain that
can be strongly supported by BiG is software evolution and syn-
chronization, such as the approach proposed in this report. Poten-
tial applications in this domain include the development of an MVC
(Model-View-Controller) structure for software system and its auto-
matic maintenance [15], the transformation among UML diagrams (or
other kinds of software models) and their synchronization, model refac-
toring, and stepwise reverse engineering.

e Code generation [16, 17] and refactoring [14]. Code generation in
this context means, that the user creates UML diagrams, which have
some connoted model data, and the UML tool derives from the dia-
grams parts or all of the source code for the software system. In some
tools, the user can provide a skeleton of the program source code, in
the form of a source code template where predefined tokens are then
replaced with program source code parts during the code generation
process. The program may also be refactored so that its quality can be

15

improved. BiG can support the program refactoring and the synchro-
nization, in a similar manner to what we conduct on model evolution
and synchronization.

e Data management [18-23]. In order to map data across paradigms, the
developers sometimes need to merge the data from multiple sources,
and exchange it between sources. In addition, data needs to be syn-
chronized if replicas in different formats exist. A more recent research
effort allows declarative mappings to be specified between classes and
XML schemas. BiG can provide with such supports in transforming,
integrating, and exchanging data.

e Some other applications. A summer project in Shanghai Jiaotong Uni-
versity for sophomores is that they need to optimize a schedule through
transforming the schedule to an event graph, and then calculating the
longest critical path of the graph. BiG can provide the students with
support in simplifying the development of the project.

6 Conclusions and Future Work

In this technical report, we describe a bidirectional model transformation
approach to model evolution and synchronization. The essential idea of our
approach is that we choose UML activity diagram as the behavior model of
the system, and then conduct model refactoring by extracting aspects from
the activity diagrams. The potential of BiG in this work is that models evo-
lution is effectively supported based on queries and they can be synchronized
automatically.

In the future, we would improve the approach proposed in this paper
by defining more complex queries and optimizing them, and then refine the
‘drag and drop’ of the activity diagrams on the basis of the queries. We
would also develop the tool to support the approach to model evolution
and synchronization. An experimental comparison between BiG and other
approaches (such as the Query/View/Transformation approach [9]) to AO
model evolution and synchronization is necessary.

7 References

1. Robert E. Filman and Tzilla Elrad and Siobhan Clarke and Mehmet
Aksit. Aspect-Oriented Software Development. Addison-Wesley. 2005.

2. http://www.biglab.org/. 2009.

3. OMG. Unified Modeling Language (UML), version 2.2.
http://www.omg.org/technology/documents/formal/uml.htm. 2009.

16

10.

11.

12.

13.

14.

15.

David S. Frankel. Model Driven Architecture: Applying MDA to En-
terprise Computing. John Wiley & Sons, ISBN 0-471-31920-1.

Peter Buneman, Mary F. Fernandez, Dan Suciu. UnQL: A Query
Language and Algebra for Semistructured Data Based on Structural
Recursion. VLDB J. 9(1): 76-110. 2000.

Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, Keisuke Nakano. A
Compositional Approach to Bidirectional Model Transformation, New
Ideas and Emerging Results Track of 31st International Conference on
Software Engineering (ICSE 2009, NIER Track), Vancouver, Canada,
May 16-24, 2009.

OMG. MOF 2.0 / XMI Mapping Specification, v2.1.1.
http://www.omg.org/technology/documents/formal /xmi.htm. 2009

Eclipse. UML2. http://www.eclipse.org/uml2/. 2009.

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. http://www.omg.org/spec/QVT/1.0/PDF. 2007.

M. Antkiewicz and K. Czarnecki. Design Space of Heterogeneous Syn-
chronization. In Generative and Transformational Techniques in Soft-
ware Engineering II, International Summer School, GTTSE 2007, Re-
vised Papers, volume 5235 of LNCS, pages 3—46. Springer, 2008.

A. Schurr. Specification of Graph Translators with Triple Graph
Grammars. In International Workshop Graph-Theoretic Concepts in
Computer Science, volume 903 of LNCS. Springer, 1995.

P. Stevens. Bidirectional Model Transformations in QVT: Semantic
Issues and Open Questions. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2007), Pro-
ceedings, volume 4735 of LNCS, pages 1-15. Springer, 2007.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. To-
wards automatic model synchronization from model transformations.
In ASE ’07: Proceedings of the twenty-second IEEE/ACM interna-
tional conference on Automated software engineering, pages 164-173.

ACM, 2007.
Fowler, Martin. Refactoring. Addison-Wesley. 1999.

L. Meertens. Designing Constraint Maintainers for User Interaction.

Manuscript, available at http://www.kestrel.edu/home/people /meertens,

June 1998.

17

16.

17.

18.

19.

20.

21.

22.

23.

ALTOVA. Generate Application Code from UML Models.
http://www.altova.com/umodel /uml-code-generation.html. 2009.

Benoit Marchal. Working XML: UML, XMI, and Code Generation.
http://www.ibm.com/developerworks/xml/library /x-wxxm23/. 2004.

A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data ex-
change. ACM Transactions on Database Systems (TODS), 31(4):1454—
1498, 2006.

T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update Ex-
change with Mappings and Provenance. In Proceedings of the 33rd In-

ternational Conference on Very Large Data Bases, VLDB 2007, pages
675-686. ACM, 2007.

A.Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation
in Peer Data Management Systems. In Proceedings of the 19th Inter-
national Conference on Data Engineering, ICDE 2003, pages 505-516.
IEEE Computer Society, 2003.

G. Karvounarakis and Z. G. Ives. Bidirectional Mappings for Data
and Update Exchange. In 11th International Workshop on the Web
and Databases, WebDB 2008, Proceedings, 2008. Available at

http://webdb2008.como.polimi.it /images/stories/ WebDB2008 /paper35.pdf.

S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation
language for XML. In ICFP ’06: Proceedings of the eleventh ACM
SIGPLAN international conference on Functional programming, Pro-
ceedings, pages 201-214. ACM, 2006.

R. Lammel and E. Meijer. Mappings Make Data Processing Go 'Round.
In Generative and Transformational Techniques in Software Engineer-
ing, International Summer School, GTTSE 2005, Revised Papers, vol-
ume 4143 of LNCS, pages 169-218. Springer, 2006.

18

