
ISSN 1884-0760

GRACE TECHNICAL REPORTS

An Order-Sensitive Fusion for XQuery

Hiroyuki Kato Soichiro Hidaka Zhenjiang Hu
Keisuke Nakano Yasunori Ishihara

GRACE-TR 2009–04 September 2009

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

An Order-Sensitive Fusion for XQuery

Hiroyuki Kato Soichiro Hidaka Zhenjiang Hu
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
{kato,hidaka,hu}@nii.ac.jp

Keisuke Nakano
The University of Electro-Communications

1-5-1 Chofugaoka, Chofu-shi
Tokyo 182-8585, Japan
ksk@cs.uec.ac.jp

Yasunori Ishihara
Osaka University

1-5 Yamadagaoka, Suita-shi
Osaka 565-0871, Japan
ishihara@ist.osaka-u.ac.jp

September 2, 2009

Abstract
In XQuery, composite expressions with node creation are typical in prac-

tice, for example, in data integration systems for XML with XQuery as
schema mapping in addition to the classical view resolution. We propose
a fusion algorithm for this kind of composite XQuery expressions. In devel-
oping the XQuery fusion, there is a problem that naive elimination of node
creations does not preserve the semantics of XQuery with constraints of the
order of nodes. We solve this problem by introducing an adornment code
called extended Dewey’s assigned to the occurrences of expressions. In this
paper, we show that XML fragments created dynamically as intermediate re-
sults in a store can be emulated statically in such a way that rewriting XQuery
expressions to avoid redundant parts is enabled using the extended Dewey’s.
The experimental results show that under a multi-step schema mapping sce-
nario, our prototype system successfully eliminates execution cost of redun-
dant node creations produced as intermediate results.

1 Introduction

An XML document is modeled as an ordered tree based on document order which
is the preorder in the tree. Document order is a total order defined over the nodes

in a tree. This order plays an important role in the semantics of XQuery, especially
in node creations and axis accesses. An XQuery expression is evaluated against an
XML store which contains XML fragments with their document order. This store
contains the fragments that are created as intermediate results, in addition to initial
XML documents Hidders et al. [2004]. A node creation by an element constructor
generates a new node which is placed at an arbitrary position in document order
between the already existing trees. An axis access by a step expression returns its
result in document order and without duplicates.

Rewriting composite expressions based on eliminating intermediate results
generated by redundant expressions is a traditional optimization technique (known
as fusion) Wadler [1988], Chin [1992], Fegaras and Maier [2000] in both pro-
gramming languages community and database community. In XQuery, composite
expressions for node creation are typical in practice, for example, in data inte-
gration systems for XML with XQuery as schema mapping Tatarinov and Halevy
[2004]. We propose, in this paper, a fusion algorithm for this kind of composite
XQuery.

In developing the XQuery fusion, there is a problem that naive elimination of
node creations does not preserve the semantics of XQuery with constraints of the
order of nodes. The XQuery fusion is more difficult than the existing fusion Wadler
[1988], because naive elimination of node creations does not preserve document or-
der. For example, it is incorrect to transform 〈t〉($v/c, $v/a)〈/t〉/c into $v/c. For
an arbitrary store — assuming identical bindings of the externally defined variable
$v — both expressions always return a value equivalent data, in the sense that they
produce the same results when they are serialized and output by the query proces-
sor as a final result. However, as intermediate results in a query processor, two data
evaluated by these expressions populate in different document order. When $v/c
does not result in an empty sequence 1, the nodes produced by the former populate
in the new document order created by the element constructor 〈t〉($v/c, $v/a)〈/t〉,
whereas the nodes returned by the latter populate in the document order existing in
the input store. Consequently, if we take a further step along parent axis for both
expressions, namely, 〈t〉($v/c, $v/a)〈/t〉/c/.. and $v/c/.., now it is easy to see
the differences since the former results in a node created by the t element, whereas
the latter results in a sequence of nodes bound to $v. Therefore, eliminating redun-
dant expressions including node construction and preserving document order are
conflicting requirements. The purpose of our work is to meet these two conflicting
requirements.

Although expressions that contain element constructors are non-deterministic
with respect to document orderPage et al. [2005], we notice two properties that (1)
a node generated by an element constructor is placed at the first position of the
document order defined by the element constructor, (2) nodes in a sequence gener-
ated by expressions occurring inside the element constructor are copied deeply and

1To simplify the discussion, we do not consider in this paper, the case that $v/c results in an
empty sequence. This is included in our future work.

2

document order

a

b
c d

e
f g

(1) (2)

A
B

<a>

<c/><d/>

<e>
<f/><g/>

</e>

C

x x+1 x+2 x+3 x+4 x+5 x+6

Figure 1: Node creation in the document order

placed following the node in (1) above with preserving the order in the sequence.
These properties enable us to emulate newly created document order, statically.

In this paper, we propose deforestation techniques for XQuery. The kind of
queries on which those techniques apply are common in practice due to the use of
XQuery both as a language for producing XML views from legacy sources and to
query XML such as XML data integration systems with XQuery as schema map-
ping. In addition, constructing trees in XQuery is expensive due to the complexity
of the XML data model, making the proposed optimization particularly signifi-
cant. The fundamental idea is to support static-time rewritings for queries which
perform XML navigation over newly constructed trees. Preserving the semantics
of the original code is particularly challenging in the XQuery context due to the
importance of node identify and document order in the XML data model and in
XPath. To address those issues, we show that XML fragments created dynami-
cally as intermediate results in a store can be emulated statically in such a way that
rewriting XQuery to avoid redundant expressions is enabled. This emulation is
achieved by using an adornment code called the extended Dewey’s assigned to the
occurrences of expressions. The Dewey encoding has been used in index structure
for XML documents Lu et al. [2005], Tatarinov et al. [2002]. We have extended
the Dewey code to be suitable for the semantics of XQuery, especially for “for”
expressions. Note that no schema information is required in doing this rewriting.

Our main contributions can be summarized as follows.

• We show that a static emulation of XML store can be achieved by using
an extended Dewey code, which preserves the document order in terms of

3

expressions.

• By using this static emulation, we propose an XQuery fusion so that un-
necessary element constructions are avoided while preserving the document
order in XML.

• We show actual evaluation numbers by experimental results using a proto-
type system to give an understanding of the performance benefits.

This paper is organized as follows. After explaining our static emulation of
store in Section 2, we show how fusion transformation can be correctly performed
by partial evaluation of expression based on three fusion rules in Section 3. Some
properties on the extended Dewey code are described in Section 4. The revised
version of our fusion which handles failure cases is described in Section 5. Our
experimental results are shown in Section6. We conclude the paper in Section 7.

Related work There are several studies on rewriting XQuery into XQueryGueni
et al. [2008], Page et al. [2005], Koch [2005], Tatarinov and Halevy [2004]. In
these, the most related is Gueni et al. [2008] in a sense of eliminating redun-
dant expressions. In Gueni et al. [2008], the authors have proposed a rewriting
optimization that replace the expressions, which return empty sequences, with
() by the emptiness detection based on static analysis. Compared with this, our
rewriting is to eliminate redundant element constructors as well as to detect empti-
ness. KochKoch [2005] and Page et al.Page et al. [2005] introduced some classes
for composite XQuery and proposed XQuery-to-XQuery transformations over the
classes of XQuery they defined. Their target queries don’t contain newly con-
structed nodes. In real world, however, practical expressions such as schema map-
ping always returns newly constructed elements. Tatarinov and Halevy proposed
an efficient query reformulation in data integration systems, in which XML and
XQuery are used for data model and schema mapping, respectively Tatarinov and
Halevy [2004]. In this system, composition of element construction is typical be-
cause the schema mapping that maps some element to other element involves ele-
ment construction. They treat actual reformulation algorithm as a black box. Our
work attempts to open the box and exploit some properties in this box.

2 Static Emulation of Store

This section describes how to achieve a static emulation of XML store. First, we
introduce a notion of simple XML store using Dewey code and its order in Sec-
tion 2.1. Then, we explain our static emulation of store by using the extended
Dewey code and its order.

Before explaining our static emulation of store, we describe the relationship of
node creation in XQuery and the document order. Figure 1 shows the treatment
of newly created nodes by an element constructor relative to existing nodes in the

4

store. An element constructor that is depicted in the upper center part of the figure
produces tree structure just below the expression (B) within which nodes are given
order in one-dimensional document order axis. For example, if the topmost node
named “a” is given order x, then its first child node named “b” is given order that
is strictly greater than x, say, x+1, which is also strictly less than the order given
to its children named “c” and “d”. These ordering is guaranteed to be consistent
between elements created in a common element constructor.

On the other hand, order between nodes that are separately created by differ-
ent element constructors in a query is implementation dependent. For example,
consider the following expression (Q1) in XQuery.

Q 1. (〈h〉〈i/〉〈/h〉, 〈j〉〈k/〉〈/j〉)
In this query, the document order between the tree with root node named “h”

and the one with root node named “j” is implementation dependent. So, no one can
decide the order of these two nodes by static analysis. In addition, the document
order between the existing nodes – like A and C in the figure – and a newly created
node is also implementation dependent, thus static analysis can not decide this
order either. However, overlap along document order axis never happens between
these nodes. Extended Dewey order defined in this section is designed to respect
all these properties, namely, (a) no order is predefined statically across nodes that
are separately created in different element constructors in a query, (b) preorder is
defined between nodes inside an element constructor, (c) orders given to elements
that belong to different roots of trees are pair-wise disjoint.

XML store is used in the semantics of XQuery Hidders et al. [2004] 2 while
our algorithm is based on a static analysis. In this section we show that a static
emulation of XML store can be achieved by using an extended Dewey order, which
preserves the document order in terms of expressions.

2.1 Simple XML Store using Dewey Order

Dewey Order encoding of XML nodes is a lossless representation of a position in
document order Lu et al. [2005], Tatarinov et al. [2002]. In Dewey Order, each
node is represented by a path from a root using “.”, which is depicted by D in
Figure 2: (1) a root is encoded by r ∈ S where S is a countably infinite set of
special codes; (2) when a node a is the n-th child of a node b, the Dewey code of
a, did(a), is did(b).n. Note that ε in Figure 2 is used for a termination, so every
Dewey code ends with ε.

Using Dewey encoding, sorting and duplicate elimination in document order
can be achieved by a straightforward way. Now, simple XML store, in which nodes
are restricted to element nodes — other nodes such as attributes are disregarded
here — is defined by an ordered tree representation using Dewey codes instead of

2The semantics of XQuery is formally given by World Wide Web Consortium [2007]. However,
due to not being self containedMelton [2008] and to simplify the discussion, we refer Hidders et al.
[2004] instead.

5

D ::= r X r ∈ S , S is a set of special codes.
X ::= ε | .B
B ::= n X n ∈ I , I is a set of integers.

Figure 2: Pure Dewey code

<s>
<a>

<c/>
<c/>

</s>
source.xml

s

c

r0

r0.2
a

b b

r0.1

r0.1.1 r0.1.2

c
r0.3

initial store SSt0

SSt2 = SSt0 SSt1output store

serialized XML

<t>
<c/>
<c/>
<a>

</t>

SSt1

t

a

b b

c c

r1

r1.1 r1.2

r1.3.1 r1.3.2

r1.3

Figure 3: An input document source.xml, SSt0 and output store by (Q2).

nodes and edges in Hidders et al. [2004]. We assume a set of names N used for
element names and a countably infinite set of Dewey Code D, which is depicted
by D in Figure 2. Both the strict partial order < and the equality = on D are
straightforward.

DEFINITION 2.1 (Simple XML Store). A simple XML store is a 3-tuple SSt =
(D, ν) where, (a) D is a finite subset of D; (b) ν : D �→ N maps the Dewey codes
to their node name.

Evaluating an element constructor against an input simple store will add a tree
into the input store. Consider the following XQuery expression (Q2) when given
the input document source.xml shown in Figure 3.

Q 2. let $v := doc("source.xml")/s
return <t>$v/c,$v/a</t>

For an initial store SSt0 = (D0, ν0) where,

• D0 = {r0, r0.1, r0.1.1, r0.1.2, r0.2, r0.3} where r0 ∈ S;
• ν0(r0) = s, ν0(r0.1) = a, ν0(r0.1.1) = ν0(r0.1.2) = b,

ν0(r0.2) = ν0(r0.3) = c where {s,a,b,c} ⊂ N ,
evaluating (Q2) updates SSt0 into SSt2(D2, ν2) where,

• D2 = D0 ∪ {r1, r1.1, r1.2, r1.3, r1.3.1, r1.3.2}
where r1 ∈ S ∧ r1
= r0

6

• ν2 = ν0 + {r1 �→ t, r1.1 �→ c, r1.2 �→ c,
r1.3 �→ a, r1.3.1 �→ b, r1.3.2 �→ b}
where t ∈ N

This updating is achieved by the following steps in a recursive way for nested
element constructors. (i) Generate a new root code r ∈ S for an element con-
structor. (ii) Reassign Dewey codes for values produced by evaluated expressions
occurring inside the element constructor. Note that once the data is serialized, the
information about document order associated with nodes is lost.

2.2 Emulating Simple Store

In this subsection, we will show that static emulation of newly created XML frag-
ments in simple store is achieved by using the extended Dewey Order encoding of
expressions. The purpose of this encoding is to allow operation like sorting, axis
access and duplicate elimination on expression rather than on the dynamic store.

When expressions contain element constructors, the semantics of XQuery re-
quires; (1) a node generated by an element constructor is placed at the first po-
sition of the document order defined by the element constructor, (2) nodes in a
sequence generated by expressions occurring inside the element constructor are
copied deeply and placed following the node in (1) above with preserving the or-
der in the sequenceHidders et al. [2004]. This requirement leads to the following
properties. Note that for an expression e we use �e� for Dewey Order encoding of
evaluated data against an arbitrary store (D, ν).

PROPERTY 2.2. For an element constructor, 〈en〉e〈/en〉, where en is an element
name and e is an expression,

(i) �〈en〉e〈/en〉� = r where r ∈ S ∧ r /∈ D

(ii) ∀d ∈ �e�,d = � <en>e</en>�.n3 where n is an integer.

(iii) when e is a sequence constructor (e1, e2),
∀d1 ∈ �e1�∀d2 ∈ �e2�, d1 < d2

Figure 4 shows this property using concrete examples. This property enables
us to statically emulate newly created XML fragments — created by element con-
structors — in simple store. This emulation is achieved by Dewey encoding of
expressions which exploits PROPERTY 2.2.

In this paper, as will be seen in next section we extend Dewey code and its order
by introducing new delimiter “#” to be suitable for the semantics of “for” expres-
sions in XQuery. From now on to the end of this section, we will see the property
of the “for” expressions occurring inside element constructors and describe the role
of the new delimiter “#”. Figure 4 shows such a property of the “for” expression
(Q3), bellow.

3We use ∈ for sequence containment. And we treat an item identically to a sequence containing
only that item as in the semantics of XQuery.

7

<a>
{$v/c}

a

c c c...

<a>
{($v/c,

$v/d)}

a

c c... d

[[$v/c]]

... d

[[$v/c]] [[$v/d]]

<a>
{for $v in eb
return ($v/c,$u/d)}

a

c c... d ... d

[[v1/c]] [[v1/d]]

c c... d ... d

[[vn/c]] [[vn/d]]

...

[[eb]]=<v1,...,vn>where,

Figure 4: A simple example for the document order in element creations

Q 3. 〈a〉 for $v in eb return ($v/c, $v/d)〈/a〉
The semantics of a “for” expression is to evaluate the “return” expression k

times where k is the length of the sequence, which is the result of the expression
followed by “in”. So, for the ordered tree which is the result of (Q3), the child
nodes of the root are the sequence of elements, which is the deep copied sequence
of the result of evaluating ($v/c, $v/d) zero or more times.

For the expressions (Q3)/d and (Q3)/c we can get easily the value equiva-
lent expressions (Q4) and (Q5), respectively.

Q 4. for $u in eb return $v/d

Q 5. for $u in eb return $v/c

Then, consider the expression (((Q4)), ((Q5)))/ self :: ∗. As described in the
previous subsection, since axis access by “/” requires the sorting and duplicate
elimination in document order, the correct transformation of this expression should
result in (Q6), in which two “for” expressions (Q4) and (Q5) are merged, sort-
ing expressions appeared in the “return” expression.

Q 6. for $u in eb return ($v/c, $v/d)

To this end, we extend the Dewey codes and its order with new structure “#”
to represent the order of expressions occurring in the “return” expressions in “for”

8

e ::= c constants
| $v variables
| (e, e, ..., e) sequence constructions
| e/α::en location step expressions
| for $v in e return e for-exp.
| let $v := e return e let-expressions
| 〈en〉e〈/en〉 element constructor

Figure 5: XQuery

B ::= (n|?)X n ∈ I
X ::= ε | .B | #[B, . . . , B]
D ::= B | ε | r X | # [D, . . . ,D] r ∈ S

Figure 6: Abstract syntax of the extended Dewey code

expressions. As will be seen the next section, when we have a same prefix until “#”
delimiter for given two extended Dewey codes, the sorting and duplicate elimina-
tion on this codes requires merging into one code to merge two “for” expressions
into one “for” expression.

For example, the extended Dewey encoding of the “for” expression in (Q3) is
r.1#[1, 2], where r is the extended Dewey encoding of (Q3). And the extended
Dewey encoding of (Q4) and (Q5) are r.1#2 and r.1#1, respectively.

3 Algorithm Overview

In this section, we briefly overview our algorithm for automatic fusion of XQuery
expressions so that unnecessary element constructions can be correctly eliminated.
The purpose of this section is on conveying the essential idea we use. The detailed
and precise algorithm will be given in Section 5. Basically, we will focus on fusing
the following subexpression

e/α::en

so that unnecessary element construction in the query expression in e is eliminated
under the context of “selection” by α::en.

Note that the XQuery fusion does not always succeed. We will describe the
algorithm handling failure cases in Section 5.

3.1 Annotated XQuery Expressions

We consider the XQuery expressions defined in Figure 5. A query expression
can be a constant c, a variable $v, a sequence expression (e1, . . . , en) where each
subexpression ei is not a sequence expression, a location step expression e/α::en
where α is an axis which can be child , self , or .. (parent), and en is a name

9

ed ::= cd | $vd | (ed, ed, ..., ed)d | (ed/α::en)d

| (for $v in ed return ed)d

| (let $v := ed return ed)d

| (〈en〉ed〈/en〉)d

Figure 7: Annotated XQuery

Γ
 c→ cε
(PCST)

Γ(v).btype = ”let”

Γ
 $v → Γ(v).expr
(PLVAR)

Γ(v).btype = ”for”

Γ
 $v → $v1
(PFVAR)

Γ
 e1 → e′d1
1 . . . Γ
 eN → e′dN

n

Γ
 (e1, . . . , eN)→ flatten (e′d1
1 , . . . , e′dN

N)[d1,...,dN]
(PSEQ)

Γ
 e1 → e′d1
1 Γ ∪ {v �→ (e′d1

1 , ”let”)}
 e2 → e′d2
2

Γ
 let $v := e1 return e2 → e′d2
2

(PLET)

Γ
 e1 → e′d1
1 Γ ∪ {v �→ (e′d1

1 , ”for”)}
 e2 → e′d2
2

Γ
 for $v in e1 return e2 → (for $v in e′d11 return e′d22)#d2
(PFOR)

e→ e′d e′′d′ = child fusion e′d en

Γ
 e/ child :: en→ e′′d′
(PCSTP)

e→ e′d e′′d′ = self fusion e′d en

Γ
 e/ self :: en→ e′′d′
(PSSTP)

e→ e′d e′′d′ = parent fusion e′d en

Γ
 e/ parent :: en→ e′′d′
(PPSTP)

Γ
 e→ e′d1 d2 = new rootD e′d3 = dc assign e′ d2.1
Γ
 〈en〉e〈/en〉 → 〈en〉e′d3〈/en〉d2

(PELM)

Figure 8: An Overview of Our XQuery Fusion

test which can be a tag name or ∗ (an arbitrary tag), a “for” expression, a “let”
expression, or an element construction expression 〈en〉e〈/en〉.

As seen in the introduction, to guarantee the correct transformation, we should
pay attention to the context and the order of subexpressions. To this end, we would
like to associate all expressions, old and new in the later transformation, with an
extended Dewey code. Recall that the usual Dewey code is basically in the form of
a path encoding such as r.3.2 (which denotes a subexpression which is the second
subexpression of the third subexpression of the expression with code r.) The ex-
tension is the code of the form r#[d1, . . . , dn] for the “for” expression, where di’s
are again the extended Dewey code. The formal definition of the extended Dewey

10

code is given in Figure 6. Informally, we may consider it as

d ::= ε | r.d | r#[d1, . . . , dm]

where ε denotes the unknown code. This code is assigned to both expressions
which are occurred in outside of element constructors and ones which cannot be
partial evaluated. Again note that the XQuery fusion does not always succeed. The
algorithm handling the fail case is shown in Section 5.

The partial order on the extended Dewey codes are essentially the dictionary
order. For example, r.1.2 < r.1.3, r.1 < r.1.2 hold. But the following pairs of
codes are incomparable: (ε, r) is incomparable because ε is the unknown code;
(r,r′) is incomparable if r
= r′; and (r.1#[3], r.1#[1, 2]) is incomparable because
they represent interleaved document orders of the elements produced by a “for”
expression. Whereas, as will be seen later, sorting and duplicate elimination on
[r.1#[3], r.1#[1, 2]] results in r.2#[1, 2, 3] to merge two “for” expressions into
one “for” expression because they have the same prefix until #, say r.1. This
operation will be appeared as remove duplicate (dc sort [r.1#[3], r.1#[1, 2]]) in
Section 3.2 and as [] ∼D

�⊕D≺D
[r.1#[3], r.1#[1, 2]] in Section 4.

Now we can add annotations of the extended Dewey codes to XQuery expres-
sion as in Figure 7. We sometimes omit the annotation if it is clear from the context.
To simplify our presentation, we will assume that there is a global environment for
storing all annotated expressions during our fusion transformation, and a function

getExpGlobal(r)

that can be used to extract the expression whose code is r from the global environ-
ment.

3.2 Fusion Transformation

Figure 8 summarizes our fusion transformation on XQuery expressions. This fu-
sion is defined in terms of a set of inference rules. In these rules, a judgment of the
form4

Γ
 e→ ed

indicate that, for a given environment Γ (mapping XQuery variables bound by
“let” or “for” to annotated expressions), the XQuery expression e complies into
the annotated expressions ed. As will be seen later, the annotation is used to keep
track of information of the order and the context among expressions, and it plays
an important role in our fusion transformation. When the fusion transformation is
finished, we can ignore all the annotation and give a normal XQuery expression as
the final result.

The definition of our fusion in Figure 8 is rather straightforward. For a con-
stant expression c, we return itself but annotate it with the Dewey code ε. For a

4This form gives the intuition of our fusion algorithm. This will be changed later.

11

dc assign c r = cr dc assign $v r = $v r

dc assign (e/c) r = (e/c)r (DCSTP)

dc assign (e1, . . . , en) r = (e1, . . . , en)[r1,...,rn]

where r0 = r e′i = dc assign ei ri−1 ri = succ(extract dc e′i) (DCPSEQ)

dc assign (<t>e</t>) r = <t>e′</t>r

where e′ = dc assign ei r.1 (DCPEC)

dc assign (for $v in e0 return e) r = (for $v in e0 return e′)r#bs

where e′ = dc assign e 0 bs = extract dc e′

(DCPFOR)

Figure 9: Dewey code propagation

variable, if it is bounded by the outside “let”, we retrieve its corresponding anno-
tated expression from the environment, otherwise it must be a variable bound by
the outside “for” and we put the extended Dewey code 1 to the variable when its
corresponding expression has an extended Dewey code except for ε. Otherwise we
put ε to the variable bound by the outside “for”. Note that the reason why the anno-
tation of the variable bound by “for” always is 1 is described later. for a sequence
expression, we partially evaluate each element expression, and then group them to
a new sequence annotated with a Dewey that are gathered from the result of each
element expression. Note that we use flatten to remove nested sequences (e.g.,
flatten((er1

11, e
r2
12)

[r1,r2], er3
3)[[r1,r2],r3] = (er1

11, e
r2
12, e

r3
3)[r1,r2,r3]). For a location step

expression e/α::en , we perform fusion transformation to eliminate unnecessary
element construction in e after partially evaluating e. We will discuss the defini-
tions of the three important rules (PCSTP),(PSSTP) and (PPSTP) in Section 3.2.2.
For a “let” expression, we first partially evaluate the expression e1, and then par-
tially evaluate e2 with an updated environment and return it as the result. Note that
this rule eliminate variables bound by “let” by expanding variables using Γ. For a
“for” expression, we do similarly as for a “let” expression except that we finally
produce a new “for” expression by gluing partially evaluated results together. For
an element construction, after partially evaluating its content expression e to e′, we
create a new Dewey code for annotating this element, and propagate this Dewey
code information to all subexpression in e′ (with function dc assign) so that we
can access (recover) this element constructor when processing subexpressions of
e′. It is this trick that helps solving the problem in 〈t〉($v/c, $v/a)〈/t〉/c/.. in
Introduction. We will discuss this Dewey code propagation in Section 3.2.1.

12

3.2.1 Dewey Code Propagation

Propagating the Dewey code of an element construction to its subexpressions(content
expressions) plays an important role in constructing our rules (Section 3.2.2) for
correct fusion transformation.

Figure 9 defines a function dc assign e r:

dc assign :: XQueryD → D → XQueryD

which is to propagate the Dewey code r into an annotated expression e by assign-
ing proper new Dewey codes to e and its subexpressions. We will explain some
important equations in this definition. Note that we write e− to denote that the
Dewey code of e is “don’t care”.

The equation (DCPSEQ) places horizontal numbering to sequence expressions.
Function succ is used to enforce numbering using strictly greater value relative
to previously processed expressions (e.g., succ r.1 = r.2). (DCPEC) introduces
vertical structure to the numbering by initiating dc assign for subexpression e by
adding “.1” to its second parameter. The equations that needs additional attention
is (DCSTP) and (DCPFOR) above. In (DCSTP), it may seem unusual for dc assign
not to recurse subexpression e. However, considering that path expression itself do
not introduce additional parent-child relationship, and that dc assign always han-
dle expressions that is already partially evaluated, there is no additional chance to
simplify the path expression further using Dewey code allocated to the subexpres-
sion. Particularly characteristic equation (DCPFOR), which introduces # structure
to the Dewey code, numbers the expression e at return clause. Note that the second
parameter to recursive call for e is reset to 0. bs that reflects the horizontal structure
produced by the return clause is combined by the # sign to produce r#bs as the
top level code allocated to the “for” expression.

3.2.2 Fusion Rules

Our fusion transformation on e/α::en is based on the three fusion rules (functions)
(PCSTP), (PSSTP) and (PPSTP) in Figure 10, which correspond to three types of
axis. The basic procedure is as follows: (1) Extract (get) subexpressions accord-
ing to the axis α; (2) Select those who produce nodes whose name is equal to
the tag name en using a filter; (3) Sort the remained subexpressions according to
their Dewey codes; (4) If the above sort step succeeds, we remove the duplicated
subexpressions and return its sequence as the result, otherwise we give up fusion.

More concretely, consider the definition of child fusion. We use get children e
to get a sequence of subexpressions that contribute to producing children of the
XML document that can be obtained by evaluation of e, and use filter(equal to en)
function to keep those that are equal to en where filter p xs = [x | x ← xs , p x].
The resulting sequence expression is sorted according to their Dewey codes by
dc sort. Since not all Dewey codes are comparable, we may fail in this sorting. If
the sorting succeeds, we return a sequence expression by removing all duplicated

13

element subexpressions (remove duplicate), otherwise we give up fusion by re-
turning the original expression e/ child :: en. We will show the precise algorithm
handling this fail case in Section 5.

3.2.3 Examples

We demonstrate our fusion transformation by using some examples. For readabil-
ity, we use “/” for “child::” and “/..” for “parent::”.

First, Figure 11 shows how an example of our fusion transformation for
〈t〉($v/c, $v/a)〈/t〉/c shown in Section 1. Note that for a space limitation, we
use (A), (B), (C) and (D) instead of (PCSTP), (PELM), (PSEQ) and (PFVAR),
respectively in Figure 11. So, for 〈t〉($v/c, $v/a)〈/t〉/c/.., which is also from
Section 1, We can get the correct expression by using the following transforma-
tion;

Γ
 〈t〉($v/c, $v/a)〈/t〉/c → ($v/c)d1 .1

〈t〉($v/c, $v/a)〈/t〉d1 = parent fusion ($v/c)d1 .1 ∗
Γ
 〈t〉($v/c, $v/a)〈/t〉/c/.. → 〈t〉($v/c, $v/a)〈/t〉d1

(PPSTP)

Next, consider the following expression (Q7),

Q 7. let $v := 〈a〉()〈/a〉 return ($v, $v)/ self :: a

In (Q7), the subexpression ($v, $v)/ self :: a is redundant because duplicate
elimination is needed for this subexpression. Figure 12 shows this transformation.

For more complicated case, we show that our extended Dewey order encoding
of “for” expressions occurring inside an element constructor requires to append
“#” to the extended Dewey code. This is the prominent feature of our extension
to the extended Deweys’ which is explained using (((Q4)), ((Q5)))/ self :: ∗
described in Section 2.2. Before we explain this query, consider (Q3) which is
also described in Section 2.2. Partial evaluation of (Q3) assigns the extended
Dewey code shown in Figure 13. So, ((Q3)/d) is transformed in the way shown
in Figure 14. Also, ((Q3)/c) is transformed in the way shown in Figure 15. Now,
return to ((Q3)d/,(Q5)/c)/ self :: ∗. With the above results, the partial evalu-
ation performs shown in Figure 16

4 Properties on Extended Dewey Order

This section describes an algebraic structure of sorting and duplicate elimination
in the extended Dewey Order.

Both sorting by dc sort and duplicate elimination by remove duplicate take
place at the same time. This is achieved on a sequence of Dewey codes [d1, d2, . . . , dn]
by

[] ∼D
�⊕D≺D

[d1, d2, . . . dn]

14

child fusion :: XQueryD → QName → XQueryD

child fusion ed en =
{

remove duplicate (e′1, ..., e
′
N) if dc sort succeeds

(ed/ child :: en)ε otherwise

where (e′1, ..., e
′
N) = dc sort(filter(equal to en)(get children e))

(CFUSION)

self fusion :: XQueryD → QName → XQueryD

self fusion ed en =
{

remove duplicate (e′1, ..., e
′
N) if dc sort succeeds

(ed/ self :: en)ε otherwise

where (e′1, ..., e
′
N) = dc sort(filter(equal to en)(get self e)) (SFUSION)

parent fusion :: XQueryD → QName → XQueryD

parent fusion ed en =
{

remove duplicate (e′1, ..., e
′
N) if dc sort succeeds

(ed/ parent :: en)ε otherwise

where (e′1, ..., e
′
N) = dc sort(filter(equal to en)(get parent e))

(PFUSION)

get children :: XQueryD → XQueryD

get children c = ()[] get children $v = ($v/ child :: ∗)ε

get children ()[] = ()[]

get children (e1, ..., eN) = flatten ((e′1, ..., e
′
N)[d1,..,dN])

where e′i = get children ei di = extract dc(e′i) (GCSEQ)

get children (e/ child :: en) = (e/ child :: en/ child :: ∗)ε

get children (〈en〉ed〈/en〉) = ed (GCEC)

get children (for $v in e return (e1, ..., eN))r#[b1,...,bN]

=

⎛
⎜⎜⎝

for $v in e return (e11, e12, . . . , e1n1 ,
e21, e22, . . . , e2n2 ,
· · ·
eN1, eN2, . . . , eNnn)

⎞
⎟⎟⎠

r′

where (ei1, . . . , eini) = get children ei rij = extract dc e′ij
r′ = r# [b1.r11, . . . , b1.r1n1 ,

b2.r21, . . . , b2.r2n2 ,
...
bN .rN1, . . . , bN .rNnn]

(GCFOR)

get self, get parent :: XQueryD → XQueryD

get self er = er get parent er.(n|?) = getExpGlobal(r)

Figure 10: Fusion rules for three kinds of axis

15

Γ(v).btype = ”for”

Γ
 $v→ $v1
(D)

($v/c)ε = cf $v1 c

Γ
 $v/c→ ($v/c)ε (A) · · ·
Γ
 ($v/c, $v/a)
→ ($v/c, $v/a)[ε,ε]

(C)

d1 = new rootD
($v/c, $v/a)d′

= da ($v/c, $v/a) d1.1
d′ = [d1.1, d1.2]

Γ
 〈t〉($v/c, $v/a)〈/t〉 → (〈t〉($v/c, $v/a)〈/t〉)d1
(B) cf (〈t〉($v/c, $v/a)〈/t〉)d1 c

= ($v/c)d1.1

Γ
 〈t〉($v/c, $v/a)〈/t〉/c→ ($v/c)d1.1
(A)

where we use cf for child fusion and da for dc assign.

Figure 11: Our fusion transformation for 〈t〉($v/c, $v/a)〈/t〉/c.

d1 = new rootD
Γ
 〈a〉 () 〈/a〉
→ 〈a〉 () 〈/a〉d1

(PELM)

Γ′(v).expr
= 〈a〉 () 〈/a〉d1

Γ′
 $v
→ 〈a〉 () 〈/a〉d1

(PLVAR)

Γ′(v).expr
= 〈a〉 () 〈/a〉d1

Γ′
 $v
→ 〈a〉 () 〈/a〉d1

(PLVAR)

Γ′
 ($v, $v)→ (〈a〉 () 〈/a〉, 〈a〉 () 〈/a〉)[d1,d1]
(PSEQ)

Γ′
 ($v, $v)/ self :: a→ 〈a〉 () 〈/a〉d1
(PSSTP)

Γ
 let $v := 〈a〉()〈/a〉 return ($v, $v)/ self :: a→ 〈a〉 () 〈/a〉d1
(PLET)

where we use Γ′ for Γ ∪ {v �→ (〈a〉 () 〈/a〉d1 , ”let”)}.

Figure 12: Our fusion transformation of let $v := 〈a〉()〈/a〉 return ($v, $v)/ self ::
a.

where binary operator ∼D
�⊕D≺D

is defined below. Compatibility test between the
members of a sequence of Dewey codes — failure of the test causes a failure of the
partial evaluation (which is recovered at the caller of this operation by restoring the
original expression) — and the unification of two Dewey codes (possibly leads to
unification of two for expressions into one) are implemented using orderable and

· · ·
Γ
 for $v in eb return ($v/c, $v/d)
→ (for $v in eb return ($v/c, $v/d))ε

(PFOR)

d1 = new rootD
dc assign (for $v in eb return ($v/c, $v/d)) d1.1
= (for $v in eb return ($v/c, $v/d))r1 .1#[1,2]

Γ
 (Q3)→ 〈a〉 for $v in eb return ($v/c, $v/d)〈/a〉d1
(PELM)

Figure 13: Partial evaluation of (Q3).

16

...

Γ
 (Q3)→ 〈a〉 for $v in eb return ($v/c, $v/d)〈/a〉d1
(PELM)

(for $v in eb return $v/d)d1 .1#2

= child fusion 〈a〉 for $v in eb return ($v/c, $v/d)〈/a〉d1 d

Γ
 (Q3)/d→ (for $v in eb return $v/d)d1.1#2
(PCSTP)

Figure 14: Partial evaluation of (Q3)/d

...

Γ
 (Q3)→ 〈a〉 for $v in eb return ($v/c, $v/d)〈/a〉d1
(PELM)

(for $v in eb return $v/d)d1 .1#1

= child fusion 〈a〉 for $v in eb return ($v/c, $v/d)〈/a〉d1 c

Γ
 (Q3)/c→ (for $v in eb return $v/c)d1.1#1
(PCSTP)

Figure 15: Partial evaluation of (Q3)/c

⊕D, respectively.

DEFINITION 4.1 (distinctly ordered sequences). For a given sequence S =
〈y1, y2, · · · , yn〉, S is distinctly ordered under � when the following conditions
hold.

• All elements of S are in a total order under �, i.e.,
∀y, z, w ∈ S,

y � z ∧ z � y ⇒ y ∼ z (1)

y � z ∧ z � w ⇒ y � w (2)

y � z ∨ z � y (3)

and

• That S is strictly monotonic which is defined as the followings,

1. [] is a strictly monotonic, and

...

Γ
 (Q3)/d→ ed1.1#2
1

(PCSTP) ...

Γ
 (Q3)/c→ ed1.1#1
2

(PCSTP)

Γ
 ((Q3)/d,(Q3)/c)→ (ed1.1#2
1 , ed1.1#1

2)
(PSEQ)

(for $v in eb return ($v/c, $v/d))d1.1#[1,2]

= self fusion (ed1.1#2
1 , ed1.1#1

2)[d1.1#2,d1.1#1] ∗
Γ
 ((Q3)/d,(Q3)/c)/ self :: ∗ → (for $v in eb return ($v/c, $v/d))d1.1#[1,2]

(PSSTP)

where we use e1 for for $v in eb return $v/d and e2 for for $v in eb return $v/c

Figure 16: Partial evaluation of (((Q3)/d), ((Q3)/c))/ self :: ∗.

17

2. for a strictly monotonic sequence ys, y:ys is also strictly monotonic iff.

∀y′ ∈ ys(y ≺ y′).

PROPERTY 4.2. For a given distinctly ordered sequence y:ys, the following prop-
erties hold by DEFINITION 4.1.

(i) x:ys is a distinctly ordered where x ∼ y.

(ii) x:y:ys is a distinctly ordered where x ≺ y.

DEFINITION 4.3 (Preservation of order). Binary operator ⊕ defined over a total
order set under � preserves the order if for any elements y1, y2 in the total order
set,

y1 ∼ y2

(y1 ⊕ y2) ∼ y1
(PRESO)

holds.

Ordered insertion (one to many)(∼�⊕
≺)

DEFINITION 4.4 (Ordered insertion ∼�⊕
≺). Binary operator ∼�⊕

≺ returns, for a
list on the left operand, a new list in which y on the right operand is inserted by
the following inference rules.

|y| → y′

([] ∼�⊕
≺ y)→ [y′]

z ∼ y (z ⊕ y)→ v

((z:zs) ∼�⊕
≺ y)→ v:zs

y ≺ z

(z:zs) ∼�⊕
≺ y)→ (y:z:zs)

z ≺ y (zs ∼�⊕
≺ y)→ zs’

((z:zs) ∼�⊕
≺ y)→ z:zs’

THEOREM 4.5 (Ordered insertion). For any distinctly ordered sequence S under
�, S∼�⊕

≺ y is also distinctly ordered under � where ⊕ satisfies (PRESO).

Proof. Induction on the sequence S is used for the following cases;

(i) S is []: []∼�⊕
≺ y, which is [y′] by the first definition of ∼�⊕

≺, is also distinctly
ordered by DEFINITION 4.1

18

(ii) S is z:zs: It is sufficient to examine the following each case in binary relation
between z and y, because both z and y are in a total order set under �.

(a) z ∼ y: S∼�⊕
≺ y, which is (z ⊕ y):zs by the second definition of ∼�⊕

≺,
is also distinctly ordered by PROPERTY 4.2 (i) and (PRESO).

(b) y ≺ z: S∼�⊕
≺ y, which is y:z:zs by the third definition of ∼�⊕

≺, is also
distinctly ordered by PROPERTY 4.2 (ii).

(c) z � y ∧ y ⊀ z: This implies z ≺ y by totality(3). So, the fourth
definition is applied. The fourth definition is rewritten as follows;

z1 ≺ y ((z2:zs) ∼�⊕
≺ y)→ z′:zs′

((z1:z2:zs) ∼�⊕
≺ y)→ (z1:z′:zs)

In the above inference rule, (z′:zs) is distinctly ordered by the inductive
hypothesis. So to see that (z1:z′:zs) is distinctly ordered, we have to
show z1 ≺ z′ because of PROPERTY 4.2 (ii). Now, the following cases
in relation between y and z2 are examined.

i. y � z2: By the second and the third definition of ∼�⊕
≺, z′ ∼ y

holds. So, (z1 ≺ y ∧ z′ ∼ y) implies z1 ≺ z′ because of z1, y, z′

in a total order set under �.
ii. z2 ≺ y: By the fourth definition of ∼�⊕

≺, z′ ∼ z2 holds. So,
(z′ ∼ z2 ∧ z1 ≺ z2) implies z1 ≺ z′.

Ordered union (many to many)(∼�⊕≺)
DEFINITION 4.6 (Ordered union (many to many)). For sequences in which all
elements are in a total order under � where ⊕ satisfies (PRESO), binary operator
∼�⊕≺ is defined as the following inference rules.

(zs ∼�⊕≺ [])→ zs

(zs ∼�⊕
≺ y)→ zs ′ zs ′∼�⊕≺ ys → vs

zs ∼�⊕≺ (y:ys)→ vs

THEOREM 4.7 (Ordered union). For any distinctly ordered sequence S1 under �,
(S1 ∼�⊕≺ S2) is also distinctly ordered under � where ⊕ satisfies (PRESO).

Proof. Induction on the sequence S2 is used for the following cases;

(i) S2 is []: (S1 ∼�⊕≺ []), which is S1 by the first definition of ∼�⊕≺, is also
distinctly ordered.

19

(ii) S2 is y:ys : For any distinctly ordered sequence S1 under �, (S1 ∼�⊕≺ ys)
is also distinctly ordered sequence under � by the inductive hypothesis.
By THEOREM 4.5, (S1 ∼�⊕

≺ y) is a distinctly ordered sequence. So,
(S1 ∼�⊕≺ y:ys) is a distinctly ordered sequence by the second definition
of ∼�⊕≺.

Now, we can define the three important operators used in ordered union on D,
strict partial order ≺D, unifiable ∼D and unification ⊕D.

DEFINITION 4.8 (Strict Partial Order on D (≺)). The strict partial order on D is
defined as follows;

r1 = r2 x1 ≺x x2

r1 x1 ≺D r2 x2

(x
= ε) ∨ (x
= .? x′)
ε ≺X x

b1 ≺B b2

.b1 ≺X .b2

(n1 < n2) ∨ (n1 = n2 ∧ x1 ≺X x2)
n1x1 ≺B n2x2

DEFINITION 4.9 (Unifiable on D(∼)). The binary operator ∼ on D is defined as
follows;

r1 = r2 x1 ∼X x2

r1 x1 ∼D r2 x2

n1 = n2 x1 ∼X x2

n1x1 ∼B n2x2

ε ∼X ε

b1 ∼B b2

.b1 ∼X .b2

orderablebs bs1 ++bs2

#bs1 ∼X #bs2

20

DEFINITION 4.10 (Unification on D(⊕)). The binary operator ⊕ on D is defined
as follows;

r1x1 ∼D r2x2 (x1 ⊕X x2)→ x

(r1x1 ⊕D r2x2)→ r1 x

n1x1 ∼B n2x2 (x1 ⊕X x2)→ x

(n1x1 ⊕B n2x2)→ n1x

(ε⊕X ε)→ ε

.b1 ∼X .b2 (b1 ⊕B b2)→ b

(.b1 ⊕X .b2)→ .b

#bs1 ∼X #bs2 [] ∼B
�⊕B≺B

(bs1 ++bs2)→ bs
(#bs1 ⊕X #bs2)→ #bs

DEFINITION 4.11 (Orderable on a sequence of the extended Dewey code). For a
sequence of the extended Dewey code ds, unary predicate orderable is defined as
the following inference rule.

allord ds

orderable ds

where

allord []

allord d:[]

∀d′ ∈ ds, ord d d′

allord d:ds

((d1 ≺ d2) ∨ (d2 ≺ d1) ∨ (d1 ∼ d2))

ord d1 d2

5 The Revised Algorithm

In this section, we will show the revised algorithm with handling failure cases
and with more on fusing “for” expressions using auxiliary transformations. As
described in Section 3, our fusion does not always succeed. When the dc sort,
which is used in the three kinds of fusion function (PCSTP), (PSSTP) and (PPSTP)
in Figure 10, does not succeed, our fusion does not succeed. We show our fusion
algorithm handing this failure case in Section 5.1.

21

5.1 Handling failure cases

To propagate success or failure of our fusion, we extend the return values of the
three kinds of fusion functions by adding boolean values which indicate the status
of dc sort. If dc sort succeeds every fusion function returns with true, otherwise
with false.

child fusion :: XQueryD → QName → (Bool ,XQueryD)
self fusion :: XQueryD → QName → (Bool ,XQueryD)
parent fusion :: XQueryD → QName → (Bool ,XQueryD)

Figure 17 shows the revised version of our fusion transformation on XQuery ex-
pressions handling the failure cases. Now, the form of the judgement is changed
into

Γ
 e→ (true / false, ed)

which indicates that for a given environment Γ (mapping XQuery variables bound
by “let” or “for” to annotated expressions), the XQuery expression e compiles into
the annotated expressions ed with Boolean value which indicates that the fusion
succeeds (true) or not (false). This Boolean values play an important role in
fusing “let” and “for” expressions. For both a constant expression and a variable,
our fusion functions return with true. For a sequence expression, when one or
more subexpressions failed, there are two candidates; (1) recovering all the ele-
ment expressions, including ones fused successfully, back to input expressions; or
(2) doing nothing, namely there are fused expressions and nonfused expressions
mixed together because when the dc sort fails the input expressions are returned
with annotation ε. We chose (2) because for a sequence expressions as a top-level
expression, (2) is more efficient than (1). This choice makes the treatment of “let”
and “for” expressions in our fusion be intricate. For a “let” expression, when the
fusion of e1 failed, fusing e2 should be performed under an updated environment
with not the result of fusing e1 but the input e1 with annotating ε because of our
choice of (2) in fusing sequence expressions. We use a trinary operator,

b ? e1 : e2

for a Boolean value b, two expressions e1 and e2. This operator results e1 when
b is true and results e2 when b is false. For a “for” expression, we do sim-
ilarly as for a “let” expression. For a location step expression e/α::en, we use
the three extended functions, child fusion, self fusion and parent fusion, with re-
turning Boolean values. In these functions, if dc sort succeeds then the returned
Boolean value is true, otherwise false. For an element construction, we do sim-
ilarly as presented in Section 3 except the treatment of Boolean values.

22

Γ
 c→ (true, cε)
(PCST’)

Γ(v).btype = ”let”

Γ
 $v→ (true, Γ(v).expr)
(PLVAR’)

Γ(v).btype = ”for”

Γ
 $v → (true, $v1)
(PFVAR’)

Γ
 e1 → (b1, e
′d1
1) . . . Γ
 eN → (bN , e′dN

n) e′′d
′
= flatten ((e′d1

1 , . . . , e′dN
n)[d1,..,dN])

Γ
 (e1, . . . , eN)→ (b1 ∧ . . . ∧ bN , e′′d
′
)

(PSEQ’)
Γ
 e1 → (b1, e

′d1
1) Γ ∪ {v �→ (b1 ? e′d1

1 : eε
1)}
 e2 → (b2, e

′d2
2)

Γ
 let $v := e1 return e2 → (true, (b2 ? e′d2
2 : let $v := e1 return e2)

(PLET’)

Γ
 e1 → (b1, e
′d1
1) Γ ∪ {v �→ (b1 ? e′d1

1 : eε
1)}
 e2 → (b2, e

′d2
2)

Γ
 for $v in e1 return e2
→ (true, (for $v in (b1 ? e′d11 : eε

1) return (b2 ? e′d22 : eε
2))(b2 ? #d2 : ε))

(PFOR’)

Γ
 e→ (b1, e
′d) (b2, e

′′d′
) = child fusion e′d en

Γ
 e/ child :: en→ (b2, e′′d
′
)

(PCSTP’)

Γ
 e→ (b1, e
′d) (b2, e

′′d′
) = self fusion e′d en

Γ
 e/ self :: en→ (b2, e
′′d′

)
(PSSTP’)

Γ
 e→ (b1, e
′d) (b2, e

′′d′
) = parent fusion e′d en

Γ
 e/ parent :: en→ (b2, e
′′d′

)
(PPSTP’)

Γ
 e→ (b1, e
′d1) d2 = new rootD e′d3 = dc assign e′ d2.1

Γ
 〈en〉e〈/en〉 → (true, 〈en〉e′d3〈/en〉d2)
(PELM’)

Figure 17: XQuery fusion handling failure

6 Experimental Results

6.1 System overview

We have implemented a prototype system in Objective Caml. It consists of about
4600 lines of code. Although the framework has been represented using simple
function definitions, actual implementation uses more complex structure to achieve
static emulation of the store more precisely. Main enhancements in the actual
implementation are:

• achieving both sorting and duplicate elimination in the extended Dewey or-
der simultaneously using one higher-order function exploiting the algebraic
structure shown in Section 4.

• keeping track of the success or failure of the partial evaluation in order to
recover original expression when subexpression fails to simplify.

• maintaining the global environment for storing all annotated expressions dur-
ing our fusion transformation as 4-ary relation of (e, o, c, d) where,

– e denotes an XQuery expression,

23

s

a

b ...

100/1000

...

b

b b b

100/1000

c

d d...

10000

r1

...

a

b b

b

b ... b

100/1000 100/1000

r2

...

a

b b

b

b ... b

100/1000100/1000

1 step

Figure 18: Schema mappings in Qa

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 5 10 15 20 25 30

tim
e[

s]

steps

N(100)
R+O(100)

O(100)
N(1000)

R+O(1000)
O(1000)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 5 10 15 20 25 30

tim
e[

s]

steps

N(10)
R+O(10)

O(10)
N(100)

R+O(100)
O(100)

Figure 19: Times for Qa(left) and Qb(right).

– since annotations for the extended Deweys’ are associated with nodes
of abstract syntax trees, the node-id o needs to be maintained,

– c denotes a context of an expression e. For example, when e occurs in
a return expression of a for expression, we need to keep this context
as Deweys’ prefix.

– d denotes a Dewey code of e.

Our fusion algorithm adds information for annotated XQuery to this relation.
The function getExpGlobal(r) is implemented by using this relation.

Currently it works stand-alone reading XQuery expression from standard input and
produces rewritten XQuery to standard output.

6.2 Settings and Results

While actual evaluation numbers are predictable, for example from Manolescu
et al. [2006], we have tested two kinds of queries Qa(n) and Qb(n) using Galax5

version 1.0 on 2.6GHz Intel Core2 Duo with 4GB RAM, running MacOS 10.5.6.
Both queries are synthetic for XML data integration systems with n steps as
schema mappings inspired by Tatarinov and Halevy [2004].
Qa(n), which is for a document “d1.xml” is shown in Figure 20. In the

“d1.xml”, the root node s has three child nodes a, b and c shown as the left-most

5http://www.galaxquery.org/, default optimization option turned on.

24

let $r1 := <r1>{let $s := doc(“d1.xml”)/s
return (<a>{$s/b/b},

{$s/a/b})}</r1>
return
let $r2 := <r2>{(<a>{$r1/b/b},

{$r1/a/b})}</r2>
return
...
let $rn := <rn>{(<a>{$r(n-1)/b/b},

{$r(n-1)/a/b})}</rn>
return
let $v := ($rn/b,$rn/a)
return $v/b

Figure 20: Test queries Qa(n)

tree in Figure 18. We prepared two documents, in which the number of b elements
at level 3 under the a and b elements at level 2 (where the root is at level 1) is
100/1000. In Qa, each step of schema mapping swaps b elements at level 3 under
a element with ones under b element. This mapping is shown in Figure 18. The
left graph in Figure 19 shows the execution times for naive queries(N(100) and
N(1000), optimized queries(O(100) and O(1000)) and query rewriting costs plus
optimized queries(R+O(100) and R+O(1000)) for two documents, respectively.
Note that since naive queries produce redundant intermediate results in propor-
tional to the number of steps, the execution times are linear with respect to steps.
Whereas, since optimized queries rewritten by our prototype system always de-
generate to queries to the extensional DB only, the execution time remain constant.
This figure shows that the rewriting costs are not neglectable when the steps are
increased. Most of this overhead comes from the global environment that is kept in
memory. Since the global environment is only used in solving reverse axis, it can
be safely discarded when input queries include forward axis only. This optimiza-
tion will be incorporated in the next version of our prototype system. For an even
number of steps, our prototype system rewrites Qa(n) into the optimized query,
(doc(“d1.xml”)/s/a/b,doc(“d1.xml”)/s/b/b,()).
Qb(n), which is for a document “d2.xml” is shown in Figure 21
For “for” expressions, we prepared the two documents “d2.xml” shown in the

left tree in Figure 22. In this document, the root node s has 10/100 t elements,
and each t element has two elements a and b at level 3. Under both of the a and
b elements, there are 10/1000 b elements at level 4. In Qb, each step of schema
mapping swaps b elements at level 4 under the a elements with ones under the
b elements. This mapping is shown in Figure 22. The right graph in Figure 19
shows the execution times for naive queries, optimized queries and rewriting plus
optimized queries, where the symbols N, O and R+O have the same meanings as

25

let $r1 := <r1>{for $t1 in doc(“d2.xml”)/s/t
return <t>{(<a>{$t1/b/b},

{$t1/a/b})}</t>}
</r1>

return
let $r2 := <r2>{for $t2 in $r1/t

return <t>{(<a>{$t2/b/b},
{$t2/a/b})}</t>}

</r2>
return
...
let $rn := <rn>{for $tn in $r(n-1)/t

return <t>{(<a>{$tn/b/b},
{$tn/a/b})}</t>}

</rn>
return
let $v := ($rn/t/b,$rn/t/a)
return $v/b

Figure 21: Test queries Qb(n)

s

a

b ...

10/100

...

b

b b b

10/100

t

a

b ...

10/100

...

b

b b b

10/100

t

r1

t

b

b ...

10/100

...

a

bb b

10/100

t...

...

a

b b

10/100

b

b ...

10/100

b

1 step

10/100... ... 10/100 ...

Figure 22: Schema mappings in Qb

in Qa. Compared to Qa, R+O always outperform N showing that eliminated re-
dundant evaluation costs of intermediate results that are (repeatedly) created by the
“for” expressions always exceeded the rewriting overhead. For an odd number of
steps, our prototype system rewrites Qb(n) into the following optimized query;
for $t1 in doc(“d2.xml”)/s/t return ($t1/b/b,($t1/a/b,()))

7 Conclusion

In this paper, we proposed a new rewriting technique for XQuery fusion to elim-
inate unnecessary element construction in the expressions while guaranteeing
preservation of document order. The prominent feature of our framework is in

26

its static emulation of XML store and assignment of extended Deweys’ to the
expressions, which leads to easy construction of correct fusion transformation.

References

W.N. Chin. Safe fusion of functional expressions. In Proc. Conference on Lisp and
Functional Programming, pages 11–20, San Francisco, California, June 1992.

Leonidas Fegaras and David Maier. Optimizing object queries using an effective
calculus. ACM Trans. Database Syst., 25(4):457–516, 2000. ISSN 0362-5915.
doi: http://doi.acm.org/10.1145/377674.377676.

Bilel Gueni, Talel Abdessalem, Bogdan Cautis, and Emmanuel Waller. Pruning
Nested XQuery Queries. In CIKM, pages 541–550, 2008.

Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A Light but
Formal Introduction to XQuery. In Second International XML Database Sym-
posium,(XSym2004), pages 5–20, 2004.

Christoph Koch. On the role of composition in XQuery. In Proceedings of Eighth
International Workshop on the Web and Databases (WebDB 2005), 2005.

Jiaheng Lu, Tok Wang Ling, Chee-Yong Chan, and Ting Chen. From Region
Encoding To Extended Dewey: On Efficient Processing of XML Twig pattern
Matching. In Proc of VLDB, 2005.

Ioana Manolescu, Cedric Miachon, and Philippe Michiels. Towards micro-
benchmarking xquery. In Proceedings of the First International Workshop on
Performance and Evaluation of Data Management Systems (EXPDB 2006),
2006.

Jim Melton. Writing Wrongs: How Not To Build A Standard. In XIME-P
(Keynote), 2008.

Wim Le Page, Jan Hidders, Philippe Michiels, Jan Paredaens, and Roel Vercam-
men. On the expressive power of node construction in XQuery. In Proceedings
of Eighth International Workshop on the Web and Databases (WebDB 2005),
2005.

Igor Tatarinov and Alon Halevy. Efficient Query Reformulation in Peer Data Man-
agement Systems. In Proceedings of the ACM International Conference on Man-
agement of Data, pages 539–550, 2004.

Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eu-
gene Shekita, and Chun Zhang. Storing and Querying Ordered XML Using a
Relational Database System. In Proc of SIGMOD, 2002.

27

P.Wadler. Deforestation: Transforming programs to eliminate trees. In Proc. ESOP
(LNCS 300), pages 344–358, 1988.

World Wide Web Consortium. XQery1.0 and XPath2.0 Formal Semantics.
http://www.w3.org/TR/xquery-semantics, January 2007. W3C Recommenda-
tion.

28

