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Preface

This technical report contains the proceedings of the Sixth Aisan Workshop
on Foundations of Software (AWFS 2009) held in Tokyo, Japan, April 6-8,
2009, hosted by the GRACE Center of National Institute of Informatics.

The Asian Workshop on Foundations of Software (AWFS) addresses
foundational problems in current and future software design, development,
and analysis. The previous five AWFS were held in Hangzhou in 2002, Nan-
jing in 2003, Xi’an in 2004, Beijing in 2005, and Xiamen in 2007. It is our
best wish that this workshop would further stimulate various activities lead-
ing to formation of new forums for Asian researchers in the area of software
science and technology.

This year, we have three invited talks given by David Lorge Parnas, Yike
Guo, and Shinichi Honiden, nine presentations of regular papers (including
three short papers) selected from the submissions, eight short presentations
of published papers, and six short presentations of ongoing work.

On behalf of the program committee, we would like to thank Dong-
ming Wang and Tetsuo Ida, the program chairs of AWFS 2007, for their
invaluable advices on organization of AWFS 2009, the invited speakers who
agreed to give talks, all those who submitted papers, and all the referees
for their careful work in the reviewing and selection process. The support
of our sponsors is also gratefully acknowledged. In addition to the GRACE
Center of National Institute of Informatics, we are indebted to Asian Asso-
ciation for Foundation of Software (AAFS). Finally, we would like to thank
the members of the local arrangements committee, notably Yoshiko Asano,
Akimasa Morihata, Yingfei Xiong, and Yumi Yamasaki, for their invaluable
support throughout the preparation and organization of the symposium.

April 2009 Zhenjiang Hu
Jian Zhang
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Functional Documentation Using Tabular
Expressions

- An Integrated Approach to the Use of
Mathematics in Computer System Design

David Lorge Parnas
Emeritus Professor

McMaster University
Canada

Abstract
Over a period of more than 40 years, Computer Scientists have been proposing mathe-
matical approaches to software development. We have seen countless papers about:

• Description and analysis of networks of hardware elements (logic design)

• Specification and verification of sequential programs.

• Specification and verification of concurrently executing programs

• Specification and description of module and component interfaces

• Description of a module or components internal design decisions

• Description/Specification of a component or modules external behaviour

• Description/Specification of a computer systems external behaviour

In this talk I present an approach that can be applied to all of these problems. It
allows designers to use the same notation throughout and to check on the correctness of
the results at the end of each design phase. The functional approach defines the content
of each document. Tabular expressions have the precision of conventional mathematics
but present information in a way that is easy for developers to use.
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A Global-to-Local Approach to Rigorously Developing

Distributed System with Exception Handling
(Full version is published elsewhere. Included here for informal use only)

Chao Cai, Zongyan Qiu
LMAM and Department of Informatics, School of Math.,

Peking University, Beijing, China
E-mail: {caic, qzy}math.pku.edu.cn

Abstract

Cooperative distributed system covers a wide range of applications such as systems for
industrial controlling and business-to-business trading, which are usually safety-critical. Co-
ordinated exception handling (CEH) refers to exception handling in cooperative distributed
system, where exceptions raised on a peer should be coped with by all relevant peers in a
consistent manner. A crucial problem in using a CEH algorithm is how to develop peers which
are guaranteed coherent in both normal and exceptional executions. Straightforward testing
or model checking is very expensive. In this paper, we propose an effective way to develop
systems with correct CEH behavior. Firstly, we formalize a CEH algorithm by proposing a
Peer Process Language to precisely describe distributed systems and their operational seman-
tics. Then we dig out a set of syntactic conditions, and prove its sufficiency to ensure system
coherence. Finally, we propose a global-to-local approach, including a language for describing
distributed systems from a global perspective and a projection algorithm, for developing the
systems. Given a well-formed global description, a set of peers can be generated automat-
ically. We prove the system composed by these peers satisfies the conditions, that is, it is
always coherence and correct with respect to CEH.

Keywords: Distributed system, Exception Handling, Fault Tolerant, Formal Methods

1 Introduction

A cooperative distributed system involves several independent peers (subsystems) that work
together to implement some global function or achieve some common goal. Many application
systems fall into this category, e.g., industrial controlling system [24], patients’ embedded acces-
sorial system [5], railway scheduler [2], and business-to-business trading system. Many of these
systems are safety-critical, which may cause risks for human lives or great financial losses if not
fault-tolerant. Thus, it is crucial to guarantee that they provide intended behavior even when
some faults or errors occur in execution.

To achieve fault-tolerance, exception handling (EH) mechanism is often used as a recovery-
layer. With EH support, any perceptible fault or error are converted to some exception. The
language or platform offers a kind of control structures that allows programmers to describe the
replacement of the normal execution when exceptions occur. Most modern programming languages
include EH mechanism as a fundamental feature, for easily describing the application-specific logic
of the recovery procedures.

Although the EH mechanism for sequential programs is relative mature, it is not the case
for the distributed systems. Due to the decentralization and cooperation features, in considering
the exception handling here, we will inevitably meet two fundamental new problems: coordinated
exception handling and concurrent exceptions.

Coordinated exception handling (CEH) refers to the situation where an exception occurs on
one peer but cannot be dealt with by the peer locally. In this case, the exception should be

1



propagated to all relevant peers so that they can work collaboratively for returning the whole
system to a consistent state [4, 1]. Various reasons call for attention on concurrent exceptions in
CEH. Because peers in a system run parallelly and independently, two or more exceptions may
occur on different peers “simultaneously”. A typical situation is when a peer meets an exception
and notifies its partners for this, some partners may encounter other exception(s) before receiving
the message. For the coordinated handling to be possible, those situations should be integrated
into the cooperation model.

Randell and Xu et al [4, 22] developed an algorithm for exception handling in cooperative
distributed systems, based on the concept of “Coordinated Atomic” (CA) actions. The algorithm
copes with both problems mentioned above. However, the algorithm was informal described . To
introduce a linguistic mechanism is an important future work announced in [22]. One motivation
of the work presented here is to make the algorithm clearly defined and easy-usable.

A crucial problem in using the CEH algorithms is how to develop peers which are guaranteed
coherent in both normal and exceptional execution. On the one hand, a composed system con-
sists of a set of cooperative peers, where each peer participates several CAs and may encounter
exceptions anywhere in the execution. On the other hand, exceptions may be propagated in two
directions: either horizontally to other peers working in the same CA, or vertically to the enclos-
ing CA. Both situations make it very difficult to guarantee the system coherency. Straightforward
testing or model checking is very expensive. As shown in [21], checking a manufacture controlling
system generates 1034 states, and costs more than a week. As another motivation of our work, we
want to develop a new approach not only to rigorously develop distributed system with exception
handling, but also to provide effective static verification.

The first contribution we made is the definition of a Peer Process Language (PPL), by which
we can formally define peers and the composed systems. We give an operational semantics for
PPL, and embed the CEH algorithm in the semantics.

The second contribution is that we give a set of syntactic conditions for a group of peers with
nested scopes (the term we used for CA) to form a system with coherent behavior, and prove the
sufficiency of the conditions based on the operational semantics.

However, the syntactic conditions are not convenient enough for developers. To check a com-
posed system, we must compare all its peers pairwisely. As the most important contribution of
the paper, we propose a global-to-local design approach to facilitate system designers, inspired by
the idea of Web service choreography.

Our global-to-local approach suggests a three steps development: write a global specification,
validate it, and finally project it into a set of peer specification. We define a Global Protocol Lan-
guage (GPL) for the description of the global protocols, and a projection algorithm for automatic
generating the specification for each peer. The approach is superior in several aspects: the global
specification is easier to write; the conditions for well-behaved systems become much simpler on
the global level. The automatically generated peers, putting together, will show the intended
behavior described by the protocol. The system they composed will never deadlock w.r.t. CEH.

We implement the CEH framework formally defined here. A Java demonstration will be
discussed in the paper with some primitive recognition.

The rest of the paper is organized as follows. Section 2 devotes to language PPL and some
relative concepts. The CEH algorithm is introduced informally in Section 3, and the conditions and
properties for consistent systems are given in Section 4. The protocol language with a projection
algorithm is given in Section 5. Then we formalize PPL and CEH in Section 6, with proofs for the
sufficiency of conditions in Section 7. As a demonstration of CEH, we show an implementation of
CEH for threads in Java in Section 8. Finally, related work and conclusion are given.

2 A Peer Language

In order to formally study the cooperative systems with CEH, we define the Peer Process
Language (PPL) to describe individual peers in the first. There have been some efforts to design
such a language. COordinated Atomic LAnguage (COALA) is aimed to design CA actions [18].
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A : : = skip (skip)
| BA (basics)
| [e1, . . . , el]BA (ex-decl.)
| A; A (sequential)
| sn :{R, A,EH } (scope)

EH : : = e : A

BA : : = a (local act.)
| c! (send) | c? (receive)

Figure 1: Syntax of PPL

It is a formal language containing features such as pre/post conditions. Issarny [11] proposed an
object-oriented language supporting CEH. The language is rich with many details, e.g., arithmetic
expression and procedure definition. For easily understanding and formal proving, we define a
small language as an extension of CSP [10], to capture the kernel of a peer with respect to CEH.

The language PPL is built on three fundamental concepts.

• Peer. A distributed system consists of several peers (independent subsystems) which com-
municate with one another.

• Exception interface. Each activity performed by a peer may either complete successfully,
or fail and cause an exception. So each activity should be annotated by all the potential
exceptions it may cause.

• Exception block. Programs are structured as blocks to confine exception [8]. Just like EH in
common programming languages, an exception block contains a normal activity and a group
of exception handlers. In addition, each block contains a list of names of the peers involved.

The syntax of PPL is given in Figure 1. Here A denotes an activity. BA is the basic activity
which is either a local one or a communication. A local activity abstracts some real computations
done by a peer. We will use a, a1, . . . to denote local activities, and use c!, c? for the sending and
receiving through channel c. The exception declaration [e1, . . . , el]BA means that the execution of
BA may fail and cause one of the declared exceptions. A scope is an exception block, which has a
name sn and a body consisting of three components: R is a name-set of the participating peers;
A is the normal activity and EH is exception handlers. Conceptually, EH is a finite function
from exception names to recovery activities, if EH = e1 : A1, ..., el : Al, then EH (ei) = Ai,
(i ∈ {1, ..., l}). For scope sc, we use sc.Name, sc.R, sc.A and sc.EH to denote its name, set of
participating peers’ names, normal activity and exception handlers respectively.

Definition 1. A peer is defined as a pair, (r, sc), where r is name and sc is behavior. The
behavior is a scope. We will use α, α1 for peer definitions, and r, r1 for peer names. We will use
α.Name and α.SC to denote name and behavior of α.

Definition 2. A Composed System (simply, a system) consists of several peers. We will denoted
it as {α1, . . . , αn}.

By scanning a system, we can build up a context

Γ : R→ SNames→ Scopes

Here R is the set of peer names in the system, SNames the set of scope names, and Scopes the set
of scopes. Γ(r)(sn) is the definition of scope named sn in peer r.

3 CEH Algorithm: Informal Description

This section roughly explains how Randell’s CEH algorithm [22] works. We will formalize it by
operational semantics in Section 6.
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N

T1: ex/ex! or 
   ex?/ex!,k--

T7: ok! T10: ex?/k--

C

T3: k=0

T9:k=0

T6: ok?/k--

T8: ok?/k--

T4: ex

EH

T0: /k:=n

EF

T2:  (ex? or ok?)/k--

F

E

T5: 

Figure 2: State Graph

In a distributed system, each peer will execute a series of activities encapsulated in a hierarchy
of scopes. In the execution of a scope, a peer may be in one of six states, as depicted in Figure 2,
where N is the normal state. To facilitate a two-step commitment, C and F are used to denote
complete and finish states respectively. Other states are special for CEH, where E means the peer
or its partners encounter some exceptions, EH means the peer is handling an exception, and EF
means that the peer fails to handle an exception.

Figure 2 is the state transition graph of a peer in a scope with respect to CEH. Here T1, T2,
... are labels of transitions, k is a counter. The transitions are marked with “event/activity”
pairs. The event ex indicates the peer encounters an exception. Moreover, ex? and ex! stand
for receiving and sending an exception notification, ok? and ok! stand for receiving and sending
a complete notification, respectively. For example, T6:ok?/k-- means when receiving a complete
notification, the peer decreases k and does the transition.

Initially, a peer begins a scope at state N and sets the counter k as the number of partners in
the scope (T0). If an exception occurs or an exception notification is received, the peer stops its
normal flow, jumps to E and informs all partners (T1). To work collaboratively, the peer can not
start its handling before it knows that all peers in the same scope have entered state E (thus, k =
0). When the peer receives a notification from some partner, the counter decreases (T2). When k
becomes zero, the peer calls an exception resolution algorithm to determine an exception to handle
(T3). If an exception occurs in a handler, the scope is aborted and the exception propagates to the
outer scope (T4 to EF). Otherwise, if the handling ends normally, the peer exits the scope (T5).

On the other hand, if a peer completes the execution in a scope, it employs a two-step com-
mitment. Firstly, it sends a complete notification to all partners and turns to state C (T7). Then,
it waits there for the messages from its partners. If any partner encounters an exception, the peer
jumps to E (T10) and acts as what is stated above. Otherwise, each partner will send a complete
notification to the peer (thus, k = 0), it turns to F and finishes the scope (T9).

In transition T3, we need an algorithm for the peers to determine one exception to handle when
some exceptions happened. Many strategies can be adopted here, e.g., [4] organized all exceptions
into a tree and handled the minimal common ancestor when multiple exceptions detected, [20]
suggested a complete order for peers. The lexical order of handlers in a scope can also be used
here. Other considerations are possible. In the formal definition in Section 6, we wrap the strategy
into a function and leave it to the implementation.

In the previous paragraphs, we describe how a peer acts in a single scope. Generally, during the
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Figure 4: Consistent Scopes

execution, a peer will go through a set of nested scopes. Before a peer enters a nested scope, it will
push the all the information of current scope, including its state, the uncompleted activities and
the counter k, into a stack. Once the peer successfully finishes the nested scope, it pops the stack
and resumes the execution of this scope. When executing a nested scope, the peer may encounter
an exception while handling another exception; also it may receive an exception notification from
a partner in an outer scope. In both situations, the peer will abort the nested scope and handle
the exception in an outer one.

We will formalize the algorithm by detailed transition rules in Section 6.

4 Correctness and Consistent Conditions

Now we consider the correctness of the algorithm. Intuitively, for a composed system, we
want all peers to be coherent in both normal and exception situations. Basically, the following
requirements should be satisfied.

REQ-1. If no peer encounters an exception, all scopes will be completed normally.

REQ-2. If a peer encounters an exception in a scope, all peers involved in the same scope will
stop normal execution and go to handle a same exception.

REQ-3. A system is deadlock-free with respect to the CEH procedures.

These requirements seem simple, but not any set of peers can form such a coherent system.
For example, the two peers depicted in Figure 3 can not work cooperatively. Even if the two peers
are lucky to avoid all exceptions and complete all normal activities of the inner scopes. Then, r1
will notify r2 and wait for r2 to complete sn2. At the same time, r2 will wait for r1 to complete
sn1, and thus they fall into deadlock.

4.1 System Consistency

The counter-example in Figure 3 shows some clue for a consistent system: all peers in the
system should have inter-compatible scope hierarchies. Figure 4 (a) shows a positive example,
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isCo(P, Q) =



true if P = skip ∨ P = ε
isCo(P ′, Q) if P = ba;P ′, ba is a basic activity
isCo(P ′, Q) if P = sc;P ′ ∧ sc.Name 6∈ SN(Q)
isCo(P ′, Q′) if P = sc1;P ′ ∧Q = sc2;Q′

∧sc1 is scope-consistent with sc2

false if P = sc1;P ′ ∧Q = sc2;Q′

∧sc1.Name ∈ SN(Q) ∧ sc2.Name ∈ SN(P )
∧sc1 is not scope-consistent with sc2

isCo(Q,P ) otherwise

Figure 5: Consistent Activity

where all peers can be merged into a global graph, depicted as Figure 4 (b), where neither any
two scopes overlap, nor any message goes across the boundary of scopes. In the following of
this subsection, we will propose some syntactical conditions to capture these intuitions. To focus
on CEH, we assume the execution of normal sending, receiving and local activities will always
terminate, either normally or exceptionally. Then the conditions can be given as a definition for
consistent system.

Definition 3. We say system {α1, . . . , αn} is consistent, if the following conditions hold.

• Any two scopes appearing in same peer must have different names.

• if one scope (sn1 :{R1, A1,EH 1}) is nested in the other (sn2 :{R2, A2,EH 2}), i.e., it is in
A2 or EH 2, then R1 ⊆ R2.

• handlers in the outmost scope for each peer intend to perform a last-wish recovery, i.e., no
exception will be thrown any more.

• For any αi, αj ∈ {α1, . . . , αn}, αi.SC is “scope-consistent” with αj .SC. The concept “scope-
consistent” is defined below.

Definition 4 (Scope-Consistent). Scopes sc1 and sc2 are consistent, if sc1.Name = sc2.Name ∧
sc1.R = sc2.R, furthermore, sc1.A and sc2.A, sc1.EH and sc2.EH are consistent respectively.

Exception handers eh1 and eh2 are consistent, if dom eh1 = dom eh2, and eh1(e) is consistent
with eh2(e) for each e ∈ dom eh1.

Activities P and Q are consistent, if each pair of scopes with the same name appearing both in
P and Q are consistent, and these scopes have the same relative order and nest structures. ¤

In other words, two activities P and Q are scope-consistent, if isCo(P, Q) = true, where
function isCo() is defined in Figure 5, and SN(P ) denotes the set of scope names appeared in P .

The system shown in Figure 4 (a) is consistent, which can be merged into a global picture (b)
without intersectant scopes. In PPL, the peers are:

α1 = (r1, sn1 :{R1, c1?, ε})
α2 = (r2, sn1 :{R1, c1!; sn2 :{R2, c2!, ε}, ε})
α3 = (r3, sn1 :{R1, sn2 :{R2, c2?, ε}, ε})

where R1 = {r1, r2, r3}, R2 = {r2, r3}.

4.2 Properties of consistent systems

In this subsection, we propose several propositions and theories to show some properties of con-
sistent systems.
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We say a peer r terminates scope sc if it is either in scope sc and its state is F, or it has exited
from sc. We say a scope sc terminates if all its participating peers terminate the scope.

For the consistent systems, we propose several propositions and a theorem here.

Proposition 1. corresponding [REQ-1] In a consistent system, supposing all relative peers
have entered scope sn, if no peer will encounter any exception, then scope sn will terminate.

Proposition 2. corresponding [REQ-2] Suppose one or more exceptions happen in scope sn,
if all relative peers have entered sn and no exception happens in outer scopes, these peers will enter
state E, and determine an identical exception to handle.

Proposition 3. Suppose all relative peers have entered sn, and all its inner scopes will terminate,
if some exceptions happen, either in sn, or its outer scopes, or in inner scopes and propagate to
sn, then sn will terminate.

Theorem 1. corresponding [REQ-3] A consistent system will never deadlock.

These propositions and theorem will be formally proved in Section 7 based on an operational
semantics of PPL defined there.

Having the properties, we can determine whether a system is coherency by checking its peers
according to the conditions given in previous subsection. For these complicated conditions, the
checking would not be an easy job. To make the system developing easier, we will present a design
approach for consistent systems in the next section. The design approach enables us to specify
the system as a whole, and then generate the specification (with all scope structures) of each peer
automatically.

5 Global-to-Local: Design and Implementation

It is not easy to develop a set of peers to form a consistent system, due to the complex consistent
conditions (Section 4). The situation is even worse if the peers are developed by independent
organizations for business applications. To overcome this difficulty, we propose a global-to-local
development methodology, where a protocol is specified from a global viewpoint, then is used to
generate the peers which will always make up a consistent system. For this, we define in section
a protocol language GPL (for Global Protocol Language), then propose a projection to generate
peers in PPL from GPL specifications. The validation conditions are also discussed.

5.1 Protocol Language

GPL is designed for writing global scenario (protocols) of several peers by specifying their col-
laborative observable behavior in both normal execution and exception handling. GPL allows
sub-protocols to be nested in any depth:

C : : = 〈cn,R, A,EH 〉
EH : : = e : A
BA : : = ai | c[i,j] i 6= j
A : : = BA | [e1, . . . , el]BA

| C | A;A

A GPL protocol takes a similar form as a activity in PPL, except communications.
A protocol C consists of a name cn, a peer-name-set R, an activity A and some exception

handlers EH . A basic activity BA is either a local one ai, where i indicates that its performer
is peer ri, or a communication c[i,j] from ri to rj . An activity A can be a basic, perhaps with
exception declaration, a sub-protocol, or a sequential composition. The exception declaration is
similar to that in PPL, while c[i,j] with exception declaration means the exceptions may be raised
in ri or rj during the communication.

Similar to PPL, not every protocol following GPL syntax makes sense. Here the well-formedness
condition is much simple:
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π(ai, j) b=


ai if j = i
skip if j 6= i

π(c[i,j], k) b=
8
<
:

c! if k = i
c? if k = j
skip otherwise

π(A1; A2, i) b= π(A1, i); π(A2, i)
π([e1, . . . , el]B, i) b= [e1, . . . , el]π(B, i)

π(e : A, i) b= e : π(A, i)

π(〈cn, R, A,EH 〉, i) b=


cn :{R, π(A, i), π(EH , i)} if i ∈ R
skip otherwise

Figure 6: Natural Projection

Definition 5. A protocol is well-formed, if the protocol and all sub-protocols have different names,
each performer of the activities and handlers of a protocol are declared in its peer-name-set, and
each protocol’s peer-name-set is a subset of its containing protocol’s.

5.2 Projection and Implementation

A protocol describes collective behaviors of a group of peers from a global viewpoint. However,
protocols are not executable, their behavior should be implemented by cooperative peers. In this
subsection, we propose a projection algorithm for extracting the behavior description of each peer
from global protocols. Figure 6 defines a simple projection, which partitions a protocol to produce
the designated peer following its structure. We name it the natural projection.

With the projection, we can generate a composed system from a protocol. Suppose C is a
protocol with n peers (|C.R| = n). We define

π(C) =̂ {(C.R(i), π(C, i)) | i ∈ 1..n}

where C.R(i) is the name of the ith peer in C. We call π(C) the composed system defined by C.
For a well-formed protocol C, system π(C) satisfies all consistent conditions given in Section 4.

Thus we have:

Theorem 2. If C is a well-formed protocol, π(C) is a consistent composed system.

Corollary 1. If C is a well-formed protocol, π(C) is deadlock free w.r.t. CEH.

Further connection between PPL and GPL can be investigated if semantics for both languages
are given. Under some conditions, C and π(C) are behavioral equal in some sense. Interested
reader can refer to our previous work [13].

Now we have a global-to-local approach to design composed systems with CEH facility, which
can be summarized as follow steps:

1. Identify peers taking part in the work, and specify their collective behavior, either in normal
case or in the exception case from a global view point with GPL.

2. Check whether the global specification is a well-formed protocol.

3. Project the global specification to a set of peer specifications, and fill in the details for the
local activities.

Then we have a consistent composed system with collaborated exception handling support.
For a solid theoretical foundation of this methodology, we should give formal semantics for the

PPL and GPL and prove some properties, including the propositions and theories given in last
section. This is the work presented below.
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[Basic Cases]
r :〈σ, sn, s, skip, ε, θ〉 −→ r :〈σ, sn, s, ε, ε, θ〉
r :〈σ, sn, s, a, ε, θ〉 a−→ r :〈σ, sn, s, ε, ε, θ〉
r :〈σ, sn, s, [e1, . . . , el]A, ε, θ〉
−→ r :〈σ, sn, s, A, ε, θ〉

[N → E]
r :〈σ, sn, N, [e1, . . . , el]A, ε, θ〉
−→ r :〈σ, sn, E,notify(ei), ε, θ〉 i ∈ 1..l

r :〈σ, sn, N, A, (e, sn, r′)a ω, θ〉
−→ r :〈σ, sn, E,notify(e), ω, θ ⊕ {r′ 7→e}〉
[∗ → ∗]
r :〈σ, sn, s, A, (C, sn, r′)a ω, θ〉
−→ r :〈σ, sn, s, A, ω, θ ⊕ {r′ 7→ C}〉

[N → C]
r :〈σ, sn, N, ε, ε, θ〉
−→ r :〈σ, sn, N,notify(C), ε, θ〉

[E, C → E]
s = E ∨ s = C

r :〈σ, sn, s, A, (e, sn, r′)a ω, θ〉
−→ r :〈σ, sn, E, A, ω, θ ⊕ {r′ 7→ e}〉

[E → EH]
N /∈ ran θ

r :〈σ, sn, E, ε, ω, θ〉 −→
r :〈σ, sn, EH, handlerΓ(r, sn, θ), ω, dom θ × {N}}〉

[C, EH → F]
s = EH ∨ (s = C ∧ ran θ = {C})

r :〈σ, sn, s, ε, ε, θ〉 −→ r :〈σ, sn, F, ε, ε, θ〉
[Scope switch]
r :〈σ, sn, s, sn ′ :{R′, A′, EH ′}; A, ε, θ〉

−→ r :〈sn : (s, A, θ)aσ, sn ′, N, A′, ε, R′×{N}〉
r :〈sn ′ : (s′, A′, θ′)a σ, sn, F, ε, ε, θ〉

−→ r :〈σ, sn ′, s′, A′, ε, θ′〉
r :〈sn ′ : (s′, A′, θ′)a σ, sn, EH, [e1, . . . , el]A, ε, θ〉

−→ r :〈σ, sn ′, E,notify(ei), ε, θ
′〉 i ∈ 1..l

[∗ → EF]
sn0 ∈ dom σ ∨ sn0 = sn ′

r :〈sn ′ : (s′, A′, θ′)a σ, sn, s, A, (e, sn0, r
i)a ω, θ〉

−→ r :〈σ, sn ′, s′, A′, (e, sn0, r
i)a ω′, θ′〉

[Sequential]

r :〈σ, sn, s1, A1, ω, θ〉 t−→ r :〈σ, sn, s2, A
′
1, ω

′, θ′〉
r :〈σ, sn, s1, A1; A2, ω, θ〉

t−→ r :〈σ, sn, s2, A
′
1; A2, ω

′, θ′〉

Figure 7: Local Transition Rules

6 Semantics of PPL with CEH

To prove the propositions and theorems listed above, we formalize the CEH algorithm by a formal
operational semantics. Firstly, we define configuration of a single peer and a system, then give
transition rules for configurations.

6.1 Configurations

A peer may enter a series of nested scopes. A configuration of a peer is a tuple:

r :〈σ, sn, s, A, ω, θ〉
where r is the peer’s name, sn is the name of scope that the peer is executing, s is a state as we have
in Figure 2, A is the upcoming activity the peer will do. σ a stack recording the states of all scopes
where the peer has entered but not exited yet except current one. Message queue ω has elements
of the form (m, sn ′, r′), which means peer r′ sends message m from scope sn ′. Table θ records the
states of all partners in scope sn, which is a mapping Γ(r)(sn).R→ {N,C}∪{e | e is an exception}.
We will use ε to represent something (stack, queue, or set) empty.

For a peer defined as (r, sn :{R, A, EH}), its initial configuration is:

r :〈ε, sn,N, A, ε, R× {N}〉
This means that the peer is in the normal state initially (represented by N), with its activity A,
and all its partners in this scope are in normal state (represented by map R× {N}).

The global configuration of a system consists of configurations of all its peers:

G = {f1, . . . , fn}
It is the initial configuration if each fi is the initial configuration of peer ri.

6.2 Local Transition Rules

Transition rules for a peer locally are given in Figure 7. A rule is in the form of f t−→ f ′, where f
and f ′ are configurations, t an observable event. When t is null, we simply omit it. The rules are
classified into several groups. Here are explanations:
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[Local]

fi
t−→ f ′i i ∈ 1..n

{. . . , fi, . . .} t−→ {. . . , f ′i , . . .}
[Communication]
∃i, j ∈ 1..n• fi = ri :〈σi, sn, si, c!; Ai, ε, θi〉 and fj = rj :〈σj , sn, sj , c?; Aj , ε, θj〉

{. . . , fi, . . . , fj , . . .} c−→ {. . . , ri :〈σi, sn, si, Ai, ε, θi〉, . . . , rj :〈σj , sn, sj , Aj , ε, θj〉, . . .}
[Complete notification]

sni = snj

{. . . , ri :〈σi, sni, si, Ai, ωi, θi〉, . . . , rj :〈σj , snj , N, send(ri, C); Aj , ωj , θj〉 . . .} −→
{. . . , ri :〈σi, sni, si, Ai, ωi

a(C, snj , r
j), θi〉, . . . , rj :〈σj , snj , C, Aj , ωj , θj ⊕ {rj 7→ C}〉 . . .}

[Exception notification]
snj ∈ dom σi ∨ snj = sni

{. . . , ri :〈σi, sni, si, Ai, ωi, θi〉, . . . , rj :〈σj , snj , E, send(ri, e); Aj , ωj , θj〉 . . .} −→
{. . . , ri :〈σi, sni, si, Ai, ωi

a(e, snj , rj), θi〉, . . . , rj :〈σj , snj , E, Aj , ωj , θj ⊕ {rj 7→ e}〉 . . .}

Figure 8: Global Transition Rules

[Basic Cases] A peer can execute a local activity when its message queue is empty. The execution
may success or cause an exception if it has declared any one. If an exception appears, the
peer will enter state E, as the the rule below.

[N→ E] A peer may cause an exception if the executed activity declares some exception, and also
it may receives an exception notification. Then, it will turn to E, record its partner’s state,
and notify its partners by notify . The rule of notify is described in the relative global rule
below. Here ⊕ denotes overriding.

[∗ → ∗] No matter in which state, when receiving a completion notification, a peer records it.
[N→ C] When finishing normal execution, the peer notifies its partners by notify(C).
[E,C→ E] When receiving an exception notification in state E/C, the peer updates its state table

and turns to E.
[E→ EH] When a peer is in state E, and all its partners have exited normal state, thus, the state

table contains no “N”, the peer begins to handle exception. Here handlerΓ is a function
taking a peer name r, a scope name sn, and a state table θ as parameters. It determines
an exception and finds the handler for it. We wrap the resolution strategy into a function
resolve and leave it to the practice.

handlerΓ(r, sn, θ) =̂ Γ(r)(sn).EH(resolve(θ))

[C,EH→ F] If a peer knows all partners of its current scope complete, or it finishes exception
handling without any fault, it can exit current scope safely (ref. rule [Scope switch]).

[Scope Switch] If a peer meets a new scope, or finishes its work in a scope, it switches in/out
the scope. Here R × {N} means that all peers are in state N. If an exception happens or is
re-thrown in a handler, it is propagated to the enclosing scope.

[∗ → EF] If an exception notification from outer scope arrives, the peer aborts immediately current
scope, deletes messages of current scope. The premise means sn0 is an outer scope of r’s
current scope (named sn). Here ω′ is the message queue obtained by filtering out all messages
of form (-, sn, -) from ω.

6.3 Global Transitions

The global transition rules are listed in Figure 8, where we use “. . .” to denote some unchanged
part. A local transition induces a global transition ([Local]). Two peers communicate with each
other only when both are in the same scope and ready to communicate via the same channel
([Communication]). The communication is synchronous which is similar as in CSP [10].
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Some local rules transit to a configuration with a call notify(m) to send m to all partners in
the same scope, where m is C or some e. Without careful management, asynchronous approach
may induce deadlocks. A scenario is given in our report [3]. Here we realize notify(m) by a group
of synchronous sending, where send(ri,m) sends m to ri. An invocation notify(m) in scope sn by
r is equal to “send(r1,m); . . . ; send(rk,m)”, where {r1, . . . , rk} = Γ(r)(sn).R−{r}. It was better
if we had parallel construction to implement it as “send(r1,m) ‖ . . . ‖ send(rk,m)”.

In rule [Complete notification], peer rj sends a complete message to partners ri in snj that
is recorded in message queue. The premise asks the sender and receiver in the same scope. Rule
[Exception notification] is similar, except the requirement for ri is looser. Here snj ∈ dom σi

means that ri has entered the scope snj but not left.

7 Proofs for Theorem 1

Properties of consistent systems have been listed in Subsection 4.2. Now we given the skeleton of
the proof for Theorem 1 based on the formalization above. Firstly, some lemmas.

Lemma 1. A peer can exit a scope if one of the following situations occurs:
1. Its state table is full of C;
2. Some exceptions occurred in some outer scopes;
3. The peer finishes its exception handling, or encounters an exception when handling exception.

By Lemma 1, we can prove Theorem 1 in two steps, in the first, prove all peers can cooperatively
exit a scope in each case of Lemma 1, and then apply structure induction on hierarchies of scopes.

Lemma 2. If peer r participates in scopes sn1 and sn2, and sn2 is in sn1, then for any r’s
configuration r :〈σ, sn, s, A, ω, θ〉, if sn = sn2, then, sn1 ∈ dom(σ).

We define a partial relation preceding for scopes.

Definition 6. We say sn1 is preceding of sn2, if there exists a peer r with sc1 = Γ(r)(sn1),
sc2 = Γ(r)(sn2), and sc1 appears before sc2 syntactically.

Lemma 3. If all relative peers have entered scope sc, an attempt to notify(C) or notify(e) in sc
will always succeed if no exception happen in outer scopes.

Lemma 4 (Deadlock-Free). A peer can always consume its message queue.

Lemma 5. If all peers have entered their exception handlers for a same exception e in scope sn,
suppose all inner scopes can always terminate and no exception will happen in outer scopes, they
will finish recovery and terminate sn.

Lemma 6. If scopes sn1, ..., sn l have a common direct enclosing scope, then they can be sorted
to a sequence sn ′1, ..., sn

′
l such that for any 1 ≤ i < j ≤ l, sn ′j is not preceding of sn ′i, and sn ′j

must appear in Γ(r)(sn ′i).A for some r if sn ′i appears in Γ(r)(sn ′j).A, i.e., all scopes in exception
handlers are sorted after those in normal activities.

Lemma 7. For a scope sn ′ and its direct-enclosed scope sn, suppose all peers related to sn have
entered sn ′, all scopes preceding sn are finished, and one peer has entered sn, then the rest peers
will enter sn eventually, unless exceptions happen in some enclosing scopes (include sn ′).

Theorem 3. In a consistent system, suppose all relative peers enter a scope, this scope will always
terminate.

From all the lemmas and propositions given above, we can easily have Theorem 1.

Proof for Theorem 1. For a consistent system {α1, ..., αn}, we know αj .SC.R = {αi.Name | i ∈
{1, .., n}}, suppose αj .SC.Name is sn, the consistent condition ensures that all peers required by
sn will enter it. By Theorem 3, the system will always terminate.

Now we finish the work for building the theoretical foundation for our design methodology.
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8 Experiment

The operational semantics given in Section 6 is easy to implement. As a demonstration, we
developed a Java framework where threads can handle exceptions cooperatively.

We define classes GlobalException and Peer, where Peer extends java.lang.Thread, which has
attributes for the stack, state table, message queue, and methods such as enterScope(String name),
waitToExitScope(), inforAllException(GlobalException ge), inforAllComplete(). Method run() imple-
ments a hierarchy of scopes, in which each scope is a try-catch block with special form, where the
first statement is always a method call of enterScope(), and the last is waitToExitScope(). Fur-
thermore, non-global exceptions must be handled in the scope, but global exceptions are thrown
to outer scopes.

The implementation can be revised for distributed applications, where several methods should
be promoted to communicate with remote objects. Also, the CEH mechanism can be implemented
on the JVM level to write eleganter codes, by applying the approach proposed in paper [23] which
revises the exception mechanism for the new feature “Future” in Java 5.0.

9 Related work

Exception handling (EH) has become indispensable ingredient in programming languages and
system development fields incrementally after Goodenough’s seminal work on structural EH [8].
Randell presented in [14] the rationale behind a method for structuring complex computing sys-
tems by the use of “recovery blocks” and “conversations”. In [4], Campbell and Randell proposed
techniques for structuring forward error recovery method in asynchronous systems. In [15] , Ro-
manovsky developed a new atomic action scheme that did not impose any peer synchronization on
action exit. Xu et al. [20, 19] presented a scheme for coordinated error recovery between multiple
interacting objects in concurrent OO systems, and developed a conceptual model and algorithm es-
pecially for distributed object systems. However, all these works are presented informally. Neither
the well-formedness condition nor semantics is presented.

There have been some effort to design a language to support the concept of CA. COALA [18] is
aimed to design CA actions. It is a formal language containing features such as pre/post conditions.
Issarny [1] proposed a language ε

CSP
to support EH in concurrent systems. A framework for EH

in parallel OO language is proposed in [11], where a system is a group of recoverable actions.
Each action involves several peers and a special “coordinator” works as a control center to decide
whether the action fails and directs the others to handle an exception. Issarny [11] proposed an OO
language supporting CEH. The language is rich with many details, i.e. arithmetic expression and
procedure calling. However, these models are unsuitable for the decentralized systems, because
it is hard to find a reliable peer with overwhelming power. A survey about exception handling
models developed for concurrent object systems can be found in [16].

Current research trends in EH is outlined in [12], including EH in human-centered systems
such as workflow. Hagen and Alonso [9] presented a solution for implementing reliable workflow
processes by using EH. Romanovsky et al. [17] proposed coordinated forward error recovery for
composite Web services, and defined the notion of Web Services Composition Action (WSCA),
which allows constructing composite Web services in terms of dependable actions.

A framework to verify CEH is presented in [7], where a system is modeled by specification
language like Alloy and B, and programmers can write and check properties using a constraint
solver. In the paper, three requirements commonly for systems are enumerated as examples. But
the paper does not aim to give a sufficient condition for the well-behaved systems.

Model checking techniques have also been employed for verifying CEH systems. As the general
case, model checking approaches typically suffer from the state space explosion problem, which is
especially acute for large systems. An experiment [21] showed that the state space is too big to
handle. A model of a manufacture controlling system involves huge state space, where the checking
gives no result after one week of computation. The major advantage of our design approach is
that it avoids this problem.
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10 Conclusion

The coordinated exception handling (CEH) in distributed system is very complex due to the
autonomous nature of the peers in the system. Current develop methods and languages almost
consider from the perspective of a local peer. It is difficult to guarantee the composition of peers can
cooperate properly. Based on this recognition, we present in this paper a global-to-local approach
for building the composed system consisted of multiple independent peers which supports CEH.
The contributions of this work can be summarized as follows:

• Propose a group of accurate syntactic conditions for a set of peers to form a well-behaved
system.

• Present an efficient global-to-local design and implementation approach for cooperative sys-
tems with CEH.

• Formally define the CEH procedure by a set of operational rules, and formally proved these
conditions are sufficient based on the operational semantics.

The PPL language used in our formalization can be seen as a try to introduce linguistic mech-
anism for specifying nested CA actions in distributed environment. With this formal framework,
we have developed a demonstrative framework, which enable Java threads to handle exceptions
cooperatively. We also have a tool to automatically generate skeletons of threads, with integrated
CEH in each of the thread’s code.

As a future work, it is meaningful to study the integration of CEH into existing Web services
languages such as WS-BPEL and WS-CDL. Actually, Carbone et al. [6] has recognized that
exception are indispensable for managing many real application situations. They identified that
one missing thing in WS-CDL would be the ability of handling exceptions locally, with a standard
local scoping rule. Therefore, it deserves further effort based on current formalization of CEH.
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Modern programming languages have many useful features to help the construc-
tion of software. Being meant for the development of applications, their main aim is
to offer a high degree of flexibility and ease of use to the programmer. Consequently,
they become complex and hard to analyse. For instance, one important feature is
exception handling. This feature is used to handle unusual conditions that can lead
to errors, unless remedial actions are suitably taken. However, exceptions may in-
duce non-local control flows that could make programs harder to analyse statically.
This worry is one reason why a number of past proposals (including our own work
[5]) on calculi to facilitate formal reasoning [6,1] have mostly ignored exceptions,
in the name of simplicity. Some recent proposals [4,3] have begun to consider a
core language with exceptions by adding both a throw e construct and a simplified
try e1 catch (c v) e2 construct from the Java language. However, this simplified feature
was not able to succinctly handle more advanced features, such as try−finally nor
try−with−multiple−catches. Another proposal [2] directly adds these advanced features
in their core language, but this is done at the price of a more complex formalization.

Our proposal is to perform the analysis on an intermediate simplified core cal-
culus, avoiding the complexity of the source language, but without restricting the
flexibility expected by the programmers. The two crucial requirements for our cal-
culus are to be easy to analyse (1), and to be expressive enough as to allow the
translation of more complex language constructs into it (2). For achieving the first
goal (1), we endow our core calculus with a unified view of the control flow, which
spans two dimensions:

• Unifies both normal and abnormal control flows. Unlike past works which simply
add together the features of normal and abnormal control flows, our change is
more fundamental since we provide a pair of unified language constructs (elabo-
rated later) that would work for all kinds of control flows.

• Unifies the static control flow, where the syntax of the program directly deter-



mines which parts of the program may be executed next, and the dynamic control
flow, where run-time values and inputs of the program are required to decide what
to execute next. This is achieved by translating the break, continue, return con-
structs (specific to the static control flow), and the try-catch and raise constructs
(specific to the dynamic control flow), into a unified control flow mechanism under
our calculus.

An unexpected benefit is that our core calculus with exceptions is as small as the
corresponding core calculus without exceptions. Designing analyses and optimiza-
tions for the core calculus is therefore much simpler than it would be for the source
language! With regard to the current work’s second goal (2), we prove the ex-
pressivity of the core calculus by providing a set of rewrite rules for translating a
medium-sized imperative source language into it.

We refer to our design as a calculus rather than a language since our intention
is to support a broader range of formal reasoning activities, including analysis, lan-
guage design, compilation, optimization and verification. The resulting core calculus
will essentially contain a core language and a set of rules (including translation) that
facilitate formal reasoning. Our goal is for a core calculus that is syntactically min-
imal and expressively maximal. We shall describe an application of our calculus,
namely optimization. In order to prove the soundness of the optimization rules, we
shall formalise the calculus by providing a big-step operational semantics.
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Extended Abstract 
 
SCR is a mature and widely used document driven requirement method, which emphasizes creating strict and 

complete formal requirement documents during software requirement analysis to serve the whole life circle[1]. 
However, due to the big gap between textual requirement description and formal requirement document, how to 
generate well defined, concise and strict formal requirement document from large scale and complex textual 
requirement statements has become a big challenge in application of SCR method. 

In order to address this problem, a concern based approach to generating SCR requirement specification from 
prose description has been proposed[2]**, where concerns are used to bridge the gap between textual requirement 
definition and formal SCR specification. Concerns and their relationship are identified and specified, which will be 
used to guide identifying and specifying different constructs in SCR requirement documents.  

A stepwise iterative process is proposed in this paper, which includes five steps: 
(1) concerns elicitation 
Through reading and analyzing requirement statements carefully, behaviors, objects, goals, and properties can 

be elicited, some of which will be identified as concerns. This step can follow the idea of Theme/Doc method by 
utilizing nature language processor to identify different concerns from large scale and complex textual requirement 
statements [3]. Domain knowledge will be helpful in assisting concerns capturing.  

(2) concerns & rough relation graph specification 
With a set of concerns identified, these concerns will be specified. The formal definition of a concern includes a 

name, a piece of description, a set of related requirements, and a set of concepts it includes (concepts will be 
determined in step (3)). The dependency relationship among concerns will be recognized and specified as rough 
relation graph. 

(3) concepts identification 
For each concern and those requirements that it relates to, several concepts can be identified, which represent the 

key actions, objects or properties of that concern. Each concept can also be specified and added to the specification 
of the concern. 

(4) variables definition and classification 
For each concept and those requirements it resides, several variables will be defined and classified as monitored, 

controlled, input, output, term or mode. The classification of variables follows the ideas of SCR method. 
(5) SCR requirement specification 
In SCR approach, the system requirements are specified as a set of relations that the system must maintain. 

Three specifications are included in SCR requirement documents, they are system requirement specification(SRS), 
system design specification(SDS) and software requirement specification(SoRS). Detailed description of SCR 
requirement method can be found in [1]. 

a) SRS specification 
SRS describes the external behavior of the system in terms of monitored and controlled quantities in the 

system environment. For all the monitored and controlled variables, we can trace back to those requirements where 
they were identified, and from these requirements, the relationship among monitored and controlled variables will 
be defined as tables. 



b) SDS specification 
SDS identifies and document input and output devices. For all input and output variables, we can trace 

back to those requirements where they were identified, and the relationship between input and output variables and 
the monitored and controlled variables. 

c) SoRS specification 
SoRS refines SRS by adding estimation of how to use input variables to calculate monitored values and 

how to derive output values from controlled values. Therefore, the correspondence between input variables and 
monitored variable, output variables and controlled variables will be specified. 

d) Dealing with hardware malfunction and timing constraints 
Finally, behaviors related to hardware malfunctions and timing constraints will be added. 

The process defined above will be done iteratively until validation of intermediaries has been conformed. 
Concerns and their specification as well as concern relationship will be checked, negotiated and finally confirmed 
by different stakeholders together, and such checks as coverage, consistency and completeness of SCR specification 
can be conducted by tracing requirement statements, concepts, key variables and constructs in SCR specification.  

To demonstrate and evaluate our method, we have applied it to a classical case – the Light Control System by 
specifying Hallway Section requirements[4]. It is indicated that our approach provides a guideline for bridging the 
gap between textual requirement definitions and formal SCR requirement documents via concerns, and facilitates 
applying aspect oriented approach to finding and solving conflicts in requirements. 

Case studies have been given and discussed on SCR method[5], however, concerns have not been considered 
during deriving SCR specification from textual requirement definition. 

Many works have been done on separation of concerns in requirement analysis and modeling [3,6,7]. All of these 
works focus on identifying and specifying concerns from either textual requirement definition or UML specification, 
especially AORE is for identifying and composing crosscutting concerns. Concerns are used to modularize 
requirements, not for generating formal requirement documents. 

Concept-based approach for requirement analysis and modeling is proposed in [8], which utilizes formal concept 
analysis for finding or delivering class candidates from a given use case description. 

Our approach is inspired by [3] for concern identification in prose requirement statements and [8] for using 
concepts to model requirements, however, our approach focuses on producing formal requirement specification 
from textual requirement definition with concerns and concepts as the intermediaries. 

Lack of tool support will make it hard to apply our approach to a big practical project. Therefore, a prototype for 
specification of concerns and their relationship is under development in our lab. In the future, we would like to use 
formal concept analysis to help validation of concerns specification and requirement specification, conduct more 
case studies to real systems by utilizing supporting tool so that some quantitative results will be generated on the 
benefits of our approach. 
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Abstract 
In order to resolve the classical problems (the major difficulties are the user needs and for 
developers to understand those needs) of requirements engineering, we propose a 3-phase 
user-oriented preparative treatment to generate clear user requirements and offer those user 
requirements as high quality input resources for the later generation of system requirements: phase 
1, to build up users’ user information reserves. Only when we put an application system in the 
background of users' whole systematic and informationalized reserve assets, rather than treat it as 
an independent or solitary entity, can we fully understand the assigned roles and positions of the 
application system, and only in this way can we correctly anticipate the way of evolutions of the 
application system and realize the essence of its requirements; phase 2, to generate user 
requirements which are descriptions of states and problems of certain business application, and are 
independent to system requirements which focus on solutions for system implementation; phase 3, 
to generate system requirements by using user requirements, and build up the linkage between user 
requirements and system requirements. 
 
Keywords: user-oriented preparative treatment, user information reserve, user requirements. 

 
 

1  Introduction 
 
There are already many approaches and efforts being applied in requirements engineering, 
and Betty Cheng and Joanne Atlee provides a profound and comprehensive summary 
work for requirements engineering in [1]: 
• In the phase of requirement elicitation, there have methods like goals [2-8], policies 

[9], scenarios [10], anti-models [11][12], nonfunctional requirements [13], behavioral 
models [14][15], domain-specific descriptions [16]; 
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• In the phase of requirement management, there are methods like scenario based [17], 
feature based [18], traceability based [19][20][21] managements. 

(As to phases like requirement modeling, analysis, validation & verification, they are not 
the focus of our discussions here, we just put them aside). 
 

As the history of Standish Group CHAOS Reports (1994-2006) reveals: software 
project success rates have been improved greatly, but the rate of required features and 
functions making it to the released product has no much improvement at all, we can say 
we are still facing the old problems our predecessors engaged: the major difficulties in 
software developments are the user needs and for the developers to understand those 
needs. 

The above mentioned methods and techniques are certainly great achievements for 
requirements engineering. But why we do not have much significant progress in all these 
years. 

To clarify the problem, first let us have a look on the ideal definitions of requirement 
and RE themselves: requirements represent guidelines which allow developers to deliver 
agreed upon software system, and RE (especially requirements acquisition) must hold 
user-centric operations which are based on the user's perspectives, and the processes shall 
be the combination of the human performance engineering and business process 
reengineering together with the support of information engineering [22]”. But the reality 
is: most people leave the latter part (user-centric) alone and keep busy on the former part 
(guidelines to software system), even some researches titled with “user-centered” are only 
proposing methods to squeeze system requirements from users, and then all those efforts 
result in requirements which are not of users, but of developers. Thinking exactly the 
reverse, what good it is if it does not fulfill the intended roles or usages. 

Then let us check the other aspect of requirements: the lifetime of requirements. 
Requirements are evolutionary by nature; there is need for continuous requirements 
management. It is important to maintain complete and easily understandable (by all 
stakeholders) requirements documentation at all times. In real cases, most developers and 
even users only care about immediate interests: “On time, on budget, and on scope”, with 
little regards on long-term managements. 

Here we come to the conclusion: people are doing right for the right things (the right 
doing are the above listed methods and techniques, the right things are the requirement 
specification for software systems); and this is also the problem: we all start from the 
standpoints of software engineering, from the software systems and for the software 
systems, but we still do not take the following problems serious: what is between the 
needs in users’ minds and the corresponding requirement specification, where those 
requirements really come from after all (they are already there in users’ daily lives or just 
because of the needs for developing a system). With the problems left unsolved, we will 
always face the poor input situations of requirements, and will never have any real 
advancement. 
 
2  The Preparative Treatments 
 
First, we list the classical problems (P) in RE and our recommendations (R) for them 
respectively: 

I. As to problems on the quality of requirements 
 
P-a: The current roles of software developers have been intertwined with those of 

users. Instead of providing systematic solutions, software developers usually 
take too much effort, in some cases even have to live with users, to acquire 
users’ requirements, for most users have no time, patience or ability to clearly 
express their requirements or for the developers do not think users have this 
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kind of ability. This usually lead to the fact that the requirements captured by 
software developers from users do not represent users’ original intentions but 
only software developers’ subjective interpretation of users’ requirements. 
Also people do not tell users’ requirements apart from requirement 
specifications which are in fact system requirements. 

R-a: A clear line should be drawn between the work roles of users and software 
developers and between the artifacts of users and developers by adding 
certain user-oriented preparative treatments into the traditional requirements 
engineering. Within the period of the preparative treatments, users make their 
own artifacts (user requirements) which are descriptions of states and 
problems of target business applications and are independent to system 
implementations; then developers could continue to develop their own 
requirement specifications (system requirements) for executable technical 
solutions from those user requirements. 

 
P-b: Users are usually unenthusiastic or uncooperative on requirements, for they 

think it is useless to their business especially when requirements engineering 
is over and it should be developers’ duties to specify users’ requirements, and 
for the fact that current requirements are only for system building which is 
out of users’ business. 

R-b: Users should be conscious and aware that a clear representation of their 
requirements will not only help to achieve the target application system but 
also help them understand their own business better. 

 
P-c: Even if users are cooperative about requirements engineering, they do not 

have technical support to help them represent their requirements while 
developers are surrounded by all kinds of languages, development 
environments and methodologies. 

R-c: Users should be provided with various technical supports such as integrated 
tools, environments, methodologies and training throughout the period of 
user-oriented preparative treatments. This aims to have user requirements 
formally organized, represented and documented, which will naturally make 
the transformation between user requirements and system requirements much 
easier and more efficient. 

 
II. As to problems on the changes of requirements 

 
P-d: Due to the limited resources and increase in complexity, most developers and 

users will not spare much effort to consider the changing nature of 
requirements in a project. Most projects care most for the immediate interest 
instead of overall view or a long-term plan, which make the projects lack of 
the flexibility to be responsive to the changing environments. 

R-d: Instead of focusing on the immediate interest, we should enlarge our vision to 
all information about users (including organization, business processes or 
patterns, resources, etc) to establish a user information reserve for any future 
requirements and for preparation to any changes of requirements. The process 
of establishing the user information reserve should be integrated into users’ 
daily work in a long-term period.

 
Aiming at the above problems and recommendations, we propose a 3-phase 

user-oriented preparative treatment for users, not software developers, to accurately 
generate users’ own requirements. With appropriate training and supports of information 
techniques, those user requirements will be more effective and thus better transformed to 
system requirements. 
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Phase 1: Generation of User Information Reserve 
 
The key problem in capturing requirements is the uncertainty of requirements. The 
uncertainty of requirements is the direct result of uncertainty of users’ knowledge. The 
primary factors of uncertainty of knowledge are things like: the carriers of knowledge 
(normally languages) are uncertain and the general knowledge (or common sense) is 
different in different fields. So we need to provide proper languages or tools to capture 
and represent knowledge that around users’ daily and routine works and make them 
informationalized. Those users’ information may come from every aspects which may 
include organization (structure, etc), business processes (routine transaction processing, 
budget allocation, etc), internal resources (human labors, hardware, storages, time, etc.), 
external resources (customers, partners, law, social obligations, etc). Users should try 
their best to organize and represent all user information in a systematic way for any future 
requirements, and the result is the user information reserves. 

For example, a user information reserve for logistics businesses may include a UML 
(Unified Modeling Language)-based diagram of organizational structure, a BPML 
(Business Process Modeling Language)-based representation of logistics workflow, a 
structured form-based list of specifications of computer terminal possessed by a service 
point, and an overall graph describing how to allocate resources and assign work roles 
according to the workflow of a logistics business. 

Only when the assigned information system is placed in the holistic user information 
background, can it be possible to fully understand the roles and positions of the assigned 
application system, anticipate the way of system evolution, and realize the essence of the 
later user requirements.
 

Summary 
Input:  all the information around users; 
Output:  user information reserve (the systematic representation of user 

information); 
Techniques:  human performance engineering and business process reengineering 

together with the supports from information engineering [22]. 
 
Phase 2: Generation of User Requirements 
 
In this phase, users will generate their own requirements which are descriptions of states 
and problems of certain business applications, and are independent to system 
requirements which focus on solutions for system implementation. 

To generate user requirements, users have to first define the context of the target 
application system. A context is a specialized environment which outlines the capability 
of the target application system. For example, a context may include specified customers, 
given goals and confined resources. Then users have to extract the relevant info from user 
information reserves and organize this info according to the defined context to form the 
user requirements. The exact operations in the generation process may include the 
following steps: 
• Negotiating the acceptance criteria (priority, etc.) among stakeholders; 
• Defining the detailed system boundary (participants, goals, functions, resources, etc, 

and their relationships); 
For example, a Japanese logistics service company plans to expand auto parts 

distribution business to Chinese markets. In addition to the existing user information 
reserves (organization of headquarters in Japan, current markets, typical logistics service 
flows or other knowledge and experience developed over the years), the company needs 
to collect and organize the info on all elements in the new business (from payment 
systems of local labor, tax, tariff duties of target areas, funds, local partners and 
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customers, local transportation networks and throughput of storages, local laws and 
regulations, local standards of auto motor industry, environmental specifications, weather, 
social images, brand awareness, etc) into a new user information reserves. From all the 
user information reserves (the existing and the new), you may select the relevant info 
(such as company’s typical logistics service flows, local partners and customers, local 
transportation networks and throughput of storages, and local laws and regulations) as the 
context of the new business application system for Chinese market. Although the above 
process is a time-consuming and laborious work, it makes users have a clear 
understanding over the new market, provide supports for decision-making and ensures the 
success of the expansion plan to the details. 

The changes of the context lead to the changes of requirements and the changes of 
the business application system. By analyzing and anticipating the possible changes of 
context in advance, such as performing scenario simulation/evaluation and preparing 
counter-plans, users can improve the flexibility of their requirements. 

Example on the influence of changes of context could be that the new tendency of 
product Eco-responsibility ordinances on auto motor industry (policy rewards on small 
car with cylinder volume < 1.5liter and restrictions on large non-fuel-efficient vehicle 
with displacement > 500g/km) may lead to the changes of product models, then the 
orders of what you may ship and how you can ship (from packaging, routes of shipment, 
to means of shipping). If users have preparation in advance by analyzing the features and 
changes of relevant elements in context, they will surely not end in any abrupt results. 

 
By performing and integrating phase 1 and phase 2 in users’ daily wok, users will 

streamline organization structures and business processes, clarify their own strength and 
weakness, make short-term and long-term plan more efficient, and be more competitive 
in crisis or changing environment. 

Realizing the above mentioned benefits, users may be interested in the requirements 
related operations and would be willing to and be able to reuse their requirements and 
take most efforts to continuously renew the user information reserves. 

 
Summary 
Input:  user information reserves from phase 1 and specific context for target 

business application system; 
Output:  user requirements; 
Techniques: in addition to the existing methodologies and techniques in 

requirement elicitation, modeling and analysis (such as scenario based 
[17], feature based [18] methods), we add context managements to 
reflect the capability and transition of application system. 

Note: The target business application system mentioned in phase 2 is still staying on 
the level of pure business, rather than a software system. 
 
Phase 3: Generation of System Requirements 
 
This phase aims to derive system requirements from user requirements under the 
conditions (such as available information techniques and resources for the project) 
proposed by developers, and to establish cause-effect relationships between user 
requirements and system requirements. Once changes happened on one side, the 
cause-effect relationships make it possible to trace the corresponding effects on any other 
side. Detailed works include: 
• Find the access/intermediate points of binding from each side (users and developers); 
• Make an agreement to clarify responsibilities on collaboration for each aspect of 

requirements from both parties (users and developers). 
For example, one of users’ requirements is tag based tracking service for customs 

clearance, position locating, and history recording for delivery efficiency evaluation. The 
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duty of user requirements shall be: providing info on the network of distributed service 
points (geo-location, number, distance, etc.). In the case of the number of service points 
changed, the first thing to check is whether the change is beyond the scope of agreement 
or not. If the change is beyond the scope of agreement, new agreement shall be reached 
on the agenda of next meeting. 

 
Summary 
Input:  user requirements from phase 2 and conditions of system developers; 
Output:  system requirements and linkages between user requirements and 

system requirements; 
Techniques: in addition to the existing methodologies and techniques in 

requirement elicitation, analysis and management (such as traceability 
based managements [20]), we propose binding for the smooth 
transformation from user requirements to system requirements. 

 
The feasibility and flexibility of the user information reserves and the user 

requirements of the business application system can be evaluated by third-party 
consultants, then according to the evaluation, users can decide when to implement the 
system and who shall have the implementation contracts. Also with a clear linkage to 
system requirements, users can even change developers when the project falls in trouble. 
All this makes customers much more independent to system vendors compared to the 
current prevailing fact that once a customer signed a contract with a certain system 
vendor, the customer will have no choice but rely on the same system vendor for the 
lifetime. 

The things after the phase 3 are the traditional works of requirements engineering: to 
generate requirement specification for later software developments. 
 
3  Conclusion 
 
In order to resolve the classical problems (the major difficulties are the user needs and for 
developers to understand those needs) of requirements engineering, we propose a 3-phase 
user-oriented preparative treatment to generate clear user requirements and offer those 
user requirements as high quality input resources for the later generation of system 
requirements: phase 1, to build up users’ user information reserves. Only when we put an 
application system in the background of users' whole systematic and informationalized 
reserve assets, rather than treat it as an independent or solitary entity, can we fully 
understand the assigned roles and positions of the application system, and only in this 
way can we correctly anticipate the way of evolutions of the application system and 
realize the essence of its requirements; phase 2, to generate user requirements which are 
descriptions of states and problems of certain business application, and are independent to 
system requirements which focus on solutions for system implementation; phase 3, to 
generate system requirements by using user requirements, and build up the linkage 
between user requirements and system requirements. 
    According to our capability, we follow the roadmap of first phase 2, then phase 3, 
finally phase 1 to unfold our research. The 3 phases cover a quite huge range, especially 
the phase 1 which concerns with techniques beyond the information techniques in our 
hands. This needs more efforts on cross-cutting works and cooperation from various 
communities. 
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Abstract

Service-oriented computing shows a great potential of achieving high productivity and low cost, but it faces
a challenge in efficiently and correctly using existing services in producing a new service and ensuring its
reliability. Building a formal model using a formal specification language allows the developer to thoroughly
understand what existing services are needed for the new service, but how to construct the model so that
it can effectively facilitate the developer to recognize the situations where existing services can be fully
utilized still remains an open problem. In this paper, we describe an approach to applying the SOFL
formal engineering method to the modeling of a service-oriented computing system by means of a case
study. In particular, we focus on the issue of how to apply the SOFL three-step modeling approach to the
construction of a formal specification for a web-based software service, exploring the general principle and
specific techniques for using existing services in developing a new service model. The potential benefits and
further challenges of our approach are discussed.

Keywords: Service-oriented Computing, Formal Engineering Method, SOFL

1 Introduction

The service-oriented computing (SOC) paradigm is promoting both the theory and
technology of software development by using web services to support the develop-
ment of low-cost, interoperable, evolvable, and massively distributed applications.
Although the industrial world has developed a number of standards to formalize
the specification of web services, developing web service-based systems is still a
challenging problem for the lack of a comprehensive engineering method [11][15].

1 Email: weikai.miao.x1@gs-cis.hosei.ac.jp
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The dilemma for SOC software development is that informal engineering meth-
ods are friendly to developers but have a tremendous drawback in quality assurance
and maintenance due to ambiguities in requirements specifications and system mod-
els. On the other hand, formal methods, such as Z [3], VDM [4], and B method [2]
offer great potentials of ensuring the correctness of software systems through formal
specification, refinement, and verification. It is obvious that formal methods can
make a considerable software quality assurance if they are successfully applied in
practice [1][12]. Unfortunately, very few practitioners could use them in practice [9]
because of their complexity and technical difficulties for large scale system devel-
opment. It is a challenge for practitioners to construct such kind of formal model
in a development process to facilitate them in easily understanding what existing
services are available and needed for the new application, and how they can be
coherently integrated into the new application under construction.

To address this problem, we try to adopt the SOFL (Structured Object-Oriented
Formal Language) formal engineering method into the SOC environment. The re-
searches on the SOFL method suggest that it is a practical software engineering
method that maintaining good balance between formal methods and human activ-
ities in software development processes, which allow practitioners to easily apply
[6][10][13][16]. In this paper we describe a novel application of the SOFL three-step
modeling approach to developing a formal specification for an air ticket reserva-
tion system in service-oriented manner. Using the three-step approach of SOFL,
a formal design model can be effectively achieved through building informal, semi-
formal, and then formal specifications. We aim at exploring and deriving useful
guidelines for integrating existing services into the process of developing a formal
specification using the SOFL formal engineering method through the case study.

The rest of the paper is organized as follows. Section 2 briefly introduces the
SOFL method, particularly the idea of the three-step modeling approach. Section 3
describes the domain background of the case study. Section 4 presents the detailed
process of specification construction using the SOFL three-step modeling approach.
Section 5 discusses our experience gained from the case study. Finally, in Section 6
we conclude this paper and point out future research directions.

2 Brief Introduction to SOFL

The SOFL formal engineering method offers a systematic way to integrate existing
formal methods into conventional software engineering techniques. Basically, it ad-
vocates three integrations for different purposes. The first is to integrate the VDM
specification language (VDM-SL) with classical data flow diagrams to form an intu-
itive, rigorous structuring method for building comprehensible formal specifications.
The second is to integrate formal refinement principle with evolution principle to
establish a practical transformation model for developing a formal specification into
a satisfactory implementation. The third is to integrate formal proof theory with
software inspection and testing principle to build rigorous inspection and testing
techniques [13][7][5].

The three-step modeling approach advocates the building of a formal model
for a software system through the constructions of informal, semi-formal, and then
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formal specifications. This approach provides precise guidelines for creating the in-
formal specification for requirements acquisition, transforming it into a semi-formal
specification, and then developing it into a formal specification for design. The in-
formal specification is aimed at capturing the abstract but complete aspects of the
desired functions the system is expected to supply, the data resources needed to ful-
fill the functions, and necessary constraints on both the functions. The semi-formal
specification is expected to refine the informal specification into a more precise and
structured document so that communication between the user (or client) and the
developer can be effectively realized. The feature of the semi-formality is reflected
by the precise declarations of data types and variables, and the informal descriptions
of invariants and process specifications in each module. The formal specification is
intended to precisely define the architecture of the whole system and each of its com-
ponents. The architecture is represented by a formalized data flow diagram, called
condition data flow diagram (CDFD), and each process used in the CDFD as its
functional component is specified using formally expressed pre- and post-conditions
in a module. Apart from these, all type and state invariants are also formalized
using the SOFL notation.

3 Domain Background of the Case Study

We take an online air ticket reservation system (OATRS) as the domain to apply the
SOFL three-step modeling approach. An OATRS is intended to provide services
for customers to register and manage their personal information, search, reserve,
cancel, and change air tickets through a travel agent. A complicated OATRS of a
travel agent may also provide more other functions, but we deliberately limit our
study in this paper to a simple OATRS because it is sufficient for us to explore
the possibilities of the modeling approach and to derive necessary guidelines for
utilizing existing services during the development process.

4 The Process of Specification Construction

4.1 Informal Specification

Following the advice of the SOFL approach, we build the informal specification of
OATRS in three sections: functions, data resources and constraints. The desired
functions are described briefly as operations in English and some complex operations
are decomposed into more detailed sub-operations for understanding. The section
of data resources provides a listing of all data items that are necessary for the
realization of the operations and may be shared by those operations. A collection of
constraints reflecting policy restrictions on operations or data resources is provided.

The above components of an informal specification are usually derived on the
basis of a thorough analysis by the developer in collaboration with the client. The
client is supposed to be familiar with the domain knowledge, while the developer
is assumed to be equipped with existing services and is usually good at finding
desired requirements through communication with the client. In order to integrate
some web services that can be utilized in the target system, the developer and the
client first discuss the requirements. As a result, the developer gains a thorough
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Desired Functions
1 .Customer Register
2.Customer Login
3.Ticket Management

3.1 Flight Inquiry Operation 
3.1.1 flight information inquiry by conditions

…
3.2 Ticket Operation 

…
4. Personal Information Change

Data Resource
1. flight information

…
Constraints:
1. Each of the customers has a unique id generated by the system.
…

Fig. 1. Informal specification of the Online Air Ticket Reservation System.

understanding of the requirements and writes them down in a modular fashion.
Then, the developer proceeds to search related software services. The purpose
of the searching in this stage is to bring relevant candidate services for further
examination on the appropriateness of being deployed in the system. The developer
may also realize the necessity to modify the informal specification by, for example,
reorganizing the functions so that the related services can be mostly reused. This
is usually an evolutionary process.

On the basis of the initial informal specification, we gained the understanding
that operations 3.1.1 and 3.2 can be implemented by existing web services. We
then created necessary operations or modified existing operations. Figure 1 shows
the major parts of the informal specification for our OATRS which results from the
above actions.

By now an abstract understanding of the system functions and the reusable
services have been achieved. Since the informal specification are ambiguous, our
understanding about the system and reusable services may still be limited. Since
the informal specification are ambiguous, our understanding about the system and
reusable services may still be limited. We need to refine the specification into a
semi-formal specification.

4.2 Semi Formal Specification

Communication between the developer and the client in capturing requirements
plays an important role in software development, especially for developing service-
oriented systems. The developer also needs to help the client understand the in-
formation of the selected web services. Semi-formal SOFL specification facilitates
good communication between clients and developers. After finishing the informal
specification, the developer may not be able to decide which function can be imple-
mented by which service clearly because the functions in the specification are not
defined precisely enough. Our solution is to refine the specification into semi-formal
one by construction together with the further service selection. During this process,
the specification is refined into a semi-formal one and the sets of candidate services
for the functions may also be reduced. This process is an intellectual work that re-
quires the integration of developer’s knowledge and experience, the understanding
of the services, and the communication with the client.
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<complexType name="FlightInformation">
...
<wsdl:message name="FlightSearchRequest">
…

  <wsdl:operation name="FlightSearch" parameterOrder="…">
  <wsdl:input message="impl:FlightSearchRequest" name="FlightSearchRequest" /> 
  <wsdl:output message="impl:FlightSearchResponse" name="FlightSearchResponse" />
  </wsdl:operation>

Fig. 2. A segment of the WSDL file for ”Flight Search Tool” Service.

FlightSearchRequest = composed of
flight_code: string

…………

FlightSearchResponse : set of FlightInformation;
FlightInformation=composed of

flight_code: string
...
process FlightSearchTool(search_con: FlightSearchRequest)flight_result: FlightSearchResponse
post if the searching condition is input , the flight information fits the conditions should be listed
end_process

Fig. 3. SOFL Specification of the ”Flight Search Tool”.

In addition to the original SOFL principle for building semi-formal
specifications[13], the developer need to analyze the WSDL (Web Service Descrip-
tion Language) or BPEL (Business Process Execution Language) files of the services
to understand the precise inputs and outputs information of the services (including
the types and numbers of the parameters). Together with this action, the functions
which may be implemented by services are defined as SOFL processes so as to utilize
the most appropriate services. The developer and the client discuss and decide the
association between the SOFL process and the service during this process. However,
in this stage the selection of services is mainly based on the data characteristics of
the inputs and outputs information. To precisely verify the functions of the services,
the developer may use testing on the basis of a formal specification to be built later
on.

Let us take the “flight information inquiry” function component (function 3.1.1
in Figure 1) as an example to illustrate the service selection. After analyzing the
WSDL files of the candidate services and understanding the requirements, we at-
tempt to use the service “FlightSearchToolService” to implement our desired func-
tion. A segment of the WSDL file of the service is shown in Figure 2.

From the WSDL file of this service, we can extract the data structures of the
input and the output messages. And then we can further clarify our function on
the basis of these pieces of information. The function is abstracted into a SOFL
process and its related data structures of inputs and outputs are defined. Figure 3
shows the semi-formal specification of the process.

Since the semi-formal process to be implemented using a service results from the
collaboration of the developer and the client, the consistency between the SOFL
process and the service needs to be checked. This consistency focuses on the data
structures, including the types and the number of variables. To illustrate the check-
ing procedure, we need to define necessary concepts, terms, and notation.

Definition 4.1 Let S denote a web service. S can be abstracted as: S =
(InputMsgSet,OutputMsgSet, ConsSet).

(i) InputMsgSet(S) = {inMsg1, ..., inMsgn} defines the set of the input mes-
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sages belonging to the operations provided by S where inMsgi (i = 1, ..., n)
is an input message. Each input message is defined as: inMsg = {v1, ..., vm}
where vj (j = 1, ...,m) is a variable.

(ii) OutputMsgSet(S) = {outMsg1, ..., outMsgh} defines the set of the out-
put messages belonging to the operations provided by S where outMsgi

(i = 1, ..., h) is an output message. Each output message is defined as:
outMsg = {v1, ..., vk} where vj (j = 1, ..., k) is a variable.

(iii) ConsSet = {cons(v1), ..., cons(vp)} defines the set of the constraints on each
variable vj (j = 1, ..., p) in each message where cons(vj) returns a predicate
expression of the constraints on vj .

Definition 4.2 Let P denote a SOFL process. Then P can be abstracted as P =
(InPortSet,OutPortSet, InvSet).

(i) InPortSet(P ) = {inPort1, ..., inPortf} defines the set of input ports of P

where inPorti (i = 1, ..., f) is an input port. Each input port is defined as:
inPort = {v1, ..., vg} where vj (j = 1, ..., g) is a variable in this port.

(ii) OutPortSet(P ) = {outPort1, ..., outPortq} defines the set of output ports of
P where outPorti (i = 1, ..., q) is an output port. Each output port is defined
as: outPort = {v1, ..., vr} where vj (j = 1, ..., r) is a variable in this port.

(iii) InvSet = {inv(v1), ..., inv(vt)} defines the set of the invariants on each variable
vj (j = 1, ..., t) in each port where inv(vj) returns a predicate expression of the
invariants on vj.

Definition 4.3 Let V be a set of variables and v ∈ V . Then, we define a function
Type over V such that Type(v) returns the data type of v.

Definition 4.4 Let V1 and V2 be two sets of variables. Then, a relation ≃ is defined
as follow:

≃: V1 ∗ V2 → boolean

x ≃ y
△
= Type(x) ⊆ Type(y) where x ∈ V1 and y ∈ V2.

This definition represents the fact that any variable x in V1 has the relation ≃
with a variable y in V2 if and only if the data type of x is a subset of the type of y.

Based on the above related definitions, the final binding between a SOFL process
and its corresponding selected service should satisfy the following criteria:

Criterion 4.5 Let P denote a process and S as its selected service. Then, S and
P must satisfy the following condition:

1.1 ∀inPort∈InPortSet(P )∀x∈inPort • ∃inMsg∈InputMsgSet(S) ∃x′∈inMsg • x′ ≃ x∧
inv(x) ⇔ cons(x′)

1.2 ∀outPort∈OutPortSet(P )∀x∈outPort • ∃outMsg∈OutputMsgSet(S) ∃x′∈outMsg • x′ ≃
x ∧ inv(x) ⇔ cons(x′)

This criterion ensures three things. First, for every input or output port of
process P , there exists a corresponding input or output message belonging to service
S; for every variable in the data flows linking to those ports of P there exists
a corresponding variable in the those messages of S; and all the corresponding
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<xsd:simpleType name="address"> 
<xsd:restriction base="xsd:string">
<xsd:minLength value="10" /> 
<xsd:maxLength value="150" />

Fig. 4. The Constraints in WSDL File.

inv
forall[x:Customer ]|len(x.address)>=10and len(x.address)=<150

Fig. 5. The Constraints in SOFL Specification.

variables satisfy the relation ”≃”. Because for some XML data types there may not
be the exactly same data types in the SOFL formal language, we use the notation
”≃” to express the equivalence of data types.

The data structure consistency between the process ”FlightSearchTool” and ser-
vice ”FlightSearchToolService” can be checked according to Criterion 4.5. In our
example, all the data types of the variables in the input data flow ”FlightSearchRe-
quest”and the output data flow ”FlightSearchResponse” are consistent with the cor-
responding ones in the input message “FlightSearchRequest” or the output message
“FlightSearchResponse” of the service. The consistency of the data type constraints
are also checked. For example, the length of the variable ”address” is defined be-
tween 10 and 150 characters in the WSDL file, which is showed in Figure 4.

At first we were not be aware of the constraints on the input variable ”address”
during the semi-formalization process. But the analysis of the services reminded us
of this issue which provided us with an opportunity to explore further requirements.
Then we can write the invariant which is shown in Figure 5.

Although we write the invariant formally in this example, the general principle
of a semi-formal specification does not definitely require so. The characteristic of
a semi-formal specification is that the data structures including data types and
data stores are defined formally, but the invariants and pre/post conditions are kept
informal.

Once the developer decides the web service which fits the inputs and outputs
requirements of one process, he or she can draw the CDFDs showing to the client.
The simple but clear CDFDs can help the client make judgements whether the
system reflect their desired requirements with respect to the inputs and outputs.
Sometimes a selected service is a composite service which is defined with both the
WSDL file and the BPEL(Business Process Execution Language) file. Besides the
data structures of the inputs and outputs, some control structures in the BPEL
file are also transformed into corresponding ones in the CDFD. For example, an-
other function ”Ticket Operation” in our specification (function 3.2 in Figure 1)
is bound with a composite service ”Ticket Operation Service”. After the analysis
and information extraction, we semi-formalize the function as process ”TicketOpera-
tionService” with a hierarchy CDFD reflecting the abstraction and internal detailed
functions. The CDFD of its internal function is depicted in Figure 6 and the high
level process is shown in Figure 7.

The CDFDs in this paper are drawn using the SOFL GUI editor tool our research
group developed before [8]. Our experience suggests that drawing CDFDs, provide
an initial image of the potential architecture of the system, and can therefore help
the developer to gain a better understanding and to have a better communication
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Fig. 6. CDFD of the Decomposition of ”TicketOperationService”.

Fig. 7. CDFD of ”TicketOperationService”.

Fig. 8. Top-Level CDFD of the System.

with the client. As another example, we show the top-level CDFD in the semi-formal
specification of the Online Air Ticket Reservation System in Figure 8.

Usually in this stage, developers cannot guarantee which service reflects the
requirements accurately because they only judge it from the data types and infor-
mal descriptions. So in this stage, keeping the specification in semi-formal style is
reasonable for further evolution or modification. We can test the web services by
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process FlightSearchTool(search_con: FlightSearchRequest)flight_result: FlightSearchResponse
post bound(search_con)=>card(flight_result)=0

or
bound(search_con)=>card(flight_result)>0 and
forall[x:flight_result]|x.flight_code=search_con.flight_code and
...

end_process

Fig. 9. The Formal Specification of Process ”FlightSearchTool”.

adding the pre/post conditions and then decide the final selected services. To carry
out a precise design and to completely remove potential ambiguities in the semi-
formal specification, the semi-formal specification needs to be transformed into a
formal one.

4.3 Formal Specification

The main task of formal specification construction is to write the specification com-
pletely in the SOFL language. On the basis of the semi-formal specification, the
developer can take the top-down or bottom-up approach to formalize each module.
If we take the top-down approach, for example, all the informal parts, including in-
variants and pre/post conditions of the top-level module, should be formalized into
the SOFL language. Moreover, for the development of service-oriented software,
the developer should verify whether the selected services really correctly reflect the
client’s requirements. After adding the formal pre/post condition for each process,
the developer can start the service testing. For example, Figure 9 shows the for-
malized process ”flight information inquiry” with formal pre/post conditions.

We can take the approach in [14] proposed by our group to finish the testing.
The modules are organized into a proper hierarchy of CDFDs coupling with the

corresponding hierarchy of modules. We choose the top level CDFD in Figure 8 as
an example. This module contains several processes, including the Manage Ticket
process, which can be decomposed further. The main part of the top-level module
in the formal specification is shown in Figure 10.

The second stage for the construction of formal specification is detailed design
by transforming the processes in the specification into explicit ones. However, in
our case the formal specification of each process used only simple predicate expres-
sions, which were explicit enough for implementation. We therefore did not do the
translation.

5 Advantages of the SOFL Method

Our experience in this case study has convinced us that writing a formal spec-
ification using the SOFL three-step modeling approach can significantly improve
the communication quality and understanding of desired services by the developer.
Meanwhile, we also found out some challenges to address in the future.

5.1 Strength

We found the strength of the SOFL modeling approach mainly in three aspects:
simplicity, effectiveness, and expressive mechanism.
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module SYSTEM_Ticket_Reservation
type
CustomerInf=composed of

customer_name: string
…

end
RegisteredCustomer=set of CustomerInf
…

var
ext  customer_db: RegisteredCustomer

inv
forall[x: CustomerInf]| not exists [y: CustomerInf]| x. customer_id =y. customer_id;
...
Behave CDFD_1;

process Login(login_req:sign, customer_id_input:nat0, customer_pass_input:string )
current_cus: CustomerInf, success_msg:string | e_msg:string

ext rd customer_db
post (exists[current_cus: customer_db]| current_cus.customer_id= customer_id_input 

and current_cus.customer_pass = customer_pass_input)
and success_msg=”login succeeded”
or
(not exists[current_cus: customer_db]| current_cus.customer_id= customer_id_input
and current_cus.customer_pass = customer_pass_input)
and e_msg=”incorrect password or id”

end_process;
…

process Manage_Ticket (flight_affair_req:sign, current_customer: CustomerInf)
end_process;
…

end module;

module SYSTEM_Ticket_Reservation
type
CustomerInf=composed of

customer_name: string
…

end
RegisteredCustomer=set of CustomerInf
…

var
ext  customer_db: RegisteredCustomer

inv
forall[x: CustomerInf]| not exists [y: CustomerInf]| x. customer_id =y. customer_id;
...
Behave CDFD_1;

process Login(login_req:sign, customer_id_input:nat0, customer_pass_input:string )
current_cus: CustomerInf, success_msg:string | e_msg:string

ext rd customer_db
post (exists[current_cus: customer_db]| current_cus.customer_id= customer_id_input 

and current_cus.customer_pass = customer_pass_input)
and success_msg=”login succeeded”
or
(not exists[current_cus: customer_db]| current_cus.customer_id= customer_id_input
and current_cus.customer_pass = customer_pass_input)
and e_msg=”incorrect password or id”

end_process;
…

process Manage_Ticket (flight_affair_req:sign, current_customer: CustomerInf)
end_process;
…

end module;

Fig. 10. CDFD of the Top-Level Module.

5.1.1 Simplicity

The SOFL language properly combines the formal notation VDM-SL with the in-
tuitive graphical representation CDFDs. Such an integrated notation allows de-
velopers to write specifications with a good readability and programers to easily
understand them. CDFDs present guidelines for both constructing formal specifi-
cations of the operations involved and understanding them by all the people involved
in a project team. Due to the intuitiveness of the three-step modeling approach,
we were given more chances to consider and analyze what existing services could
provide helps in building the air ticket reservation system in our case study.

5.1.2 Effectiveness

The three-step modeling approach addresses definite activities and criteria as mile-
stones for the developer to follow during the process of specification evolution.
This approach offers good communication and collaboration among different roles
during the specification formalization process, which can effectively reduce the mis-
understanding among them. Both the developer and the client can benefit from the
semi-formalization of the specification, discovering some potential requirements and
clarifying them. Moreover, the simplicity of the notations and clear structure of the
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SOFL specification makes it easy to be implemented in those common programming
languages. All these characteristics show the effectiveness of the SOFL method and
language.

5.1.3 Expressive Mechanism

SOC paradigm uses standard messages for the communication among web services.
The encapsulation of a web service leads to good modularity of service-oriented
systems. It is usually impossible to obtain the source code of existing services; only
the information of data and interfaces in their WSDL or BPEL files are available.
The SOFL language offers ”process” which can be used to abstract the web services
properly based on the limited description information without breaking the encap-
sulation of services. This is naturally suitable for service-oriented system modeling.
No matter whether a service is atomic or composite, it can be abstracted into a
single SOFL process or a hierarchical structure of SOFL CDFDs.

The unique CDFD itself is a well-defined diagram with rigorous syntax and
semantics. It can intuitively express the corresponding SOFL specification, acting
as a bridge between the professional developer and the client with little knowledge
of software development.

5.2 Specific Guidelines

We have derived some specific guidelines for service-oriented modeling using the
SOFL three–step modeling approach through the case study, which are described,
respectively, below.

(i) Distinguish the functions which can be realized by existing services
from others. In an informal specification, system functions are listed briefly,
likely in a hierarchical structure. In this step, it is recommended to mark the
functions which may be realized by potentially existing web services with com-
ments. This will remind the developer to pay more attention to the functions
when considering whether they should be decomposed into sub-functions. The
decisions on decomposition have to be made on the basis of the developer’s
experience, knowledge of existing web services, and engineering judgement.

(ii) Extracting web service descriptions correctly. The extraction of web
service description files is very critical in the process of specification construc-
tion. During the establishing of the semi-formal specification, the data types
of the potential selected web services should be analyzed and transformed into
valid types into the SOFL language.

(iii) Creating CDFDs in semi-formal specifications. Diagrammatic CDFDs
can make the client understand the developer’s design intention and judge
whether the recommended web services by the developer satisfy his or her
requirements. Our experience in the case study suggests that CDFDs can play
an important role in helping communication between the developer and the
client.
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5.3 Challenges

(i) Nonfunctional consideration. The SOFL language is a formal language
mainly used to express the functional requirements. The nonfunctional aspects
such as security and response lantency of the web services plays an important
role in service searching and selection. Some mechanisms need to be devel-
oped to express both functional and nonfunctional requirements in the SOFL
specification.

(ii) Accurate web service selection. How to use the combination of the client’s
domain knowledge, the developer’s experience and those existed techniques
such as ontology base or knowledge base to explore the proper web services
is not addressed completely. Accurate selection of web services in formalizing
the SOFL specification for the service-oriented software is worth more research
efforts.

6 Conclusion and Future Work

In this paper, we presented a case study applying the three-step modeling approach
of the SOFL formal engineering method to the construction of a formal model for
an air ticket reservation system in service-oriented manner. We have derived useful
guidelines for systematically integrating web service descriptions into a new service
system during the three-step approach. Our experience suggests that the SOFL
formal engineering method be effective for service-oriented software development,
but also shows some challenges in accurately determining reusable web services as
software components. Our previous research has indicated a possibility of using
specification-based testing to address this problem [14], but how to do it for web
services in a distributed environment needs more research efforts.

As future research, we will make use of our experience gained from the case
study to build a more effective service-oriented modeling approach, to study effective
specification-based testing techniques for finding satisfactory web services, and to
build efficient tool support for service-oriented application development.
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Abstract

In this paper, we present an approach to describing a network of components and checking whether the
network is complete and consistent, i.e. whether the components can work together properly. This model
will be the basis of a procedure for checking the correctness of a network of fully specified components on
the basis of their interface specifications and a description of the way that the components are connected.
Our approach is different from others in that each component is viewed as a hardware-like device in which
an output value can change instantaneously when input values change and all components operate synchro-
nously rather than in sequence.

Keywords: Networks of components, completeness, consistency, delay-free loop.

1 Introduction

The most fundamental problem in software development is the complexity of the
completed product; the way to deal with this complexity is a principle that is known
as ”Divide and Conquer”, ”Separation of Concerns” [5], ”Abstraction” or ”Infor-
mation Hiding” [15]. A computer system should be decomposed into manageable
modules that can be developed separately to reduce the complexity of the develop-
ment task. Modularity separates the concern of dealing with the implementation of
each module (while ignoring their interaction) from dealing with the interaction of
the modules and their relationships without considering implementation details of
any module.

However, separating concerns does not mean that the modules will be indepen-
dent. It allows people to work on them separately but they will still depend on each
other. When a software system comprises a set of components, they must commu-
nicate and work together harmoniously to perform the required task. In order to
prevent developers from wasting time implementing components that will not work
together, the consistency of the component interfaces and the correctness of this
design with respect to its requirements should be checked early in the development.
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1.1 Precise documentation of component interfaces

We consider documentation to be (at least) as important as the product itself [19].
Applying the information hiding principles requires that we document the inter-
face information precisely without revealing any information that should be hidden.
Only in this way can we be sure that the implementers of other modules do not
use information about the internal structure and that the future changes may af-
fect as few modules as possible. Consequently, preparing good module interface
documentation is essential for improving the quality of our software.

TFM, the Trace Function Method, is the result of decades-long efforts [14], [16]
to find a practical method for documenting module interfaces. It can be traced back
to its precursor TAM [3], [22], [25]. It is a new approach to specify information-
hiding module/component interfaces. For more details about TFM, readers are
referred to [18]. Our work here is based on documents written using TFM. The
essential property of this documentation is that the value of each output at a time
t, is described as a function of the history of the input and output values up to and
including time t.

1.2 Consistency checking of mathematical documents

We divide documentation checking into 1) checking of local properties in the doc-
umentation of one component, and 2) checking of global properties among related
components. The first has relevance to this paper only in that the documents we
are checking are assumed to have been subject to local checks previously.

Although mathematical documents are precise and unambiguous they are also
highly detailed and oversights and other errors are quite common. To detect the
early errors in such documents, we should validate them as early as possible [17].
The validation of design documents using pre-established criteria is a technical task
that can only be carried out if the design document is precise enough to permit
systematic analysis [19]. Research such as [10], [8], [9], [2], [27], [11] and [26] provide
approaches to checking completeness and consistency of a individual document of
one component.

In [6] DeRemer and Kron introduced and established the basic idea and concepts
of module interconnection language (MIL), which was aimed to ensure consistency
between different parts of a system. The idea was further developed in the work
of [24] and [20]. But MIL-based consistency checking is limited to simple type
checking, there is no semantics for defining module functions. In 1990s MIL was
superseded by architecture description languages (ADLs) [7], [1], and the society
tried to overcome the lack of semantics in the language and provide support for
specifying both functional and non-functional characteristics of components. ADLs
are intend to permit analysis of architectures and consistency checking of the struc-
ture descriptions. However there is no agreement on what constitutes an ADL, what
aspects of an architecture should be modeled in an ADL, and which ADL is best
suited for a particular problem [12], and certainly not a mathematical definition of
the languages. Without solving these problems it is difficult for an ADL to be used
as a basis for documentation checking.

Our general approach to checking conformance is the relational/functional
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method from [19]. If the design documents are written in TFM, the individual
tabular expressions in the specification of each component can be checked by table
checking tools such as those introduced in [11] and [26]. In this paper, we assume
that the interface specifications for each individual component have already been
checked. Our concern is checking the consistency of the interconnected components
and the conformance between a design and its specifications.

2 What are networks of components and why are they
interesting?

The need to reduce complexity and increase flexibility has motivated the develop-
ment of techniques for decomposing a system into modules and composing existing
components back into a system. The assembly of a system made of components is
made easier if the components are well defined and documented. If the system is not
well organized and professionally documented, the task of building and maintaining
the system is made more difficult than it would otherwise be.

2.1 Components, interfaces and the TFM interface specifications/descriptions

Components interconnect with each other through their interfaces. Before any fur-
ther discussions we have to define what do we mean by ”components” and ”inter-
faces”.

Definition 2.1 A software component is a collection of programs that is distributed
as a unit, i.e. without modification, for use in larger systems [18]. A well-defined
component should have clear interfaces for communication with its environment,
and it must provide specified functionality. We treat a component as a hardware-
like device in which an output value can change instantaneously when input values
change.

Definition 2.2 The interfaces of a component are assumptions that the component
makes about the others. An interface is generally an abstraction that a component
provides of itself to the outside. It separates the methods of external communication
from internal operation, and allows it to be internally modified without affecting the
way outside components interact with it, as well as provide multiple abstractions of
itself.

In related work we have used the TFM method [4], [23], [18] to document com-
ponent interfaces. This approach differs from many earlier approaches that provide
a relation with a domain of input histories and a range of output histories. In our
approach the domain is a trace that includes both inputs and outputs in the past
and the range is a set of possible values for the output. The work described in this
paper is not only compatible with TFM but also compatible with any other method
of providing component interface descriptions by documenting the relation between
input/output histories and output values.
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2.2 Interconnections and composition of components

If there are two communicating software components, A and B, B’s interface to A

is the weakest assumption about B that would allow you to prove the correctness of
A. We need to check whether the assumptions of one component about the rest of
the system have been met, whether the types of inputs match the types of outputs
connected to them.

When components are assembled to perform a common task, there may be both
explicit and implicit connections between them. The explicit connections are the
invocations and procedure parameters of which the designers are conscious. There
may also be explicitly shared variables used for communication. Sometimes however
there are shared resources and variables that are part of the communication but
overlooked by the designers and reviewers. It is essential to a useful analysis of
the network of components that all connections are identified and included in the
documentation.

Composing components means making a bigger component (we call it a com-
pound component) by connecting a group of components together. These compo-
nents are called the internal components of the compound component. The inter-
connections among the internal components are not shown in the documentation of
the interface of the compound component, but they are essential to the construction
of the compound component. In our model, all communication between components
is by shared variables. One component writes to a variable and other components
read the same variable. Higher level communication mechanisms such as program
calls and message transfer are always implemented using shared global variables.

2.3 A network of components

We view a component (as well as a compound component) as a black box with
input/output variables. As with hardware, the value of an output at a time t
is controlled by the inputs at time t or earlier. In other words, an output value
can change without delay when an input value changes but components can have
memory, i.e. the output can also depend on earlier input values.

If one component receives an output from another component as an input, the
output and the input are viewed as connected together. The values of the connected
input and output variables are always equal without delay. An output can be
connected to many inputs, but to avoid any ambiguity about the value of an input,
each input is only connected to one output. If it is desired to connect several
outputs to an input it is necessary to have a multiplexer component that receives
those inputs and delivers a single output value.

We call this collection of components and their interconnections a component
network. Each component in a network is viewed as a hardware-like device in
which an output value can change instantaneously when input values change and
all components operate synchronously rather than in sequence. This is analogous
to the concept of network of processes in [13].

Definition 2.3 A Network of Components (NC) is described by a quintuple
(∆, Σ, Γ,Ω, R) where:
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∆: a set of components,
Σ: the set of input variables of the network - variables whose values are

determined by the environment outside the network,
Ω: the set of output variables of the network - variables visible outside

the network whose values are determined by the network,
Γ: the set of interconnector variables whose values are determined within

the network - and are not visible outside the network,
R: a set of rules - the connection of input and output variables in the network.

These rules are described below.

Denote a member of Σ by σ, a member of Γ by γ, and a member of Ω by ω.
There are three kinds of network rules in R describing the interconnections of

components and the associations between the components and the system. The
following notations are defined:

1. i ← γ ← o (i ← γ ← o ∈ R) indicates that an input i get values from
output variable o of another component in the network, through the global inter-
connector variable γ , where i is a component input, o a component output and γ

an interconnector.
It describes the connection relationship among inputs of one component and

outputs of other components inside the network.
2. i ← σ (i ← σ ∈ R) to indicate that the value of i is determined by the

environment of network, where i is a component input and σ a system input.
It describes which system input should connect to which component input.
3. o → ω (o → ω ∈ R) to indicate that the value of network output ω is

determined by the component output o, where o is a component output and ω a
system output variable.

It describes which component output should connect to network output.
In a mathematical sense, the interconnector variable γ is redundant, and the

rule i ← γ ← o can be writen as i ← o. However, from the documentation point
of view, the interconnector variable is a place to mention the network role of a
shared variable. The role of a shared variable for the writing component, any
reading component and the network might all be different. For example, consider a
distance sensor component with an output variable named ’distance’. If this sensor
is mounted pointing upwards in a network, the interconnector used for its output
could be named ’headroom’. For a component that reads the variable within a
network, the name of the input variable might be quite different; such a component
might perform a generic task (e.g, averaging) and not be restricted to distances. The
input variable of this component might be named something like ”in” or ”raw”.

A network is static; the connections do not change with time. The intercon-
nection is delay-free; the values of connected input and output variables are always
equal and can only change simultaneously, there is no delay. If there is delay in the
system, it occurs inside a component.
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2.4 The purpose of defining a network of components

After a system has been divided into components and a set of documents describing
the externally visible behavior of the components has been prepared, and before
starting further implementation, we should be able to check that the design is
correct in the sense that if the implemented components are correct, we would get
a system that behaves as required.

Our goal is to check whether the set of components’ TFM descriptions (or any
other type of document with the same information content) are consistent and
whether they conform to a requirement specification of the system. A component
network description as defined in Definition 2.3 is used to describe the intercon-
nections among the components and the connections between the components and
the software environment. Only with this information can we check whether or not
the set of components can work together properly. Therefore the interconnection
description of the components must be an integral part of a system documentation.

3 The completeness of a network of components

As described in the previous sections, within a network the components are inter-
connected by means of their interfaces. The completeness of a network is used to
describe whether all necessary input variables are connected by output variables of
other components or system inputs, and whether the values of an output variable
could be calculated by one and only one component.

Definition 3.1 A network NC= (∆,Σ, Γ, Ω, R) of components is said to be com-
plete if and only if:

1. For each component and each component input i, there is one and only one
γ ∈ Γ such that i ← γ (i ← γ ← o ∈ R, o is an output variable of another
component) or one and only one σ ∈ Σ such that i← σ ∈ R.

It requires that each input to a component be determined by one and only one
interconnector or network input. It guarantees that every assumption made by a
component should be met by its environment.

2. For each interconnector γ in the network, there is one and only one component
and one and only one output o such that γ ← o (i ← γ ← o ∈ R, i is an input
variable of another component).

It requires that each interconnector be connected to one and only one output of
a single component in the network.

3. For each network output ω ∈ Ω, there is one component and one and only
one output o such that (o→ ω ∈ R).

It requires that each output that is required by the system must be calculated
by one component.

Within a network each input and output variable of a component should have
a unique name. If two components read from the same input variable, the input
variable of each component will use different name and will be connected to the
same variable. But this is not applicable to output variables since the network
completeness restrictions do not allow shared output variables.
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4 The consistency of a network of components

Consistency here means that the data types of interconnected variables are consis-
tent and the network is stable thus lead to a well-defined behavior.

4.1 Data type consistency

The first step towards consistency between connected components is that data types
in each network rule should be consistent. A network rule of the form i ← σ says
that variable i will receive values from variable σ. The set of possible values for the
variable on the right must be a subset of the set of possible values for the variable
on the left. The network could be possibly consistent only when data types of the
variables in each network rule are consistent.

For the concepts of data types and type consistency, we use those definitions in
[21] by replacing the term “mode” with “subtype” here to avoid possible misun-
derstanding, because in current and recent literature “mode” is mostly used with
another meaning, and from the definition of mode in that paper we can see it is a
definition of “subtype” in a more general way than many type systems now.

Definition 4.1 Types are classes of variables with certain stated properties. Sub-
types are classes of variables whose data representation and access are identical. If
a data type includes more than one subtype, it is an abstract type.

Subtypes are combined to abstract data types for variety of reasons such as to
support the goals of abstraction, abbreviation, and code sharing without sacrificing
type checking. Members of a subtype of a type may have more properties in common
than the full type.

We define a type-subtype relation as:

Definition 4.2 The relation Rts contains all pairs (A,B) of types where A is a
subtype of B.

This relation is reflexive and transitive. Denote the data type of a variable v as
Type(v), it returns the data type of v.

Definition 4.3 The data type of the variables in a network are consistent only
when:

1. For i← γ ← o ∈ R⇒ (Type(i), Type(γ)) ∈ Rts and (Type(γ), Type(o)) ∈ Rts

2. For i← σ ∈ R⇒ (Type(i), Type(σ)) ∈ Rts

3. For o→ ω ∈ R⇒ (Type(ω), Type(o)) ∈ Rts

4.2 Delay-free loops in the network

For any two components, our definition of a network allows communication in both
directions. Consider a pair of components that is connected such that component
C1 writes to variable γ1 and reads γ2, whereas component C2 reads variable γ1 and
writes to γ2: if the output of one of the components depends only on earlier values
of its input, the behavior of such networks will be well defined. However, if both
output values depend on current input values (meaning that there are no delays in
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either component) the network may not have a unique stable state and the behavior
could be undefined. In other words, if there is a loop in a network, at least one of
the components within the loop should have delay so that not all the interconnector
variables are changed simultaneously.

This means that the component description must contain sufficient information
to tell us whether or not there is a delay between an input and an output. In TFM
this is easily determined by looking at the variables that appear in the expression
defining the output function.

Definition 4.4 A dependency description, D, is a set of rules of the form o ← ·i
describing the fact that the value of output variable o at time t may depend on
the value of input variable i at the same time. The D rules can be derived directly
from a TFM document but should be derivable from any other form of functional
interface documentation.

There are three kinds of loops within two components: a) delay-free loop, where
the value of γ1 depends on the current value of γ2 and vice versa, b) delay in one
component, where only one of the variables depends on the current value of another,
and c) delay in both components, where both variables have no dependencies on
the current value of another.

With the D-rules a delay-free loop is defined as:

Definition 4.5 A delay-free loop between two components C1 and C2 is the case
when i2 ← γ1 ← o1 ∈ R and i1 ← γ2 ← o2 ∈ R, o1 ← ·i1 ∈ D1 and o2 ← ·i2 ∈ D2.
In such a situation the calculation of the output of C1 that is sent to C2 at time t

depends on an input value that is receiving value from C2 at the same time, and
vice versa.

Definition 4.5 characterizes a special case of delay-free loops. If there are n

components in a network, such kind of loops may go through k (2 ≤ k ≤ n)
components and the definition can be easily augmented to describe loops in more
than two components.

Definition 4.6 There is a delay-free loop among k components in the network if
there exists a sequence of variables such that i2 ← γ1 ← o1 ∈ R, i3 ← γ2 ← o2 ∈ R,
. . ., i1 ← γk ← ok ∈ R, and for all i ∈ {1, . . . , k}, oi ← ·ii ∈ Di.

4.3 Why rule out delay-free loops?

The presence of a delay-free loop indicates that the network may be ill-formed and
may have undefined behavior in some cases. If such a loop is found, we consider it
a design error. Nevertheless, this restriction is not yet justified. The P-T (Parnas-
Trancon) Conjecture stated below, and not yet proven, is the motivation of ruling
out this case from our consideration.
P-T Conjecture: For a delay-free loop, only the following two cases could happen:

(i) It is unstable or has more than one stable state, none of which is clearly prefer-
able over the others.

(ii) It is stable with exactly one solution, and there is an equivalent network without
such a loop.
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The meaning of “solution” becomes obvious if the case is formulated as mutually
recursive function equations:

o1(T ) = f(p(T ), o2(T )), o2(T ) = g(p(T ), o1(T ))

where o1 and o2 are variables of two components, o1(T ) and o2(T ) are the respec-
tive values of these variables at the end of a trace T , p(T ) is the trace containing
all but the last event of T , and f and g are trace functions defined in a TFM
specification/description.

By “equivalent network” we mean a network that always produces the same
output when given the same input values.

Proving or disproving the conjecture is future work.

Definition 4.7 A network of components is said to be consistent if and only if:

(i) The data type in each network rule is consistent as defined in Definition 4.3;
and

(ii) There is no delay-free loop in the network.

5 Summary and future work based on the network de-
scription

We have defined a network of components and discussed the rules for checking when
the network is complete and consistent, which are:

(i) Each output variable can be an output variable of exactly one component,
while input variables could be shared.

(ii) In every network rule i ← γ ← o, the data type of the three variables must
match as defined in Definition 4.3.

(iii) In every network rule i← γ ← o, γ gets the value from o, and i gets its value
from γ without delay.

(iv) If there is a loop in reading and writing between two components, there should
be delay in the loop.

If a network is complete and consistent as discussed in the above sections, the
connected components could work together. But whether the components could
work together correctly to finish the required task is not yet assured. Checking the
correctness of a TFM description of network behavior is the aim of the next stage
of our research.

A network behaves correctly if all the component TFM descriptions and the
connection description together capture the required software behavior. In future
work we will find ways to confirm that the behavior of the network satisfies the
requirements.
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1 Introduction

One central activity of model-driven software development is to transform high-level
models into low-level models through model transformations. In an ideal situation,
the target model is always obtained from the source model and never need to be
modified. However, in reality, developers often need to modify the target model
directly. In such cases, we need to reflect the updates on the target models back to
the source models.

Bidirectional model transformation solves this maintenance problem by pro-
viding bidirectional model transformation languages, which describe the relation
between two models symmetrically. Programs in these languages are able to not
only transform models from one format into the other, but also update the other
model automatically when one model is updated by users. Typical bidirectional
model transformation languages include QVT [5] and TGG [4].

Perdita Stevens [7] formalizes bidirectional model transformation as two func-
tions. If M and N are meta-models and R ⊆M×N is the consistency relation to be
established on the models. A bidirectional transformation consists of the following
two functions:

−→
R : M ×N → N←−
R : M ×N →M

Given a pair of models (m, n) ∈M ×N , the function −→R changes n to be consistent
to m. Similarly, ←−R changes m in accordance with n.

However, in some cases the the model m and n may both be updated before
bidirectional transformation can be applied. For example, a designer is working on
the design model and a programmer is working on the implementation model at the
same time. Applying the transformation of any direction will result in the loss of
updates on the target side.

To solve this problem, we need a synchronizer to propagate the updates on each
model to the other model at the same time. In this paper we consider such a
synchronizer as a partial function

sync : R× (M ×N)→ R

that takes two original models in the consistency relation R, two updated models and
produces two synchronized models. The output model should be close to the original
models, and also contains the updates in the updated models and the updates
propagated from the other sides. The function is partial because sometimes the
updates on the two models may conflict and cannot be synchronized.

Given the large number of available bidirectional model transformation lan-
guages, there are relative few ready-to-use synchronization languages. So one nat-
ural idea is to use bidirectional model transformation to support model synchro-
nization. In this paper we carry out theoretical studies of how bidirectional model
transformation can be used to support model synchronization. The main contribu-
tions of this paper can be summarized as follows:

• We extend our previous algebraic framework for model synchronization [8] to
general cases. We consider the symmetrical cases where no model is necessarily
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an abstraction of the other model and open door to free choice of updates.
• We propose an algorithm that wraps any bidirectional model transformation into

a synchronizer, with the help of a three-way merger. We also discuss basic conflict-
resolving support in the synchronizer.

• We prove that, for any bidirectional transformation satisfying the correctness and
hippocraticness properties [7], the synchronizer satisfies the stability, preservation
and consistency properties [8], ensuring a correct and predictable synchronization
behavior.

This paper is organized as follows. Section 2 introduces our algebraic framework
of model synchronization, including three properties to characterize the behavior
of synchronization. Section 3 introduces the bidirectional model transformation
properties introduced by Stevens [7]. Based on these properties, Section 4 introduces
our algorithm and prove that bidirectional model transformation properties lead to
model synchronization properties. Section 5 introduces our basic conflict-resolving
strategy. Finally, Section 6 discusses two pieces of related work.

2 Properties of Model Synchronization

We have seen the basic definition of a synchronizer: it takes two original models, two
updated models and produces two synchronized models. However, this definition
only characterize the input and output types of the synchronizer, and does not
say much about the synchronization behavior. In this section we propose several
properties to characterize the behavior of the synchronizer.

As the first step of charactering the behavior, let us define the updates on the
models. In our definition, the synchronizer only takes models and produces new
models, and one may ask: why do we need to consider updates? This is because we
need to detect updates and merge simultaneous updates in synchronization. If we
consider different sets of updates, the synchronization may lead to different results.

For example, let us consider the meta model M as a power set of some alphabet
set Σ. Suppose two users made two different updates on one model, respectively,
and their updated results are as follows.

the original model M0 : {a, b, c}
the first updated result M1 : {a, d, c}
the second updated result M2 : {a, e, c}

If we consider M1 is created by replacing b by d, and M2 is created by replacing b by
e, the two updates will conflict. However, if we consider M1 is created by deleting
b and adding d, while M1 is created by deleting b and adding e, this two updates
are compatible and we can merge them as one model: {a, d, e, c}.

From these different results we can see that the synchronization behavior de-
pends on what updates we choose. To clear characterize the behavior, we need to
first be clear about which set of updates we will consider during the synchronization.
First we give the definition of update: An update u defined on some meta-model M

is an idempotent function u ∈M →M . We consider only the idempotent function
because idempotence allows us to tell whether the update has been preserved in

3
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a model. If we apply an update to a model and the model remain constant, the
update has been preserved in the model.

Example 2.1 The meta model M is a power set of some alphabet set Σ. Suppose
we have the following functions:

• addJaK(A) = A ∪ {a}

• removeJaK(A) = A\{a}

• replaceJa, bK(A) =





A\{a} ∪ {b} a ∈ A

A otherwise

Then for any a, b ∈ Σ, we have addJaK, removeJaK and replaceJa, bK are updates.

After we define updates as functions, the relationship between updates can be
defined through function composition. Two updates u1, u2 conflict iff u1 ◦ u2 6=
u2 ◦ u1. We write u1 ⊖ u2 if u1 and u2 do not conflict.

Corollary 2.2 ⊖ is commutative.

Proof. By the definition. 2

Corollary 2.3 If a⊖ b, we have that a ◦ b is an update.

Proof. Because a ◦ b = b ◦ a, we have (a ◦ b) ◦ (a ◦ b) = (a ◦ a) ◦ (b ◦ b) = a ◦ b. 2

Corollary 2.4 If b ◦ c is an update and a⊖ b, a⊖ c, we have a⊖ (b ◦ c).

Proof. Because a ⊖ b, we have a ◦ b = b ◦ a. Putting together a ⊖ c, we have
a ◦ (b ◦ c) = b ◦ a ◦ c = b ◦ (a ◦ c) = b ◦ c ◦ a. 2

Another relation we consider is whether an update is included in another update.
An update u1 is a sub update of another update u2 iff u1◦u2 = u2◦u1 = u2, denoted
as u1 ⊑ u2.

Corollary 2.5 ⊑ is a partial order over any set of updates.

Proof. By definitions. 2

Proof. We need to show ⊑ is reflexive, antisymmetric and transitive.

Reflexive a ◦ a = a

Antisymmetry If a ⊑ b and b ⊑ a, we have a ◦ b = a and a ◦ b = b, and then we
have a = b.

Transitivity If a ⊑ b and b ⊑ c, we have a ◦ b = b ◦a = b and b ◦ c = c ◦ b = c, then
we have a ◦ c = a ◦ (b ◦ c) = (a ◦ b) ◦ c = b ◦ c = c. Similarly ,we can have c ◦ a = c.

2

Corollary 2.6
∀a, b ∈ Σ : a 6= b⇒ addJaK⊖ addJbK
∀a, b ∈ Σ : a 6= b⇒ removeJaK⊖ removeJbK
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∀a, b ∈ Σ : a 6= b⇒ addJaK⊖ removeJbK

As we have discussed, to clearly characterize the synchronization behavior of a
synchronizer, we need to know what kinds of updates can be applied to a model.
We define the updates that can be applied to models in M through a proper update
set UM . A proper update set UM defined on a meta model M is a set of updates
that satisfies:

• UM is closed on composition,
• the identity function id ∈ UM , and
• for any m, n ∈M , the set {u ∈ UM |u(m) = n} has a least element.

The first condition requires the property update set to be complete, so that we
can freely apply a sequence of updates in the set without worrying whether we are
applying a “proper update”. The second condition allows us to keep the model
unmodified. The third condition implies two things: 1) any model can be applied
to any other model, and 2) given two models, we can always find a unique update
that is least among all updates.

If u is the least element in the set {u ∈ UM |u(m) = n} for any m, n ∈ M , we
say u is the least update from m to m′.

To give an example of proper update set, let us define a function which con-
struct a set of functions by composing another set of function with a predefined set:
composeJF K(H) = {f ◦ h | ∀f ∈ F, h ∈ H}

Lemma 2.7
∀a ∈ Σ : addJaK ◦ removeJaK = addJaK
∀a ∈ Σ : removeJaK ◦ addJaK = removeJaK

Example 2.8 Let
B1 = {addJaK | ∀a ∈ Σ} ∪ {removeJaK | ∀a ∈ Σ},
M1 =

⋃∞
n=0(composeJB1K)n({id}),

we have M1 is a proper update set.

Proof. First, every element in M1 is an update. Every element in M1 can be written
as a sequence of composition operJa0K ◦ operJa1K . . . operJanK where oper = add or
remove and ai 6= aj for any i 6= j. This can be proved by mathematical induction.
Furhter because of Corollary 2.7, Corollary 2.3 and Corollary 2.4, every element is
an update.

Second, similarly, we have M1 is closed on composition.
Third, by definition, id is in M1.
Forth, consider two element m0 and m1 in M . Let set1 = {addJaK | a ∈ m0∧a /∈

m1} and set2 = {removeJaK | a ∈ m1 ∧ a /∈ m0}. The least update from m0 to m1

is a composition of all element in set1 and set2. We can easily prove this is a sub
update of any other updates. 2

Example 2.9 Let
B2 = B1 ∪ {replaceJa, bK | ∀a, b ∈ Σ},

5
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M2 =
⋃∞

n=0(composeJB2K)n({id}),
we have M2 is not a proper update set.

Proof. Given two sets m1 = {a, b} and m2 = {a, c}, both addJcK ◦ removeJbK and
replaceJb, cK can update m1 to m2, but none is a sub update of the other. 2

With updates clearly defined, we are ready to move to define the properties.
We consider stability, preservation and consistency defined in [8] and leave the
composability property, which is arguably too strong. The three properties are
previously defined in the case where the target model is an abstraction of the source
model, here we adapt the definitions to symmetrical cases.

Stability says that if no model is updated, the synchronizer should update no
model.

Property 1 (Stability)
R(m, n)⇒ sync(m, n, m, n) = (m, n)

Preservation requires user updates should be preserved during synchronization.
In other words, when users modify a data item to some specific valuess, the syn-
chronizer should not modify the data item to any other value.

Property 2 (Preservation)
If sync(m, n, m′, n′) = (m′′, n′′), um is the least update from m to m′, we have

um(m′′) = m′′

If sync(m, n, m′, n′) = (m′′, n′′), un is the least update from n to n′, we have
un(n′′) = n′′

Consistency requires the synchronizer to produce consistent result.

Property 3 (Consistency)
sync(m, n, m′, n′) is defined ⇒ R(sync(m, n, m′, n′))

3 Properties of Bidirectional Model Transformation

Perdita Stevens [7] also proposes three properties to ensure a predictable behavior
of bidirectional model transformations. Two of the properties are correctness and
hippocraticness. The third property, undoability, is also arguably too strong, and
we do not consider it here.

Property 4 (Correctness)
∀m ∈M, n ∈ N R(m,

−→
R (m, n))

∀m ∈M, n ∈ N R(←−R (m, n), n)

Property 5 (Hippocraticness)
R(m, n)⇒ −→R (m, n) = n

R(m, n)⇒←−R (m, n) = m

4 Algorithm

The basic idea of the algorithm is to first convert the model in one side to the other
side using bidirectional transformation, then use a three-way merger [3] to reconcile

6



Xiong, Song, Hu and Takeichi

morig

mupdt

mtemp

msync

norig

nupdt

ntemp

nsync

1.
←−
R

2. merge 3.
−→
R

4. merge

5. test equality

Fig. 1. The Synchronization Algorithm

the updates, and transform back using the opposite transformation. The detailed
algorithm is shown in Figure 1.

Initially, we have the original models morig, norig and the updated models mupdt,
nupdt. First we use←−R to propagate the updates on nupdt to morig and we get mtemp.
Then we invoke a three-way merger to merge morig, mupdt and mtemp.

A three-way merger is a partial function merge ∈M ×M ×M →M that takes
a reference model mo and two updated models ma and mb diverged from mo, and
produced a new model m′

o where the updates in ma and mb are reconciled. Suppose
ua is the least update from mo to ma and ub is the least update from mo to mb, the
merge function will ensure the following:

• merge(mo, ma, mb) is not defined iff ua and ub conflict.
• merge(mo, ma, mb) = m′

o ⇒ (ua ◦ ub)(mo) = m′
o.

Back to our algorithm, here mupdt contains the update on morig and mtemp

contains the update transformed from norig. After we merge them using morig as a
reference model, we can get msync that contains updates from both sides.

When we have a synchronized model msync on M side, we can perform −→R to get
a synchronized model nsync on N side, and the nsync should contains updates from
both side.

Now we have two synchronized models where the updates are propagated. It
looks that we have performed enough steps to finish the algorithm. However, the
above steps is not always able to detect all conflicts, and may lead to violation of
preservation due to the heterogeneousness of the two models

To see how this can happen, let us consider the following example. Suppose M

contains two constants {a, b} and N contains two constants {x, y}. The consistency
relation between them is 




(a, x)

(a, y)

(b, x)





,
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a

b

a

b

x

y

x

1.
←−
R

2. merge 3.
−→
R

Fig. 2. An Example Violating Preservation

That is, a is related to x and y while x is also related to b. Suppose initially the
two models are morig = a and norig = x, and then morig is updated to b while norig

is updated to y.
The process of this computation is shown in Figure 2. After computation, the

algorithm produces b on the M side and x on the N side. However, if we check the
update on the N side, we will find that x is updated to y and this updated is not
preserved in the synchronized model. The property of preservation is violated.

The violation is caused by the asymmetry of M and N . Both x and y in N are
related to the same element a in M . When nupdt is transformed to the M side, the
update is not recognizable by the state-based three-way merger.

To capture such conflict, we add an additional preservation check at the end
of the synchronization. As shown in the 4th and the 5th steps in Figure1. We
first merge nupdt and nsync with norig as a reference, and then compare whether
the merged model ntemp is equal to nsync. If the preserve property is satisfied, the
two model should be equal, otherwise the algorithm will report an error message
indicating there are conflicts.

Theorem 4.1 If the bidirectional transformation (−→R,
←−
R ) satisfies correctness and

hippocraticness, we can ensure that the synchronization algorithm satisfy stability,
consistency and preservation.

Proof. Stability If we have morig = mupdt and norig = nupdt, then we have
R(morig, nupdt). Because of hippocraticness, mtemp = ←−R (morig, nupdt) = morig.
Because the least update from morig to mupdt and to mtemp are both id, merge will
produce the same model, that is msync = morig. Similarly, nsync = norig and the
preservation check always passes successfully.

Preservation On the M side, suppose um is the least update from morig

to mupdt, because merge(morig, mupdt, mtemp) = msync, we have um(msync) =
msync. Similarly, suppose un is the least update from norig to nupdt, because
merge(norig, nupdt, nsync) = ntemp = nsync, we have un(nsync) = nsync.

Consistency Because −→R (msync, nupdt) = nsync, we have R(msync, nsync). 2
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morig

mupdt

mtemp

msync

morig

mupdt

msync

1.
←−
R

2. merge′ 3.
−→
R

Fig. 3. The Synchronization Algorithm for Conflict Resolving

5 Conflict Resolving

One important issue in synchronization is how to resolve conflicts in the two updated
models, automatically or with user intervention. A full discuss of conflict resolving
relates to conflict presentation and interaction, which is beyond the scope of the
paper. In this section we consider a simple automatic resolving strategy: overwriting
all conflicting updates on one model with the updates on the other model.

Let us first consider the case where the updates in M take priority. Because
bidirectional transformation describe the transformation symmetrically, we can just
swap M and N when we need N to take priority.

Because of the updates in N may be overwritten by the updates in M , we need
to loosen the preservation property to allow loss of updates on the N side. The
loose preservation property only requires to preserve updates on the M side, as the
following.

Property 6 (Loose Preservation for Conflict Resolving)
If um is the least update from m to m′ and sync(m, n, m′, n′) = (m′′, n′′), we

have um(m′′) = m′′

Furthermore, we need an extended merge function merge′ which deals with
conflicting updates and gives priority to the first model.

• merge′ : M ×M ×M →M is a total function.
• merge′(mo, ma, mb) = m′

o ⇒ (ua ◦ ub)(mo) = m′
o.

The algorithm for the updated model is shown in Figure 3. This algorithm is
similar to the original one, except that we use merge′ instead of merge and we
do not post-check preservation. We can similarly prove that the algorithm ensure
stability, consistency and the loose preservation if the bidirectional transformation
satisfies correctness and hippocraticness.

9
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6 Related Work

Pierce and et al. [6] propose the Harmony framework, which also addresses the
issue of supporting synchronization from bidirectional transformations. Compare
to our work, Harmony emphasizes on totality, but requires users to design middle
model and two transformation which relates the middle model to the original two
models respectively. In this way Harmony can achieve totality, but it requires more
programming work to design the middle model and code the two transformations.

Antkiewicz and Czarnecki discuss various design decisions of synchronizers in
their work[1]. Their work classifies synchronizers into different types using differ-
ent design decisions. Use their classification, our synchronization algorithm can be
classified as “bidirectional, non-incremental, and many-to-many synchronizer us-
ing artifact translation, homogeneous artifact comparison and reconciliation with
choice”.

7 Conclusion

In this paper we propose an approach that wraps a bidirectional transformation
program into a synchronizer for simultaneous updates. Our approach is general, in
the sense that it allows any bidirectional transformation, and predictable, satisfying
the model synchronization properties: consistency, stability and preservation.

Our approach is built upon idempotent updates. However, in the real world
many updates cannot easily be presented as idempotent functions. For example,
“inserting the item a into a list at index 2” is not an idempotent function. In our
future work we plan to adopt more general definitions of updates (e.g., considering
updates as arrows in a graph [2]), and extend our synchronization framework to
more general cases.
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Abstract
Functional programming has been a subject of main stream computer science for many
years. In spite of its huge impact on the development of programming language theory
and practice, software engineering and even computer architecture, it is fair to say that
functional programming is still mainly a principle rather than a particle tool for daily soft-
ware development. However, I would like to argue that this situation may be changed in
the new era of service oriented computing. In last few years, workflow has been an active
research subject in the community of Grid computing. Workflow, which can be understood
as a graphical functional programming language, provides a practical means for building
computational services by composing existing services. Some practical workflow systems
have been build and widely adopted in industry. This development has proven that the
functional programming is playing an increasingly important role in service oriented com-
puting. In this talk, I would like to present a new view of functional programming in the
context of Cloud Computing. By presenting the technical challenges and the methodology
of building Cloud application, I will present a functional framework for programming the
Cloud by mashing up Cloud services.
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Abstract. Quotients and factors of regular languages are important no-
tions in the design of computational procedures in the algebra of regular
expressions and the analysis of their logical properties. We present algo-
rithms for the computation of quotients and factors of languages specified
by regular expressions.

1 Introduction

In [3], Brzozowski introduced the notion of word derivative and proposed an ele-
gant algorithm to turn a regular expression into a deterministic finite automaton
(DFA). His insight was that the word derivatives of a regular expression serve
as states of the corresponding DFA. Antimirov [1] went a step further by in-
troducing the notion of partial word derivative and observing that partial word
derivatives of regular expressions serve as states of a corresponding nondeter-
ministic finite automaton (NFA) with a relatively small number of states. He
also noticed that computations based on partial word derivatives can improve
the efficiency of Brzozowski’s algorithm of translating regular expressions into
finite automata. A much broader analysis of the role of word derivatives in the
algebra of regular expressions was carried out by Conway [4]. His notion of left
(resp. right) derivate of a language coincides with the current notion of language
left quotient F−1E (resp. right quotient EF−1), whereas his notion of right fac-
tor coincides with the recently proposed notion of product derivative [7]. Both
quotients and factors are natural generalizations of the notion of word derivative,
but in slightly different directions:

– The left quotient of E with respect to a language F is the union of all word
derivatives of E with respect to a word from F ,

– The right factor of E with respect to a language F , a.k.a. the product deriva-
tive of E with respect to F in [7], is the intersection of all word derivatives
of E with respect to a word from F .

Quotients and factors of regular languages are relevant in the design of compu-
tational procedures in the algebra of regular expressions and the analysis of its



logical properties [4]. For example, factors of regular languages can be used in
the computation of maximal solutions of formulas P ≤ R where R is a regular
expression over an alphabet A, P is a regular expression over an alphabet A∪X ,
X is a countable set of variables, and “≤” denotes language inclusion. This kind
of generalized matching problem has finitely many maximal solutions which can
be computed by using the factor matrix of R [4, Ch. 6].

Algorithms for the computation of quotient are well known for representa-
tions of regular languages by finite automata [5, Thm. 3.6], whereas algorithms
for the computation of factors are more recent developments. In [7], the right
factor is obtained from the computation of the greatest fixed point of a con-
tinuous operator which renders the result as a finite intersection of languages
represented by regular expressions.

Our algorithms for the computation of quotient and factors manipulate lan-
guages represented by regular expressions, and compute a representation of the
result by a regular expression. We identify the notion of system of characteristic
equations of a regular language, show that such a system has a unique solution,
that the solution consists of regular languages, and that there is a straightfor-
ward way to compute a representation of the solution by regular expressions.
The main insights of our algorithms are:

– We can compute a system of characteristic equations for every regular lan-
guage. This computation can be carried out in the differential calculus of
Antimirov [1].

– We can compute systems of characteristic equations for the quotient and
factors of regular languages E and F from systems of characteristic equations
for E and F .

In this way, we reduce the computation of quotient and factors, to the compu-
tation and solving of systems of characteristic equations.

The paper is structured as follows. Section 2 presents basic notions and known
theoretical results from the calculus of regular expressions. Section 3 presents our
algorithms for the computation of quotients and factors of. Section 4 concludes.

2 Preliminaries

From now on we assume given a finite alphabet A. We write A∗ for the set of
words of symbols from A, and ε for the empty word. The length of a word w
is denoted by |w|. A language is an arbitrary set of words, that is, a subset of
A∗. The sum of two languages is their union E ∪ F . Their product E.F is the
set {vw | v ∈ E,w ∈ W}. The asterate E∗ is the set

⋃
n∈N E

n where E0 = {ε}
and En+1 := E.En. The operations ∪, ., ∗ are called regular operations. The set
Reg(A) of regular languages is the set of languages obtained from the languages
∅, {ε}, and {a} (where a ∈ A) by a finite number of applications of regular
operations.

The symmetric of a language L is the language Ls := {an . . . a1 | a1 . . . an ∈
L}. Regular languages are closed under intersection, complementation, and sym-
metry, that is, L1 ∩ L2,A∗ − L,Ls ∈ Reg(A) whenever L,L1, L2 ∈ Reg(A).
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The set T (A) of regular expressions is defined recursively as follows:

– The symbols of A, and 0 and 1 are regular expressions;
– If r and s are regular expressions, then so are r · s, r + s and s?.

The alphabetic width of r ∈ T (A), denoted by ‖r‖, is the number of all occur-
rences of symbols from A in r. The symmetric of r ∈ T (A) is the regular expres-
sion rs defined by: rs := r if r ∈ {0, 1} ∪A; (r+ s)s := rs + ss; (r · s)s := ss · rs;
and (r?)s := (rs)∗.

A regular expression r denotes a regular language [[r]] and this interpretation
is determined by the following surjective homomorphism [[ ]] from the free algebra
(T (A), {+, ·, ∗}) to (Reg(A), {∪, ., ∗}):

[[0]] := ∅, [[1]] := {ε}, [[r · s]] = [[r]].[[s]], [[r + s]] := [[r]] ∪ [[s]], and [[r?]] := [[r]]∗.

Note that the equality [[rs]] = [[r]]s holds for all r ∈ T (A). Two regular expressions
r and s are equivalent, and we write r .= s, if [[r]] = [[s]].

The function o : T (A) → {0, 1} which yields the constant part o(r) of a
regular expression r, is defined by

o(0) = o(a) := 0 (a ∈ A) o(r + s) := max{o(r), o(s)}
o(r · s) := min{o(r), o(s)} o(1) = o(r?) := 1

It is easy to see that o(r) = 1 if ε ∈ [[r]], and o(r) = 0 otherwise.
The quotients of two languages E and F are defined as follows [2]:

– the left quotient of E w.r.t. F is F−1E := {w | ∃v.(v ∈ F ∧ vw ∈ E)}.
– the right quotient of E w.r.t. F is EF−1 := {w | ∃v.(v ∈ F ∧ wv ∈ E)}.

If F is a singleton language {w} then we write simply w−1E and Ew−1 instead
of the more cumbersome notations {w}−1E and E{w}−1. We call these sets the
word derivative and word antiderivative of E with respect to w.

It is well known that a regular language E has only finitely many left quo-
tients F−1E (even for irregular language F ), and that these are all regular
languages [4]. The proof of this result can be easily adapted to conclude the
same property for right quotients.

2.1 Systems of Characteristic Equations

A system of linear equations [6] is a system of language equations


X1

...
Xn


 = A.



X1

...
Xn


 ∪B (1)

where A is an n × n matrix of languages over A, and B is an n × 1 matrix of
languages over A. We will write Ai,j for the element of A at position (i, j), and
Bi for the element at position (i, 1) of the n× 1 matrix B.
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The matrix A is called ε-free if ε does not belong to any of the elements of
A. It is well known that if A is ε-free then (1) has the unique solution



X1

...
Xn


 = A∗.B,

where A∗ is the asterate of matrix A in the algebraMn,n(Reg(A)) [4, 6]. In this
case, we call (1) a system of characteristic equations of the language (A∗.B)1.

Antimirov’s improvement of Brzozowski algorithm [1, Sect. 4.2] computes,
for every r ∈ T (A), the following:

– A finite set ∂A?(r) := {r1, . . . , rn} ⊆ T (A), called the partial word deriva-
tives of r,

– An n× n linear matrix1 A and an n× 1 constant vector2 B

such that n ≤ ‖r‖+ 1 and



r1
...
rn


 .= A ·



r1
...
rn


+ B. (2)

We recall from [1] that ∂ : A∗ × T (A)→ P(T (A)) satisfies the conditions:

– ∂1(s) := s, ∂aw(s) :=
⋃

s′∈∂a(s) ∂w(s′), ∂W (s) :=
⋃

w∈W ∂w(s) , and
– w−1[[s]] =

⋃
s′∈∂w(s)[[s

′]]

for all a ∈ A, w ∈ A∗, W ⊆ A∗, and s ∈ T (A).
Note that the elements of A in (2) denote ε-free languages, therefore (2)

denotes a system of characteristic equations for [[r1]] with the unique solution



r1
...
rn


 .= A? ·B

where A? is the asterate of matrix A in the algebra Mn,n(T (A)) [6].
Antimirov’s algorithm identifies regular expressions modulo fine similarity,

which is an equivalence relation weaker than “ .=.” Therefore, (2) may not be
minimal in the number of equations among the systems of characteristic equa-
tions for [[r1]]. We can minimize the system if we identify regular expressions
r1, . . . , rn modulo equivalence.

1 A linear matrix is matrix whose elements are 0 or sums of elements from A.
2 A constant matrix has all entries 0 or 1.
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2.2 Factors of Regular Languages

A product of languages F1. . . . .Fn is a subfactorization of a language E if and
only if F1. . . . .Fn ⊆ E. The languages F1, . . . , Fn are called the terms of the sub-
factorization. A term Fi is maximal if it can not be increased without violating
the language inclusion. A factorization of E is a subfactorization in which every
term is maximal. A factor of E is any language which is a term in some factor-
ization of E. A left (resp. right) factor of E is one which can be the leftmost
(resp. rightmost) term in some factorization of E. The left (resp. right) factor of
E with respect to F is the maximal term G in the subfactorization G.F (resp.
F.G) of E. We denote the left (resp. right) factor of E with respect to F by
E C F (resp. F B E).

We write r ≤ s for r, s ∈ T (A) iff [[r]] ⊆ [[s]].
Example 1. Let A = {a, b} and E = [[a?b?]]. There are four 2-term factorizations
F1.F2 of E: F1 = [[r]] and F2 = [[s]] where r, s ∈ T (A) such that

〈r, s〉 ∈ {〈0, (a+ b)?〉, 〈a?, a?b?〉, 〈a?b?, b?〉, 〈(a+ b)?, 0〉}.
Note that [[0]].[[(a+ b)?]] is a factorization of E, but [[0]].[[(a+ b)?]] = ∅ 6= E. ut
In general r1 · r2 .= r is neither implied by, nor implies, that [[r1]].[[r2]] is a
factorization of [[r]]. For example, a? .= r1 · r2 where r1 = 1 + a and r2 = a?, but
[[r1]].[[r2]] is not a factorization of a? because the term [[r1]] is not maximal with
respect to ⊆.

We recall some basic results about language factors:
1. Any left factor is a left term in some 2-term factorization. Any factor is the

central term in some 3-term factorization. Any right factor is the right term
in some 2-term factorization. [4, Ch.6, Thm. 2]

2. The condition that L.R be a factorization of E defines a 1-1 correspondence
between the left and right factors. [4, Ch.6, Thm. 3]

3. A regular language has finitely many factors, which are regular languages.
[4, Ch.6, Thm. 5]

Let E ∈ Reg(A) be a regular language such that {Li.Ri | 1 ≤ i ≤ n} are
all 2-term factorizations of E. Obviously, every factor of E belongs to the set
{Ei,j | 1 ≤ i, j ≤ n} where Ei,j is defined by the condition that Li.Ei,j .Rj be a
subfactorization of E in which Ei,j is maximal. The n× n matrix



E1,1 . . . E1,n

...
. . .

...
En,1 . . . En,n




is called the factor matrix of E, and has some remarkable properties [4]:
1. There exist unique indices l, r ∈ {1, . . . , n} such that E = Lr = Rl = El,r

and Li = El,i, Ri = Ei,r for all i ∈ {1, . . . , n}.
2. ε ∈ Ei,i for all i ∈ {1, . . . , n}.
3. F1.F2 ⊆ Ei,k if and only if F1 ⊆ Ei,j and F2 ⊆ Ej,k for some j ∈ {1, . . . , n}.
4. F1. . . . .Fp ⊆ E if and only if there are indices i1, . . . , ip ∈ {1, . . . , n} such

that F1 ⊆ El,i1 , Fp ⊆ Eip−1,r, and Fj ⊆ Eij−1,ij
for all 1 < j < p.
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3 Computational Methods for Quotients and Factors

In this paper we are interested in symbolic algorithms that work directly on
some regular expressions r and s for the languages E and F , and produce:

1. A regular expression for the left and right quotient of E with respect to F .
2. A set of regular expressions for the right factors of E, and a set of regular

expressions for the left factors of E.
3. A regular expression for the left and right factor of E with respect to F .
4. Regular expressions for the factors of the factor matrix of E.

The remainder of this section describes our algorithms for these computations.

3.1 Regular Expressions for Left and Right Quotients

First, we investigate the computation of a regular expression rs−1 for [[r]][[s]]−1.
Note that, if r, r1, r2, s ∈ T (A) then r

.= o(r) +
∑

a∈A
∑

q∈∂a(r) q and:

1. rs−1 .= o(rs−1) +
∑

a∈A
∑

q∈∂a(r) a · (qs−1).
2. (r1 + r2)s−1 .= r1s

−1 + r2s
−1.

An immediate consequence of this fact is that, if


r1
...
rn


 .= A ·



r1
...
rn


+



o(r1)

...
o(rn)




is a system of characteristic equations for [[r1]], then


r1s
−1

...
rns
−1


 .= A ·



r1s
−1

...
rns
−1


+



o(r1s−1)

...
o(rns−1)




is a system of characteristic equations for [[r1s−1]]. It follows that, if we manage
to compute the vector

C :=



o(r1s−1)

...
o(rns−1)


 ∈Mn,1({0, 1})

then we can define


r1s
−1

...
rns
−1


 := A? ·C ∈Mn,1(T (A)).

In particular, we define r1s−1 as (A? ·C)1.
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At this stage, the only item that we still have to compute is vector C. For
this purpose, we consider the systems of characteristic equations



r1
...
rn


 .=



b1
...
bn


+ A ·



r1
...
rn






s1
...
sm


 .=



c1
...
cm


+ B ·



s1
...
sm




for [[r1]] and [[s1]] where r1 = r and s1 = s. We define the monotone operator

F : P({r1, . . . , rn} × {s1, . . . , sm})→ P({r1, . . . , rn} × {s1, . . . , sm})

represented compactly by the following collection of inference rules

[bi = 1 ∧ cj = 1]
〈ri, sj〉

〈rk, sl〉 [a ∈ A ∧ rk ∈ ∂a(ri) ∧ sl ∈ ∂a(sj)]
〈ri, sj〉

Each rule states that if the pair above the bar is in the input set and the condi-
tions within square brackets hold, then the pair below is in the output set.

F is a monotone operator defined on the finite cpo (P(∂A∗(r)× ∂A∗(s)),⊆).
Therefore, the least fixed point µF of F is a finite computable set.

Lemma 1. The least fixed point µF of F is the set {〈ri, sj〉 | o(ris−1
j ) = 1}.

Proof. Let M = {〈ri, sj〉 | o(ris−1
j ) = 1}. We prove µF ⊆M by induction of the

length of the inference derivation.
If 〈ri, sj〉 ∈ µF was deduced by the inference rule

[bi = 1 ∧ cj = 1]
〈ri, sj〉

then o(ri) = bi = 1 = cj = o(sj), therefore ε ∈ [[ri]] ∩ [[sj ]] and thus ε ∈
[[ri]][[sj ]]−1 = [[ris−1

j ]]. Hence o(ris−1
j ) = 1, therefore 〈ri, sj〉 ∈M.

If 〈ri, sj〉 ∈ µF was deduced by a derivation with the last inference rule

〈rk, sl〉 [a ∈ A ∧ rk ∈ ∂a(ri) ∧ sl ∈ ∂a(sj)]
〈ri, sj〉

then 〈rk, sl〉 ∈ µF, a · rk ≤ ri and a · sl ≤ sj . By induction hypothesis we have
o(rks−1

l ) = 1. But o(rks−1
l ) = 1 iff [[rk]] ∩ [[sl]] 6= ∅ iff [[a · rk]] ∩ [[a · sl]] 6= ∅. Since

[[a · rk]] ∩ [[a · sl]] ⊆ [[ri]] ∩ [[sj ]], we conclude ε ∈ [[ri]][[sj ]]−1, hence o(ris−1
j ) = 1.

Next, we prove M ⊆ µF. Note that 〈si, rj〉 ∈ M iff there exists a word
w ∈ [[ri]]∩ [[sj ]], and thus we can define the complexity measure |〈si, rj〉| of every
〈ri, sj〉 ∈ M as the minimal length of a word of [[ri]] ∩ [[sj ]]. We prove M ⊆ µF
by induction on the complexity measure of elements of M .
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If 〈ri, sj〉 ∈ M and |〈ri, sj〉| = 0 then ε ∈ [[ri]] ∩ [[sj ]]. Thus bi = o(ri) = 1,
cj = o(sj) = 1, and we can perform the derivation

[bi = 1 ∧ cj = 1]
〈ri, sj〉

to deduce that 〈ri, sj〉 ∈ µF. If 〈ri, sj〉 ∈ M and |〈ri, sj〉| = p > 0 then ε 6∈
[[ri]] ∩ [[sj ]] and there exists w = aw1 ∈ [[ri]] ∩ [[sj ]] of length p with a ∈ A. This
implies w1 ∈ [[rk]] for some rk ∈ ∂a(ri) and w1 ∈ sl for some sl ∈ ∂a(sj). Thus
w1 ∈ [[rk]] ∩ [[sl]], and we learn that 〈rk, sl〉 ∈ M. Since w1 has length p − 1, we
learn that |〈rk, sl〉| ≤ p − 1 < p and we can apply the induction hypothesis to
conclude that 〈rk, sl〉 ∈ µF. Finally, we can use the facts that rk ∈ ∂a(ri) and

sl ∈ ∂a(sl) and apply the inference step
〈rk, sl〉
〈ri, sj〉

to conclude 〈ri, sj〉 ∈ µF. ut

We conclude this section by noting that our algorithm for the computation of
regular expressions for right quotients can be turned easily into an algorithm
for the computation of regular expressions for left quotients: It is sufficient to
observe that we can define s−1r := (rs(ss)−1)s.

Example 2. Let r, s ∈ T ({a, b}), r = (a + b)? · a and s = b · a?. In order to
compute rs−1, we compute systems of characteristic equations for [[r]] and [[s]]:

(
r1
r2

)
.=
(
a+ b a

0 0

)
·
(
r1
r2

)
+
(

0
1

)
where

{
r1 = r
r2 = 1 ,

(
s1
s2

)
.=
(

0 b
0 a

)
·
(
s1
s2

)
+
(

0
1

)
where

{
s1 = s
s2 = a? ,

and conclude that
(
r1s
−1
1

r2s
−1
1

)
.=
(
b a
b a

)
·
(
r1s
−1
1

r2s
−1
1

)
+
(
o(r1s−1

1 )
o(r2s−1)

)
.

In this case F : P({r1, r2} × {s1, s2}) → P({r1, r2} × {s1, s2}) is the monotone
operator defined by the inference rules

〈r1, s2〉
〈r1, s1〉

〈r1, s2〉
〈r1, s2〉

〈r2, s2〉
〈r1, s2〉 〈r2, s2〉

and µF = {〈r2, s2〉, 〈r1, s2〉, 〈r1, s1〉}. By Lemma 1 we obtain o(r1s−1) = 1,
o(r2s−1) = 0. Since

A? =
(

(a+ b)? (a+ b)? · a
0 1

)

and r1s
−1
1 is the first component of the column vector A? ·

(
1
0

)
, we conclude

that rs−1 = r1s
−1
1 = (a+ b)?. ut
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3.2 Regular Expressions for the Sets of Left and Right Factors

We are looking for an algorithm that computes a finite set RF (r) of regular
expressions such that every right factor of [[r]] is represented by some element of
RF (r). Let E = [[r]], ∂A∗(r) = {r1, . . . , rn} with r1 = r, and



r1
...
rn


 .= A ·



r1
...
rn


+ C (3)

be a system of characteristic equations for E. We denote by DA∗(r) the com-
putable set {∂w(r) | w ∈ A∗} and note that

– DA∗(r) has at most 2|∂A∗ (r)| ≤ 2‖r‖+1 elements,
– w−1[[r]] =

⋃
s∈∂w(r)[[s]] for every w ∈ A∗, and

– {w−1[[r]] | w ∈ A∗} = {⋃s∈M [[s]] |M ∈ DA∗(r)}.

F is a right factor of [[r]] if and only if there exists a subfactorization L.F of [[r]]
where F is maximal; that is to say, if and only if F =

⋂
w∈L w

−1[[r]]. This shows
that the set of right factors of [[r]] is

{ ⋂

M∈S

( ⋃

s∈M

[[s]]

)∣∣∣∣∣S ⊆ DA∗(r)
}
.

Since M ⊆ ∂A∗(r) for every M ∈ DA∗(r), we learn that every right factor can be
expressed as a finite union of intersections of elements of ∂A∗(r). More formally,
we can express every right factor of [[r]] as

⋃

M∈M

⋂

G∈M

[[G]] =
⋃

M∈M0

⋂

G∈M

[[G]]

where M ⊆ P(∂A∗(r)) and M0 is the set of ⊆-minimal elements of M.
Thus, in order to compute regular expressions for the right factors of r it is

sufficient to be able to compute regular expressions for the languages
⋂

s∈K [[s]]
when K ⊆ ∂A∗(r). We can generate a system of characteristic equations for⋂

s∈K [[s]] as follows. Suppose A = {a1, . . . , am} and K = {rk1 , . . . , rkp
} ⊆

{r1, . . . , rn}. Then

rkl

.= Ckl
+

n∑

j=1

Akl,j · rj (1 ≤ l ≤ p)

and by intersecting these p equations we obtain

⋂

s∈K

s
.= min{Ckl

| 1 ≤ l ≤ p}+
n∑

j1=1

. . .

n∑

jp=1

M
k1,...,kp

j1,...,jp
· (rj1 ∩ . . . ∩ rjp) (4)
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where

M
k1,...,kp

j1,...,jp
:=
{
a if Akl,jl

= a ∈ A for all l ∈ {1, . . . , p},
0 otherwise.

We can produce such an equation for every extended regular expression
⋂

s∈K s.
The system af all these equations, which has (4) as first equation is obviously a
system of characteristic equations for

⋂
s∈K [[s]]. By solving it, we get a regular

expression for the right factor
⋂

s∈K [[s]]. Before solving the system of character-
istic equations for

⋂
s∈K [[s]], it is desirable to reduce its size at much as possible.

The following criteria can be used for this purpose:

– Identify extended regular expressions of the form
⋂

s∈K′ s modulo associa-
tivity, commutativity, and idempotence of intersection.

– Identify with 0 the expressions
⋂

s∈K′ s with 0 ∈ K ′.
– Keep only the minimal set of equations necessary for a system of character-

istic equations of E.

The algorithm described in the previous section can be used to compute regular
expressions for the left factors of E too: It is easy to verify that the set LF (r) :=
{ss | s ∈ RF (rs)} consists of regular expressions for all left factors of [[r]].

3.3 Regular Expressions for Left and Right Factors between
Regular Languages

Here we address the following problem:

Given: r1, s1 ∈ T (A),
Compute: r′ ∈ T (A) such that [[r′]] = ([[s1]] B [[r1]]).

It is not hard to see that

([[s1]] B [[r1]]) =
⋂

w∈[[s1]]

w−1[[r1]] =
⋂

n∈N

⋂

w∈[[s1]]
|w|=n

w−1[[r1]].

Let’s consider the ternary relation s B M  N with s ∈ ∂A∗(s1), M,N ∈
P(∂A∗(r1)), defined inductively by

o(s) = 1
s BM  M

s′ BM ′  N [s′ ∈ ∂a(s) ∧M ′ =
⋃

r∈M ∂a(r)]
s BM  N

.

Intuitively, the relation s BM  N holds iff there exists w ∈ [[s]] such that N =⋃
r∈M ∂w(r). This ternary relation is decidable because it is defined inductively

on finite sets.

Lemma 2. If S ∈ ∂A∗(s1) and M ⊆ ∂A∗(r1), then
(

[[s]] B
⋃

r∈M

[[r]]

)
=

⋂

sBM N

(⋃

r∈N

[[r]]

)
.
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Proof. For every n ∈ N we define the ternary relation

s BM  n N :⇔ there is a derivation of length n of s BM  N

and note that
(

[[s]] B
⋃

r∈M

[[r]]

)
=
⋂

n∈N

⋂

w∈[[s]]
|w|=n

w−1

( ⋃

r∈M

[[r]]

)
,

⋂

sBM N

(⋃

r∈N

[[r]]

)
=
⋂

n∈N

⋂

sBM nN

(⋃

r∈N

[[r]]

)
.

Thus it is sufficient to prove that
{
w−1

( ⋃

r∈M

[[r]]

)∣∣∣w ∈ [[s]] ∧ |w| = n

}
=

{⋃

r∈N

[[r]]
∣∣∣ s BM  n N

}

holds for every s ∈ ∂A∗(s1), M ⊆ ∂A∗(r1), and n ∈ N. This fact can be proved
easily by induction on n. ut

We have ended up with the following algorithm for the computation of a
regular expression for [[s1]] B [[r1]]:

1. Compute the finite set N := {N | s1 B {r1} N}.
2. Compute r′ as regular expression for the regular language

⋂
N∈N

⋃
r∈N [[r]].

Since N consists of subsets of ∂A∗(r1), we can use the intersection elimination
algorithm presented in Sect. 3.2 to compute r′. We will denote the regular
expression r′ computed in this way by s1 B r1, and call it the product
derivative of r1 w.r.t. s1.

This algorithm can be turned easily into an algorithm for the computation of
a regular expression for [[r]] C [[s]]. More exactly, we observe that X is maximal in
a subfactorization X.[[s]] ⊆ [[r]] iff Xs is maximal in a subfactorization [[ss]].Xs ⊆
rs. Thus, we can use the previous algorithm with inputs rs and ss to compute
a regular expression r′ for [[rs]] B [[ss]], and conclude that (r′)s is a regular
expression for [[r]] C [[s]].

3.4 Regular Expressions for Factors

This computation of regular expressions for the factor matrix of [[r]] can be
carried out with the algorithms described so far as follows:

1. First, compute LF (r) using the algorithm from Sect. 3.2. Suppose LF (r) =
{l1, . . . , ln}.

2. Next, compute RF (r) := {l1 B r, . . . , ln B r} using the algorithm described
in Sect. 3.3. Let ri := (li B r) for 1 ≤ i ≤ n.

3. The n×n factor matrix (Ei,j)1≤i≤n
1≤j≤n

has Ei,j maximal in the 3-term subfactor-

ization [[li]].Ei,j .[[rj ]] ⊆ [[r]] for every 1 ≤ i, j ≤ n. It follows that Ei,j = [[r′i,j ]]
with r′i,j := li B lj for every i, j ∈ {1, . . . , n}.
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4 Conclusion

We have shown how the computation of quotients, factors, and product deriva-
tives of regular languages represented by regular expressions can be reduced to
computation and solving of systems of characteristic equations. In this way we
produce regular expressions for all these operations.

An algorithm for the computation of product derivative of regular languages
was proposed recently in [7]. It computes the greatest fixed point of a continuous
operator which renders the result as a finite intersection of languages represented
by regular expressions. Our computational method differs from [7] in two im-
portant respects: (1) it relies on the computation of the least fixed point of a
monotone operator on a finite lattice to produce a representation of the product
derivative as union of intersections of partial derivatives of a regular expression;
and (2) proposes an algorithm to compute regular expressions for the intersection
of partial derivatives via computations and solving of systems of characteristic
equations.
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Abstract

PHP is a popular language for server-side applications. In PHP, assignment to variables copies the assigned
values, according to its so-called copy-on-assignment semantics. In contrast, a typical PHP implementation
uses a copy-on-write scheme to reduce the copy overhead by delaying copies as much as possible. This leads
us to ask if the semantics and implementation of PHP coincide, and actually this is not the case in the
presence of sharings within values. In this paper, we describe the copy-on-assignment semantics with three
possible strategies to copy values containing sharings. The current PHP implementation has inconsistencies
with these semantics, caused by its näıve use of copy-on-write. We fix this problem by the novel mostly
copy-on-write scheme, making the copy-on-write implementations faithful to the semantics. We prove that
our copy-on-write implementations are correct, using bisimulation with the copy-on-assignment semantics.
(The longer version of this paper is published at Principles of Programming Languages (POPL) 2009.)

Keywords: Programming Languages, PHP, Semantics, Graph Rewriting

1 Introduction

Copy-on-write is a classic optimization technique, which delays the copy of data
until the write to it. One example of copy-on-write is found in the UNIX fork,
where the process-local memory is the local data that should be copied from the
address space of the original process to the space of the new process by the fork
operation. In modern UNIX systems, this copy is usually delayed by copy-on-write.

Another example is found in the PHP language, a popular scripting language
for server-side Web applications. Here is an example with PHP’s associative arrays.

$r["box"] = "gizmo";
$l = $r; // assignment from $r to $l
$l["box"] = "gremlin";
echo $r["box"]; // prints out gizmo

1 atozawa@jp.ibm.com, mich@acm.org and tonodera@jp.ibm.com
2 minamide@cs.tsukuba.ac.jp
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The write to $l at Line 3, following the assignment $l = $r, only has local effects
on $l which cannot be seen from $r. The behavior in PHP is called copy-on-
assignment, since the value of $r seems to be copied before it is passed to $l. We
can consider the copy-on-write technique to implement this behavior. Indeed, the
by far dominant PHP runtime, called the Zend runtime 3 , employs copy-on-write
and delays the above copy until the write at Line 3.

Now, our question is as follows. The copy-on-write is considered as a runtime
optimization technique reducing useless copies. Then, does the use of copy-on-write
preserve the equivalent behavior to the original, copy-on-assignment semantics? In
fact, it is not the case in the presence of the mechanism of reference assignment =&,
which declares sharing between two locations.

$r["box"] = "gizmo";
$x =& $r["box"]; // creates a shairng inside $r
$l = $r; // copies $r
$l["box"] = "gremlin";
echo $r["box"]; // what should it be ?

The result of this program should reflect how exactly PHP copies arrays when
they contain sharing. Our discussion will start from clarifying such PHP’s copy
semantics.

In this paper, we investigate the semantics and implementation of PHP focusing
on the copy-on-write technique and its problems. Our contributions in this paper
are as follows.

• We develop three copy-on-assignment operational semantics of PHP, each differ-
ing in their copy strategies, i.e., how sharings inside arrays are copied. Three
copy strategies are called shallow copy, graphical copy, and deep copy. To capture
sharings inside values, our formal model uses graphs and their rewriting [BS92].

• We identify several problems in the current PHP implementation, including the
inconsistency from the copy-on-assignment semantics. In particular, we point out
the inversion of execution order problem, which is caused by the copy-on-write
optimization.

• We propose copy-on-write implementations of PHP based on the novel mostly
copy-on-write scheme, which fixes the inversion problem by adding moderate
overhead to the implementation. This fix works for all three copy strategies.
We prove that the corresponding copy-on-assignment and mostly copy-on-write
models coincide using a bisimulation proof.
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1 Introduction

Static analysis for software defect detection is a promising technique to improve
software quality. Because of the sheer complexity of modern programming lan-
guages, the potential for misuse of language features, API rules or simply bad
programming practice may be enormous. Static analysis techniques can explore
abstractions of all possible program behaviors, and thus are not limited by the
quality of test cases in order to be effective. Static analysis tools, such as [11,
5, 8, 7, 12], serve an important role in raising the awareness of developers about
subtle correctness issues. In addition to finding existing bugs, these tools can
also help programmers to prevent future defects. FindBugs [5], one of the most
popular static analysis tools, is becoming widely used in Java community. Find-
Bugs implements a set of bug detectors for a variety of common bug patterns
(code idioms that are likely to be errors [13]), and uses them to find a significant
number of bugs in real-world applications and libraries [10, 9].

Aspect-Oriented Programming (AOP) [14] has been proposed as a technique
for improving separation of concerns in software design and implementation. It
is gaining popularity with the wider adoption of languages such as AspectJ.
AspectJ is a seamless extension of Java. An AspectJ program can be divided
into two parts: base code which includes classes, interfaces, and other language
constructs as in Java, and aspect code which includes aspects for modeling cross-
cutting concerns in the program. However, though the state-of-the-art aspect-
oriented programming environments (such as AJDT [3] in the eclipse [4] IDE)
provide powerful capability to check the syntactic or grammar errors in AspectJ
programs, they fail to detect potential semantic defects in software systems. For
example, the type checker used in AJDT only checks the syntactic correctness
of the program, but fails to identify or even to generate a warning about the
type conflicts introduced by an aspect. In such cases, once the class containing
an introduced field with a conflicting type is instantiated, the whole program
will be terminated abruptly.

Although the executable code of an AspectJ program is pure Java bytecode,
the existing bug patterns and defect detection tools for Java bytecode might not

* This work was presented at the 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE 2008), as a regular paper with the title “XFindBugs:
eXtended FindBugs for AspectJ” by Haihao Shen, Sai Zhang, Jianjun Zhao, Jianhong Fang, and
Shiyuan Rao.
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be applied directly. In addition to the bytecode that corresponds to the source
code (e.g., to bodies of advices), the compiled bytecode of an AspectJ program
contains extra code inserted by the compiler during the weaving process. After
weaving, the source code level aspect, advice or intertype declaration information
has been translated into pure Java bytecode instructions, and therefore is no
longer preserved. In fact, in our experimental study, none of the bugs found by
XFindBugs can be detected directly by FindBugs.

In this talk, we introduce XFindBugs, an eXtended FindBugs for AspectJ.
XFindBugs defines a catalog of 17 bug patterns for aspect-oriented features,
and implements a set of bug detectors on top of the FindBugs analysis frame-
work. Bug patterns abstract common misunderstandings of language features,
API rules and bad programming practice. They help programmers get a better
understanding of how to write bug-free code. We also perform an empirical eval-
uation of XFindBugs on several AspectJ benchmarks and third-party large-scale
applications (like GlassBox [6], AJHotDraw [1], and AJHSQLDB [2]). XFind-
Bugs confirms 7 reported bugs and finds 257 previously unknown defects in these
subjects, some of which may even result in a software crash. The experiment also
indicates that the bug patterns XFindBugs supports exist in real-world software
systems, even in mature AspectJ applications by experienced programmers.

In summary, the main contributions of this paper are: (1) a systematic cat-
alog of bug patterns for AspectJ programs, (2) design and implementation of
XFindBugs, a static defect detection tool for AspectJ software, and (3) an em-
pirical evaluation of XFindBugs on over 300KLOC, which evidences the practical
issues.

Acknowledgements. This work was supported in part by National High Technology
Development Program of China (Grant No. 2006AA01Z158), National Natural Science
Foundation of China (NSFC) (Grant No. 60673120), and Shanghai Pujiang Program
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JavaScript (ECMAScript[1]) is a popular scripting language that is particularly
useful for client-side programming together with HTML/XML on the Web. In
JavaScript programming, there are many concerns (such as logging and Ajax-based
functions) that cannot be encapsulated and separated into independent modules due
to the limitation of JavaScript’s modularization mechanism. For example, when
conducting a beta-test of a typical web application with JavaScript program, it
might be necessary to log all value changes of specific variables and send each log to
remote sever at runtime because of variety of web client environments. Embedding
remote-logging function codes into each location where variable substitutions will
take place is the traditional way for realizing such logging function; however since the
additional codes scatters and tangle with other concerns’ codes, the maintainability
of the program will decrease significantly.

To encapsulate and separate realizations of such crosscutting concerns into inde-
pendent modules, there are several Aspect-Oriented Programming (AOP[2]) frame-
works for JavaScript, such as Aspectjs[3] and Google Ajaxpect[4]. However, regard-
ing all of conventional frameworks, it is necessary to modify the target program to
include extended library and/or describe aspects in itself. Moreover none of conven-
tional frameworks can specify the location where variable substitutions take place
as joinpoints for weaving JavaScript codes.

1 This paper has been accepted for demonstration at AOSD 2009. The extended content is under review
for 8th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software.
2 Contact to Hironori Washizaki, Email: washizaki@waseda.jp
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To solves these problems, we propose an Aspect-Oriented JavaScript program-
ming framework, named ”AOJS”. AOJS is based on the proxy architecture for
weaving aspects and the joinpoint model[5] for specifying program locations where
the aspects will be weaved.

Firstly, AOJS realize the complete separation of aspects and target programs by
the proxy-based runtime weaving. This design leads to the fact that AOJS always
ensures the consistency between programs and the ones with aspects weaved by the
proxy. Moreover the client does not have to consider AOP nor the weaving process
when requesting web pages with JavaScript programs; it is only necessary to know
the proxy’s URL. Therefore it is easy to weave/remove aspects at runtime by only
changing the URL for accessing. Figure 1(a) shows the architecture of AOJS. AOJS
is realized as a server that communicates with web clients that request web pages
via HTTP and web servers that store/provide original web pages and JavaScript
programs. AOJS server consists of two parts: the reverse proxy for judging necessity
of weaving and redirecting requests/outputs, and the weaver for weaving.

Secondly, AOJS allows programmers to specify any variable substitution, func-
tion execution and file initilization as a joinpoint by using corresponding pointcuts:
<var>, <function> and <initializeFile> written in an aspect file in the form of
XML. For the specified joinpoints, AOJS can weave both of before and after advices
that will be performed before/after the target joinpoint’s execution. Figure 1(b)
shows the example of weaving when a variable substitution has been specified as
a joinpoint. In the figure, the code portion surrounded by the dashed line will be
replaced by the code for replacement based on the template. These replacements
add new behavior into the target program while keeping the original functionality.

We conducted some experimental evaluations regarding the functionality and
runtime performance of AOJS, and confirmed that AOJS has enough ability to
specify joinpoints including variable substitutions. Moreover, we also confirmed the
runtime performance can be improved to a practical level by adding a cash proxy
in front of the reverse proxy.

Client Reverseproxy

Web server

Weaver

OriginalJavaScirptPrograms Other files

Aspects including weaving rulesand advices (code fragments)
(1)

(2) (3)(5) (4)
AOJS server function fib_gen_1() {var dummy, ret;ret = x + y; x = y;dummy = y = ret;return ret;}

<var varname="/fib_gen_1/ret"><before><![CDATA[window.alert("/ret@before: "+ ret+"<br />");]]></before><after><![CDATA[window.alert("/ret@after: " + ret + "<br />");]]></after></var>
Aspect

Target JavaScirpt program (function(){ window.alert("/ret@before: "+ ret +  "<br />");var __retvalue__= ret = x + y;window.alert("/ret@after: "+ ret +  "<br />");return __retvalue__;})();
(function(){ window.alert("/ret@before: "+ ret +  "<br />");var __retvalue__= ret = x + y;window.alert("/ret@after: "+ ret +  "<br />");return __retvalue__;})();
Code for replacement based on the template

Joinpoint specification by using the pointcut

Fig. 1. (a) Architecture of AOJS (b) Weaving mechanism for variable substitution
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Abstract

This note presents our work in progress on the identification, formalization, structuring, and specification of
geometric knowledge objects for the purpose of electronic storage and management. We classify geometric
knowledge into knowledge objects according to how knowledge has been accumulated and represented in the
geometric literature, formalize geometric knowledge objects using the language of predicate logic with em-
bedded knowledge, and organize them by modeling the hierarchic structure of relations among them. Some
examples of formal specification for geometric knowledge objects are given to illustrate our approach. The
underlying idea of this approach has been used successfully for automated geometric reasoning, knowledge
base creation, and electronic document generation.

Keywords: Embedded knowledge, formal specification, knowledge management, predicate logic.

1 Introduction

Geometry has been the target of study of computer scientists since the late 1950s.
The involvement of algebraic computation, logical reasoning, and graphical repre-
sentation makes geometry a unique touchstone to test the suitability and power
of modern computer software and hardware and of computational methods imple-
mented therein for scientific problem solving. However, the capabilities of currently
available software for the manipulation of symbolic geometric objects, quantities,
and relations are very limited, in contrast to those of computer algebra systems
such as Maple and Mathematica for the manipulation of algebraic objects. Alge-
braic objects such as numbers, polynomials, and transcendental functions are purely
symbols that are endowed with meanings by using formal definitions. The problem
of representation and formal manipulation of algebraic objects on computer has
been thoroughly studied. It is now well understood what kinds of data structures
and computational mechanisms should be implemented for algebraic manipulation.

In geometry we may understand an arbitrary triangle as a shape formed by
connecting three arbitrary points with three line segments. Then natural questions
arise: what is a shape, what is a point, and what is a segment? What does “con-
necting” mean? Is a point also a (degenerated) triangle or a circle (with radius

1 This work has been supported by the Chinese National Key Basic Research (973) Projects 2004CB318000
and 2005CB321901/2 and the SKLSDE Project 07-003.
2 Email: Dongming.Wang@lip6.fr
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0)? These simple questions cannot be easily answered. This is partially because
some geometric concepts are introduced to model the real world informally with
vague descriptions and their definitions may never be used in formal reasoning.
We need to distinguish such concepts from those that can be formally defined.
Even though most of the geometric objects and relations in standard textbooks
are defined formally, the rigorousness of their definitions still remains questionable
(because of the customary ignorance of degeneracy). Therefore, formalizing and
specifying (symbolic) geometric objects and relations are fundamental issues that
have to be considered and studied carefully for the representation and manipula-
tion of such objects on computer. Our work on the identification, formalization,
structuring, and specification of geometric knowledge objects has been motivated
by our design and implementation of a dynamic geometry software environment
with formalized knowledge base [1].

What is geometric knowledge? To be specific, we restrict ourselves to elementary
geometry with plane Euclidean geometry as a concrete example. By geometric
knowledge we mean the totality of knowledge objects including

(1) concepts, theorems, proofs, problems, solutions, diagrams, explanations, etc.
that exist in the literature of geometry;

(2) methods/algorithms, techniques, strategies, rules, heuristics, etc. that have
been introduced and developed to define geometric concepts, to prove geometric
theorems, to solve geometric problems, and to draw geometric diagrams;

(3) relations among knowledge objects (1)–(2);

(4) methods and techniques for managing knowledge objects (1)–(2) and knowledge
object relations (3).

These knowledge objects have been introduced and presented with certain structure
in formal or informal publications using natural mathematical languages along with
the development of geometry. Roughly speaking, knowledge objects of types (1)
and (3) can be stored electronically as data in knowledge bases, while knowledge
objects of types (2) and (4) can be implemented as procedures in software modules.
The procedures may process data and the data may contain instructions for invok-
ing procedures. Our main objective here is to standardize, formalize, and specify
knowledge objects of type (1) and to investigate the formalization and specification
of knowledge objects of types (2) and (3). For this, it is necessary to identify such
objects according to their features and roles in geometry.

The management of geometric knowledge amounts to processing geometric
knowledge objects, such as organizing knowledge data, presenting knowledge data
in human-readable format, modifying and restructuring presentations of knowledge
data, invoking implemented algorithms, techniques, strategies, and heuristics for
geometric computing, reasoning, and drawing with knowledge data, and manipulat-
ing produced knowledge objects (geometric objects and relations, proofs, diagrams,
etc.). The reader may refer to [4] for the current state of the art of mathematical
knowledge management in general.
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2 Formalization and Structuring of Geometric
Knowledge Objects

The first geometric knowledge object we need to consider is Geometric Concept. A
geometric concept is either a geometric object, or a geometric quantity, or a geometric
relation. More formally, we define it as

geoConcept := geoObject | geoQuantity | geoRelation

where | stands for “or” (with & for “and”) and geoObject is either a

• basic geometric object (like point or circle) without formal definition, or a
• derived geometric object (like midpoint or parallelogram) formally defined by a

function from other geometric objects,

geoQuantity is a pair

• 〈q, u〉 with q being an algebraic quantity (usually real) and u a geometric unit (like
length, area, or degree) formally defined by a function from geometric objects,

and geoRelation is a relation

• (like parallelism or collinearity) among geometric objects, or
• (like “=” or “>”) among geometric quantities

formally defined by a predicate from geometric objects or from geometric quantities
and it has a truth value (say true by default).

Basic geometric objects are introduced informally, i.e., by using informal descrip-
tions in natural languages, as primitive elements for the construction of geometry.
For instance, one can take points, lines, angles, triangles, and circles as basic geomet-
ric objects for plane Euclidean geometry. We leave aside such questions as which
geometric objects are really basic and whether the chosen set of basic geometric
objects is minimal.

Having a (small) set of basic geometric objects fixed, new geometric objects,
quantities, and relations may be introduced formally and constructively by defini-
tions. So Definition is another knowledge object that we need. A definition is used
to define a new geometric concept, possibly with some associated geometric con-
cepts, formally from basic geometric objects or already defined geometric concepts.
It has the following form.

Let O1, . . . , Ot be basic geometric objects or already defined geometric objects or
quantities and R1, . . . , Rv be already defined geometric relations among O1, . . . , Ot.

Definition.

(1) An already defined geometric object O is called the/a new geometric object of
O1, . . . , Ot, denoted as O := newObject(O1, . . . , Ot), if the geometric relations
R1, . . . , Rv are satisfied.

(2) The new geometric quantity Q = 〈q, u〉 of O1, . . . , Ot, denoted as Q := new-
Quantity(O1, . . . , Ot), is a function of O1, . . . , Ot, where q is an algebraic quan-
tity computable from O1, . . . , Ot after algebraization and u is a geometric unit.
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(3) The geometric objects or quantities O1, . . . , Ot are said to satisfy the new
geometric relation R, denoted as R(O1, . . . , Ot), if the geometric relations
R1, . . . , Rv are satisfied.

For example, let A, B, C be points, on(C, line(A, B)) stand for “point C is on
line AB,” and distance(A, B) denote the distance between the two points A and B.
Assume that the geometric relation on and the geometric quantity distance have
already been defined. Then

• A point C is called the midpoint of A and B, denoted as C := midpoint(A, B), if
on(C, line(A, B)) & distance(A, C) = distance(C, B).

• The perimeter 〈q, u〉 of triangle ABC, denoted as

〈q, u〉 := perimeter(triangle(A, B, C)),

is a function of A, B, C with q := distance(A, B) + distance(B, C) + distance(C, A)
and u being the geometric unit Length.

• A triangle ABC is said to be isosceles, denoted as isosceles(triangle(A, B, C)), if
distance(A, B) = distance(B, C) | distance(B, C) = distance(C, A) | distance
(C, A) = distance(A, B).

After geometric objects, quantities, and relations have been introduced gradu-
ally, one of the most important tasks in geometry is to study logical relations among
geometric relations. So now we come to the knowledge object Geometric Theorem.
A geometric theorem is a statement about some logical relations among geometric
relations that has already been proved to be true logically. It may be formulated in
the following typical form.

Theorem. Let O1, . . . , Ot be geometric objects or geometric quantities and
R1, . . . , Rv be geometric relations among O1, . . . , Ot. For all O1, . . . , Os (s ≤ t),
there exist Os+1, . . . , Ot such that,

if R1 & · · · &Ru (u < v) holds, then Ru+1 | · · · |Rv holds.

As usual, R1 & · · · &Ru is called the hypothesis and Ru+1 | · · · |Rv the con-
clusion of the theorem. For most theorems in elementary geometry, s = t and
v = u + 1, so no existential quantifier and disjunction are involved. If the conclu-
sion of a theorem is a conjunction of several geometric relations or the hypothesis
involves disjunctions, one may split the theorem into several ones, so that there is
only one geometric relation in the conclusion and no disjunction in the hypothesis
of each split theorem. Of course, there are geometric theorems with more complex
structure that cannot be put in the above form.

There are several types of statements in geometry, or mathematics in general,
which are similar or closely related to theorems. They include axioms, propositions,
lemmas, corollaries, and conjectures, which are all about logical relations among
geometric relations and have the same form as theorems. Let us distinguish them
from theorems as follows. The truth of an axiom is assumed on the basis of beliefs,
observations, or experiments without formal proof. A proposition may be true or
false (but only true propositions are given usually). A proved true statement is a
lemma only if it is used in the proof of at least one theorem or another lemma. A
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true statement is a corollary only if it follows directly from one or more theorems
or lemmas without any need of proof. The truth of a conjecture is unknown but is
expected to be proved.

Some of these distinctions may be arguable and need to be justified, but this is
not really essential. What is essential in our approach is the emphasis on specifying
mathematical objects, relations, terms, etc. explicitly, formally, and unambiguously.
It is also for this reason that we shall intentionally not allow a point to be consid-
ered as a special, degenerated segment, triangle, or circle (see the specifications in
Section 4).

Naturally, we need the knowledge object Proof. Our attempt is to identify, for-
malize, and specify most of the standard knowledge objects of geometry, including
Problem, Example, Exercise, and Solution, where Example and Exercise may be
considered as some kind of Problem. We expect that such knowledge objects will
cover the main contents of geometry, though they cannot be exhaustive. The ab-
stracted entities and their relationships for the Geometric Concept object and other
knowledge objects are presented in [1] by using entity-relationship diagrams for the
design of a geometric knowledge base.

The above analysis also shows the hierarchic structure of geometric knowledge
objects. We sketch this structure by the following diagram.

Concept: basic objects

Definition

Concept: objects | quantities | relations

Theorem (axioms, lemmas,
theorems, . . . ) / Proof

Problem (find, compute,
draw, . . . ) / Solution

6

6

6 6

6 6

Definition

Concept: objects | quantities | relations

Theorem (axioms, lemmas,
theorems, . . . ) / Proof

Problem (find, compute,
draw, . . . ) / Solution

6

6 6

6 6

Definition

6

...
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Fig. 1. Structure of Geometric Knowledge
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3 Predicates and Functions with Embedded Knowledge

The representations such as midpoint(A, B), distance(A, B), and on(C, line(A, B))
used in the preceding section originate from predicate logic [5]. Note that midpoint,
distance, and line are function symbols denoting geometric objects or quantities,
whereas on is a predicate symbol denoting a geometric relation. These predicate
and function notations are standard and have been used in different domains.

While describing human relationships in the language of predicate logic, one
may use, e.g., the predicate father(F, C) to denote “F is the father of C.” In view of
the circumstances, we know that both F and C are human beings and C is a son or
a daughter of F. However, this implied information is known only to us, the users
of the predicate langauge, but not associated with the predicate. Thus the infor-
mation cannot be retrieved and used in the process of reasoning with the predicate
by computer programs. Current inference systems for predicate logic are designed
mostly at the level of purely logical reasoning without using any knowledge from
specific domains. For encoding domain-specific knowledge, one may need to use
sorted or higher-order logic (see, e.g., [3]). We propose to embed some of the knowl-
edge (structured or unstructured) from the domain in question into predicates and
functions using a simple mechanism, so that such domain knowledge can be used,
whenever needed, to increase the power and performance of automated processing
and reasoning. This approach is particularly effective for the management of geo-
metric knowledge using predicate logic because the amount of information implied
in each predicate can be very large.

Let P (x1, . . . , xn) be an n-ary predicate or function in a first-order language
with structure S. S consists of a domain D (e.g., Euclidean geometry) and an inter-
pretation, by which x1, . . . , xn and P (x1, . . . , xn) can be interpreted meaningfully
in D. Let v1, . . . ,vt be t segments of knowledge about x1, . . . , xn with respect to
P (x1, . . . , xn) in D. Assign a key ki to each vi and create a (hash) table

K :=





k1(x1, . . . , xn) = v1;

k2(x1, . . . , xn) = v2;

· · · · · ·
kt(x1, . . . , xn) = vt





.

We embed the table K into P (x1, . . . , xn) and call the result a predicate or function
with embedded knowledge and each entry ki(x1, . . . , xn) = vi of K a knowledge entry
with key ki and value vi. P (x1, . . . , xn) functions as it is in first-order logic and
the table K is hidden. The embedding of K into P (x1, . . . , xn) can be easily imple-
mented at the level of programming. We devise the following simple mechanism to
retrieve knowledge keys and values:

• P [ ](x1, . . . , xn) returns the sequence of knowledge keys k1, . . . , kt;
• P [ki1 , . . . , kir ](y1, . . . , yn) returns the sequence of knowledge values

vi1 |x1=y1,...,xn=yn , . . . ,vir |x1=y1,...,xn=yn ,
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where vij |x1=y1,...,xn=yn = kij (y1, . . . , yn).

The knowledge values of K may contain other predicates or functions with embed-
ded knowledge.

As an example, we use the predicate on(C, line(A, B)) to illustrate the embedding
and retrieving of knowledge keys and values. In classical mathematical logic, this
predicate denotes only a relation between C and line(A, B). However, to the user of
the predicate representation there is a lot of other information associated with this
predicate. We can embed part of the information into the predicate by creating,
e.g., the following table:




typeOf(C, line(A, B)) = [Point, Line];

meaningEnglish(C, line(A, B))

= the point C is on line[meaningEnglish](A, B);

meaningEnglishNegation(C, line(A, B))

= the point C is not on line[meaningEnglish](A, B);

algebraicExpression(C, line(A, B))

= [A1B2 + A2C1 + B1C2 − A1C2 − A2B1 − B2C1 = 0];

drawingInstruction(C, line(A, B)) = [line(A, B), line(A, C)];

degeneracyCondition(C, line(A, B)) = [coincide(A, B)]





,

in which Ai = algebraicExpression[i](A) denotes the ith coordinate of point A,
and similarly for Bi and Ci. Let line[meaningEnglish](A, B) return “the line
AB.” Then

• on[meaningEnglish](R, line(P, Q)) yields “the point R is on the line PQ,”
the meaning of the predicate on(R, line(P, Q)) stated in English, and

• on[algebraicExpression]([c, d], line([a, b], [0, 2])) yields [bc+2 a−ad−2 c = 0],
the algebraic expression of on([c, d], line([a, b], [0, 2])).

These values of the embedded knowledge can be used to compose statements in
natural languages and to produce algebraic expressions for computing and rea-
soning, while the knowledge values linked to the keys drawingInstruction and
degeneracyCondition may be used to draw diagrams and to generate nondegen-
eracy conditions respectively and automatically with the predicate.

4 Formal Specification of Geometric Knowledge
Objects

As mentioned before, we choose a small number of geometric objects as basic ones.
Consider for instance plane Euclidean geometry and let points, lines, angles, poly-
gons, and circles be chosen as basic geometric objects, which are defined by informal
descriptions in natural mathematical languages and have respective types Point,
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Line, Angle, Polygon, and Circle. Moreover, we use type Real for geometric
quantities and type Boolean for geometric relations. These seven types are basic
root types which have no father type. Basic geometric objects and initially defined
geometric quantities (like distance) and relations (like coincide) of these seven
types are called geometric primitives. Our approach proceeds by constructing other
geometric objects, quantities, and relations (i.e., instances of geoConcept) formally
and successively from geometric primitives. Meanwhile, geometric theorems (as well
as axioms, propositions, lemmas, etc. about geometric properties of constructed ob-
jects, quantities, and relations) and their proofs, geometric problems (as well as
examples and exercises about deriving geometric properties, computing geometric
quantities, and drawing geometric diagrams) and their solutions, etc. are formu-
lated (completely or partially) by using formal languages. We refer to the process
of construction and formulation as the formalization of geometric knowledge ob-
jects. When formalized and specified, geometric knowledge objects can be stored
electronically and structurally as patterns with semantics and the management of
geometric knowledge can be mechanized and automated.

To formally specify knowledge objects of Euclidean geometry, let us first define a
point, denoted by a capital letter like P, informally as an entity that has a location in
the space or on a plane, but has no extent (or as “that which has no part” according
to Euclid’s original vague definition). It has neither volume, area, length, nor any
other higher dimensional analogue. A line is defined informally as a path of one
point moving straightly (or “breadthless length” according to Euclid). A line has
(infinite) length but no width. For any two distinct points A and B, there is a line
passing through these two points. We denote this line by AB. A (line) segment
connecting A and B, denoted by AB, is part of the line AB that is between A and B.
It has a finite length. We will define segment formally.

Using the structure of geometric knowledge objects we have analyzed and predi-
cates and functions with embedded knowledge, we can readily specify other geomet-
ric concepts by formal definitions and geometric theorems by formal statements. In
the following formal specifications, :: stands for “assumed to be (of type),” * for
multiplication, ^ for power, l[i] for the ith element of a list (or an ordered set) l,
and AB for segment(A, B) in formatted mathematical text.

Definition geoQuantity <d, l> := distance(A, B) {
let d::Real = |AB| & l::Length;

knowledgeEmbedded {
typeOf(A, B) = [Point, Point];

meaningEnglish(A, B) = the distance between the points A and B;

property(A, B) = [d≥ 0];

algebraicExpression(A, B) = [sqrt(

(algebraicExpression[1](A) - algebraicExpression[1](B))^2 +

(algebraicExpression[2](A) - algebraicExpression[2](B))^2 )]

}
}
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Definition geoObject s := segment(A, B) {
let s::Line = AB;

ifCondition::Boolean distance(A, B) > 0::true;

associatedConcept {
geoQuantity <l, u> := length(s) {
let l::Real = |s| & u::Length;

knowledgeEmbedded {
meaningEnglish(s) = the length of s;

property(s) = [l > 0];

algebraicExpression(s) = [distance(A, B)]

}
}

}
knowledgeEmbedded {

typeOf(A, B) = [Point, Point];

meaningEnglish(A, B) = the segment AB;

algebraicExpression(A, B) =

[(1-t)*algebraicExpression[i](A)+t*algebraicExpression[i](B))/2

$ i = 1..2, 0≤ t≤ 1];

drawingInstruction = [segment(A, B)]

}
}

Definition geoRelation collinear(A, B, C) {
ifCondition::Boolean

coincide(A, B)::true | on(C, line(A, B))::true;

knowledgeEmbedded {
typeOf(A, B, C) = [Point, Point, Point];

meaningEnglish(A, B, C)

= the three points A, B and C are collinear;

meaningEnglishNegation(A, B, C)

= the three points A, B and C are not collinear;

algebraicExpression(A, B, C)

= on[algebraicExpression](C, line(A, B));

drawingInstruction = [line(A, B), line(A, C)]

}
}

In the above it is assumed that on(C, line(A, B)) and the trivial geometric relation
coincide(A, B), meaning that “the two points A and B coincide,” have already
been specified. Similarly, we can specify

• the trivial relation arbitrary(x, y, z, . . .), meaning that “x, y, z, ... are/is
arbitrary,”
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• the geometric object circumcircle(triangle(A, B, C)), that is, “the circum-
circle of the triangle ABC,” and

• the geometric relation perpendicularFoot(P, D, line(A, B)), meaning that “the
point P is the foot of the perpendicular drawn from the point D to
the line AB.”

A formal specification of triangle(A, B, C), the triangle ABC formed with three points
A, B and C, as a derived geometric object of Polygon, is given in the appendix. Now
we specify Simson’s theorem formally as follows.

Theorem Simson := theorem(h, c) {
hypothesis h = [arbitrary(triangle(A, B, C)),

on(D, circumcircle(triangle(A, B, C))),

perpendicularFoot(P, D, line(A, B)),

perpendicularFoot(Q, D, line(A, C)),

perpendicularFoot(R, D, line(B, C))];

conclusion c = [collinear(P, Q, R)];

knowledgeEmbedded {
proof(h, c) = [...];

lemma(h, c) = [...];

corollary(h, c) = [...];

reference(h, c)

= [H.S.M. Coxeter & S.L. Greitzer: Geometry Revisited, p. 41];

keyword = [Simson line, Wallace, ...];

derivedConcept(h, c) = [SimsonLine(D, triangle(A, B, C)), ...];

note(h, c) = [Robert Simson (1687-1768) made several contributions

to both geometry and ... The ‘simson’ was attributed to him

because it seemed to be typical of his geometrical ideas ...

Actually it was discovered in 1797 by William Wallace.];

......

}
}

As the predicates and functions involved in Simson’s theorem have embedded
knowledge, the hypothesis and conclusion in the above specification contain a re-
markable amount of information that can be used for processing the theorem, such
as automatically

• translating the specification of the theorem into an English statement, into a
first-order logical formula, or into algebraic expressions,

• drawing animatable diagrams for the theorem,
• proving the theorem using algebraic methods, and
• generating nondegeneracy conditions in geometric form

(cf. [6]). In fact, we have used predicates and functions with embedded knowledge
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for the specification of geometric theorems since the early 1990s. It is this formalism
that makes our prover GEOTHER [6] capable of handling geometric theorems auto-
matically. The formalism of predicates and functions with embedded knowledge has
been further used for the creation of electronic and dynamic geometric documents
[2] and the design and implementation of a geometric knowledge base [1].

In the specification of geometric theorems, hypothesis and conclusion are two
key attributes. Characteristic attributes may also be identified for other geometric
knowledge objects: for instance, given, find, compute, and draw for geometric
problems. We may structure human proofs of theorems and solutions of problems
into steps and substeps, and formalize logical reasoning steps using first-order logic
and computational steps by means of algorithms. In this way, we will be able to
formally specify a large portion of geometric knowledge.

Of course, there are informal explanation texts written in natural languages that
cannot be easily formalized. The treatment of such mathematical Text objects is
beyond the scope of our present study.

5 Final Remarks

Our investigations on the formalization and specification of geometric knowledge
objects have been carried out primarily for the purpose of creating a formalized
geometric knowledge base. With such a knowledge base, we can develop a geom-
etry software environment (Fig. 2) in which geometric computing, reasoning, and
drawing modules and knowledge management tools are integrated.
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Fig. 2. Geometry Software Environment

When knowledge objects (algorithms, techniques, strategies, rules, heuristics,
etc.) of types (2) and (4) listed in Section 1 are efficiently implemented, we can
mechanize and automate the process of geometric computing, reasoning, drawing,
and knowledge managing to a considerable extent, as shown by some of the func-
tionalities of our primitive systems [1,2,6].
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Appendix. Specification of a General Triangle

Definition geoObject t := triangle(A, B, C) {
let t::Polygon = ∆ABC;

ifCondition::Boolean collinear(A, B, C)::false;

associatedConcept {
geoObject v := vertex(t) {
let v::[Point] = [A, B, C];

knowledgeEmbedded {
meaningEnglish(t) = the vertices A, B and C of t

}
}
geoObject s := side(t) {
let s::[Line] = [segment(A, B), segment(B, C), segment(C, A)];

knowledgeEmbedded {
meaningEnglish(t) = the sides AB, BC and CA of t;

property(t) = [length(s[i]) + length(s[j]) > length(s[k])

$ i 6= j 6= k, i = 1..3]

}
}
geoObject a := angle(t) {
let a::[Angle] = [angle(C, A, B), angle(A, B, C), angle(B, C, A)];

knowledgeEmbedded {
meaningEnglish(t) = the angles ∠CAB, ∠ABC and ∠BCA of t;

property(t) = [degree(a[1]) + degree(a[2]) + degree(a[3])

= <π, Degree>]

}
}
geoQuantity <a, u> := area(t) {
let a::Real & u::Area;

knowledgeEmbedded {
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meaningEnglish(t) = the area of t;

property(t) = [a > 0];

algebraicExpression(s)

= [distance(A, B)*distance(C, line(A, B))/2]

}
}
geoQuantity <p, l> := perimeter(t) {
let p::Real & l::Length;

knowledgeEmbedded {
meaningEnglish(t) = the perimeter of t;

property(t) = [p > 0];

algebraicExpression(s)

= [distance(A, B) + distace(B, C) + distace(C, A)]

}
}

knowledgeEmbedded {
typeOf(A, B, C) = [Point, Point, Point];

meaningEnglish(A, B, C) = the triangle ABC;

derivedConcept(A, B, C) = [centroid(t), orthocenter(t),

circumcenter(t), incenter(t), escenter(t), circumcircle(t),

inscribedCircle(t), escribedCircle(t)];

drawingInstruction = [segment(A, B), segment(B, C), segment(C, A)];

degeneracyCondition = [collinear(A, B, C)]

}
}
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Abstract

Proof-Carrying Code brings two grand challenges to the research field of programming languages. One is to
seek more expressive type or logic systems to specify or reason about the properties of high-level or low-level
programs. This paper improves and extends the pointer logic we designed before for verifying C-like pointer
programs.
The main contribution is that we present a concept of legal sets of access paths, simplify elementary
operations on access paths, and make inference rules easy to understand. Furthermore, we extend the logic
with inference rules for local reasoning and function constructs, make the logic conveniently used in the
context of function calls. We implement a core part of pointer logic in Calculus of Inductive Constructions.
Finally, we give a comprehensive comparison between pointer logic and separation logic. The pointer logic
exceeds in ruling out memory leaks by syntactic method.

Keywords: Software Safety, Hoare Logic, Pointer Logic,Proof-Carrying Code, Certifying Compiler

1 Introduction

Proof-Carrying Code (PCC) [1], as a new code paradigm, brings two grand chal-
lenges to the research field of programming languages. One is to seek more expres-
sive logics or type systems to specify or reason about the properties of high-level or
low-level programs. The other is to study the technology of certifying compilation in
which the compiler generates proofs automatically for programs with annotations.

For the first challenge, Typed Assembly Language (TAL) [2] and Type Refine-
ments [3] are two typical research projects using type-based approaches. While PCC
and Certified Assembly Programming (CAP) [4,5] are typical research projects on
logic-based techniques. Type-based and logic-based techniques are complementary

1 Email:{zpli,huabj,zfwang7}@mail.ustc.edu.cn yiyun@ustc.edu.cn
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to each other, and by combining these techniques, Applied Type System (ATS)
project [6] proposed by Xi et al. extends the type system with a notion of program
states. So by encoding Hoare logic in its type system, ATS can support Hoare-logic-
like reasoning via the type system.

For the second challenge, Necula pioneered a certifying compiler [7] called Touch-
stone. It contains a traditional compiler for a small but type-safe subset of C-like
language and a certifier that automatically produces a proof of type safety for each
assembly program generated by the compiler. The major drawback of Touchstone
are in the aspects of pointer types and dynamic storage allocation.

Recently, we have studied methods to apply techniques of proof-carrying code
and certifying compilation to a programming language with explicit memory man-
agement. We have designed the PointerC language [8] which is a C-like language
with dynamic memory allocation and deallocation. The elementary safety policy is
that there are no operations such as dereference and free on null pointers or dan-
gling pointers, no memory leaks during the program execution and etc.. To reason
about such properties of the program, we adopt a method combining techniques
of type and logic systems. In order to design a simple yet sound type system, we
introduce side conditions in the typing rules which makes restrictions on the value
of the syntactic expressions. To check these side conditions, a pointer logic [9] has
been designed for PointerC. The pointer logic is an extension of Hoare logic. It
is used to deduce the precise pointer information at each program point such as
whether a pointer is null, dangling, or valid (a valid pointer points to an object in
the heap) and the equality between valid pointers. All information is used to prove
whether pointer programs satisfy the side conditions, thus it can support safety ver-
ification of pointer programs. We have proved the safety theorem of PointerC and
the soundness theorem of the pointer logic[10] using the proof assistant Coq [11].
Furthermore, we have implemented a certifying compiler prototype for PointerC
[8,9].

This paper improves and summarizes the design of the pointer logic. The main
contributions are:

• We propose a concept, namely legal access path set, to express pointer information
at program points concisely. Therefore we redesign the pointer logic in order to
make the inference rules easy to understand. In essence, pointer logic is a precise
pointer analysis tool, but it uses Hoare triple to represent the process of obtaining
the precise pointer information and use such information in Hoare-style program
verification directly.

• We implement a core part of pointer logic in Calculus of Inductive Constructions
(CiC) [11]. The implementation can be regarded as a verification tool of pointer
programs at source level. It can be used to prove safety properties of programs
manipulating complex data structures in which pointer equality is in a regular
pattern such as single linked list, circular doubly-linked list and binary tree.

• We give an in-depth comparison between pointer logic and separation logic.
Pointer logic corresponds to separation logic for high level languages. But the
pointer logic rules out memory leaks by syntactic method, while separation logic
can rule it out by restricting the assertion to precise one.
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type ::= bool | int | struct ident∗
stmtlist ::= stmtlist stmt | stmt

stmt ::= lval = exp; | lval = alloc(struct ident); | free(exp);

| if(boolexp) block else block; | while(boolexp) block;

block ::= stmt | {stmtlist}
lval ::= ident | lval->ident

Fig. 1. Representative Syntax of the PointerC Language

This paper presents a introduction to the redesigned pointer logic. Limited
space, some details are given in an extended version of this paper[12]. The rest of
the paper is organized as follows. PointerC is briefly introduced in section 2. In
section 3 we present the re-designed pointer logic. In section 4 we introduce the
implementation of this logic system using the proof assistant Coq. A case study
is given in section 5. We do a comparison between pointer logic and separation
logic in section 6. Section 7 compares our work with related works and section 8
concludes.

2 PointerC Language

PointerC is a C-like programming language in which the pointer type is emphasized
(for details of type system, see[13]). And the representative syntax is shown in
Figure 1. In PointerC, pointer variables can only be used in assignment statements,
equality test expressions, in operations like storing and loading the value which
they are pointing to, and as parameters of functions. Pointer arithmetic and the
address-of operator (&) are forbidden. Functions malloc and free are regarded
as pre-defined functions in PointerC which satisfy the minimal safety policy. For
example, every call to malloc always succeeds and the allocated heap spaces will
never overlap. In addition, short-circuit calculation is not adopted in evaluation
of PointerC boolean expressions so that PointerC boolean expressions can be used
directly in assertions. Such consideration is made since short-circuited and oper-
ation and or operation are not exchangeable operations when pointers appear. In
this paper, lvals starting with declared pointer variables are named access paths.
And the prefixes of one access path only include the prefixes which are also access
paths. Similarly, adding a suffix to one access path only considers that the result of
this operation is also an access path. For example, assume that p is an access path
which points to:

struct node {int data; struct node *l, *r},
then prefixes of access path p->l->r are p->l and p. And the result access path
by adding suffixes to p are p->l and p->r. Access paths of pointer types are called
pointers in this paper.

At any program point, we use N and D to denote a set of pointer access paths
respectively. And we use Π to denote a set of pointer access path set. All access
paths in the same subset of Π have the same type. And no access path appears
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more than once in Π. Ψ is used to denote N , D and Π in the following text. On the
semantic model of PointerC,N is NULL pointer set andD is a set of dangling pointers.
Pointers in one set of Π are pointing the same object in the heap (that is, they have
the same rvalue) and pointers in different sets of Π are pointing to different objects.
Pointers in Π are called valid pointers. Therefore, Ψ is an abstraction of pointer
relations at one program point where equality is emphasized, but concrete values
of the pointers are not concerned. Pointers in N are differentiated from the ones
in D because NULL pointers can be distinguished from dangling pointers by testing
the equality of pointers and NULL in programs.

For example, there is a singly-linked list with three nodes in Figure 2. The type
of the node is:

struct List {int data; struct List *next}.
head, tail, p and q are four pointers. Note that q is a dangling pointer. Ob-
viously tail->next is NULL pointer, so N is {tail->next}. And D is {q} as
aforementioned. Variables head and p are pointing to the head of the list (object
O1 in the heap) and tail is pointing to the tail (object O3). The second node
(object O2) is pointed by p->next and head->next. In this case Π includes:

{head, p},{p->next},{p->next->next, tail},
in which the three sets stand for object O1, O2 and O3 in the heap respectively. We
only preserve concise pointer information here. It is worth noting that head->next
is not included in the second set of Π because it can be figured out using the first
set. Set {head, p} indicates that both head and p point to the same object, so
head->next and p->next are equal. In such a case, we use only one of them as the
access path pointing to O2. And head->next->next is excluded from the third set
for a similar reason.

Since not arbitrary Ψ can express the mentioned meaning, we need to define
legal Ψ. First, we define alias of access path based on Π. Result access paths by
adding same suffix to pointers in a same set of Π are aliases. And alias relation of
access path is reflexive. By this definition, the predicate judging whether two access
paths are aliases are as follow:

alias(p,q),p≡q ∨ ∃s.∃r,t.(s 6≡ε∧(∃S∈Π.r∈S∧t∈S)
∧p≡(p′·s)∧q≡(q′·s)∧alias(p′,r)∧alias(q′,t))
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in which ’≡’ and ’6≡’ are relations denoting equality and non-equality in syntax
respectively, ε is empty string and ’·’ is the string appending operation. If p and q
are syntactically equal then they are aliases. And if they are not, then judge the
two access paths p′ and q′ by removing the same suffix s. If the alias r of p′ and
the alias t of q′ appear in the same subset of Π, then p and q are aliases. If this
deduce depends on the alias relation of p and q itself, the deduce is failed (they are
not considered to be aliases).

Legal Ψ should satisfy the following conditions:

(1) All declared pointer variables must appear in Ψ.

(2) For each pointer p of Π, if it points to a structure with a pointer field named
r, then some alias of p->r is in Ψ.

(3) Any two different pointers in Ψ are not aliases.

(4) Every prefix of each pointer in Ψ has an alias in Π.

If one pointer is an alias of some pointer in a legal Ψ, then it is called legal
pointer. Integer typed access path is legal, if its prefixes are all legal pointers. We
use P to stand for all the legal access paths at a program point.

One access path is called access path with circle, if aliases of two different prefixes
of it appear in the same subset of Π. Access path without circles are called minimal
access path. We assume that there are only minimal access paths in programs.

3 Design of Pointer Logic

To prove that programs satisfy the basic safety policy, we have designed a logic
system for PointerC language besides a type system. There are side conditions in
some typing rules. For example, access paths in program expressions must be legal
and function call to free should not cause memory leaks. Since these side conditions
cannot be checked by traditional type systems, we use the pointer logic to prove
them. In this section, we introduce the redesigned pointer logic which is based on
the concept and rules of legal Ψ, while the earlier version is based on functions
calculating the alias sets of pointers. Next the assertion language will be expatiated
first.

3.1 Assertion Language

The syntax of the assertion language is shown in Figure 3.

assertion ::= boolexp | ¬ assertion | assertion ∧ assertion | assertion ∨ assertion

| assertion ⇒ assertion | ident(lval) | (assertion)

| ∃ident : domain.assertion | ∀ident : domain.assertion

| {lvalset} | {lvalset}N | {lvalset}D
domain ::= N | exp..exp lvalset ::= lvalset, lval | lval lval ::= · · · | lval(->ident)exp

Fig. 3. Assertion Language of the Pointer Logic
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Fig. 4. Circular Doubly-linked List

In Figure 3, the syntax of exp, boolexp and lval refer to the syntax of PointerC

language (Figure 1). {lvalset} is used to represent access path set of valid pointers
(S is used to stand for such a set). {lvalset}N and {lvalset}D are used to stand
for access path set of NULL pointers and dangling pointers respectively. If S1,. . .,
Sn are access path sets of valid pointers at a program point, then Π = {S1,. . ., Sn}
or Π = S1 ∧ . . . ∧ Sn (two different shorthands). lval(->ident)exp is a new form of
access path for assertion only (named access path with superscript). For example,
s(->next)i is shorthand for s->next->next· · ·->next(in which ->next appears i

times). If i equals to zero, then s(->next)i is s itself.
Based on this grammar of assertion language, we give more restrictions on as-

sertions:

(1) N stands for natural number. And expressions in exp..exp and lval(->ident)exp

are restricted to integer expressions n±b or b where n is a bound variable and
b can be linear addition/subtration expression including constant and at most
one program variable.

(2) When a set of access paths is bounded by several quantifiers, the existential
quantifier must be the outermost quantifier if the existential quantifier exists.

(3) Logic negation operator (¬) can not apply to sets of access paths.

For example,∀i:0..n-1.{p->l(->r)i} is shorthand for

{p->l}∧{p->l->r}∧ . . .∧{p->l(->r)n−1}.
These sets of access paths are sets of Π in Ψ. Thanks to quantifiers and access

paths with superscript, circular doubly-linked list in Figure 4 can be defined using
our assertion language as follows:

dlist(p,n),(∀k:1..n.{p(->r)k,p(->r)k+1->l})∧{p,p(->r)n+1, p->r->l},

in which p is a pointer pointing to structure node (mentioned in section 2) and n

(positive integer) is the number of nodes in the list except the head node. The last
set bounded by universal quantifier k is {p(->r)k, p(->r)k+1->l} where k = n.
It can also be expressed as {p(->r)n, p->l} so as to delete the circle in the access
path p(->r)n+1->l. We use the first form in order to make the definition uniform
in denoting all the nodes except the head one. So we allow access paths with circle
to appear in assertions. The definition of circular doubly-linked list gives a clear
equality relation among the 2n + 3 pointers in Figure 4. And for every pointer in
Figure 4, this definition only chooses one access path from its alias set.

Definition of some data structure in our assertion language needs to be given by
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induction. For example, the predicate for binary tree is as follows:

tree(p),{p}N∨({p}∧tree(p->l)∧tree(p->r)),
in which p is still a pointer pointing to structure node. {p}N is denote for empty
tree and {p}∧tree(p->l)∧tree(p->r) is used to denote non-empty tree. By using
valid pointer set, it is convenient to express all of the valid pointers in the tree are
not equal to each other. Because when expanding all references of the inductive
definitions, all of valid pointers appear in different subset of Π.

3.2 Assertion Calculus

Using equivalence axioms of conjunction and disjunction, assertions including ac-
cess path set can be transformed into disjunctive normal form (DNF). During the
transformation, each access path set is regarded as a logic constant. In the DNF
assertion, access path sets of each clause form a Ψ. It is remarkable that there
could be other kinds of assertion, some of which are even related to judging the
legalness of Ψ. For example, predicates using inductive definitions and assertions
about integer variables in superscript expressions of access paths should appear in
the clause of DNF.

According to the principle that no pointer access path information should be
dropped, the classical axiom of implication A∧B =⇒ A can not be used in pointer
logic reasoning when B includes access path sets or use of inductive definitions
except that A is the same with B. Because it results in some pointer information
lost. And the axiom A ∧B=⇒ B is in a similar case.

Moreover, we need to give some equivalence and implication axioms for Ψ.

1) Equivalence axioms of Nand D

N1 ∧ N2 ⇔ N (if(N == N1 ∪ N2) ∧ (N1 ∩ N2 == ø))
D1 ∧D2 ⇔ D (if(D == D1 ∪D2) ∧ (D1 ∩D2 == ø))

The equivalence axiom of D is similar. These two equivalences depend on
whether the pointer information included by the two sides are equal.

2) Axioms of illegal Ψ and assertion
Previous mentioned conditions for legal Ψ to satisfy should be supplemented
after quantifier and inductive definition are introduced into the assertion lan-
guage:
(1) Quantifiers don’t change the conditions for legal Ψ to satisfy. But it is

worth noting that quantifiers bring more difficulties to the alias reasoning
between the pointers because equality reasoning between integer super-
script expressions involves.

(2) Inductive definition body should be checked. The body is a DNF. All the
Ψ formed from clauses of the body should be legal.

(3) Arguments of every reference of inductive definitions should be considered.
Since the inductive definitions is checked, one solution is adding them into
NULL pointer set N before the check instead of expanding every reference
using the body of inductive definitions. It is feasible because adding the
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arguments of every reference of inductive definitions into N means we don’t
care about the unexpanded part of the definitions temporarily.

(4) These conditions should be satisfied by all the Ψ formed from clauses of a
DNF assertion.

Now we can extend the legal Ψ to legal assertion. A clause of DNF assertion
can be transformed into Ψ∧Q where Q is assertion not including access path
sets. If Ψ is legal and every access path in Q is legal, then the clause (that
is Ψ∧Q) is legal. If all clauses of DNF assertion are legal, then it is a legal
assertion. The non-legal assertion axioms are:

Ψ =⇒ false (if Ψ is not legal)
Ψ ∧Q =⇒ false (if Ψ or Q is not legal)

3) Equivalence axioms of access path set and assertion
(1) If Ψ is legal, access path set R1 and R2 are two sets in Ψ, and the following

proposition holds:
|R1| == |R2|∧∀p:R1.∃q:R2.alias(p, q)∧∀q:R2.∃p:R1.alias(q, p),

then R1 and R2 are equivalent (|R| is the size of R). So the equivalence
axiom of access path set is written as:

R1 ⇔ R2 (If Ψ is legal and R1,R2 are equivalent)
(2) Equivalence axiom of Ψ is as follows:

S1∧. . .∧Sn∧N∧D∧Q⇔S ′1∧. . .∧S ′n∧N∧D∧Q

(If the right and left Ψ and Q are all legal, and the corresponding set are
equivalent based on the same Ψ of the two sides)

S1 ∧ . . . ∧ Sn−1 ∧ Sp ∧ N ∧ D ∧ (p==NULL) ∧Q =⇒ false

S1 ∧ . . . ∧ Sn ∧ N p ∧ D ∧ (p==NULL) ∧Q =⇒ S1 ∧ . . . ∧ Sn ∧N p ∧ D ∧Q

S1 ∧ . . . ∧ Sn−1 ∧ Sp,q ∧ N ∧ D ∧ (p!=q) ∧Q =⇒ false

S1 ∧ . . . ∧ Sn−1 ∧ Sp ∧ N ∧ D ∧ (p!=NULL) ∧Q =⇒ S1 ∧ . . . ∧ Sn−1 ∧ Sp ∧ N ∧ D ∧Q

S1 ∧ . . . ∧ Sn−1 ∧ Sp,q ∧ N ∧ D ∧ (p==q) ∧Q =⇒ S1 ∧ . . . ∧ Sn−1 ∧ Sp,q ∧ N ∧ D ∧Q

Fig. 5. Axiom Schemas of Boolean Expressions and Ψ

4) Axiom schemas of boolean expressions and Ψ
Boolean expressions such as p==NULL, p!=NULL, p==q and p!=q (p and q are
all pointers) will be added to assertion when reasoning the programs by con-
ditional rule or while rule of Hoare logic. The representative axiom schemas
in Figure 5 are designed to apply to these cases. If the pointer information is
consistent with Ψ then it is absorbed. Otherwise, it will lead to inconsistent
pointer information (that is false). Sp is short for a valid pointer set which
includes an alias of pointer p. Similarly, Sp,q is short for a valid pointer set
which includes an alias of pointer p and an alias of q.

For example, under the definition of the binary tree mentioned before, then:
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tree(p)∧p!=NULL
≡ ({p}N∨({p}∧tree(p->l)∧tree(p->r)))∧p!=NULL
=⇒ {p}N∧p!=NULL ∨ {p}∧tree(p->l)∧tree(p->r)∧p!=NULL
=⇒ false ∨ {p}∧tree(p->l)∧tree(p->r)
=⇒ {p}∧tree(p->l)∧tree(p->r)

3.3 Inference rules of pointer logic

In this subsection, we will introduce the inference rules in detail, but firstly we give
some definitions of the basic operations on access path set and predicates. They
are used to figure out Ψ at each program point.

(1) Access path deletion. This operation gives the result set by deleting an
alias or aliases of given pointer(s) from the access path set R.

R− p , {q : R | ¬alias(q, p)}
R − {p1, . . ., pn} , ((R− p1)− . . .− pn)

(2) Access path addition. This operation returns the result set by adding given
pointer(s) to access path set R.

R+ p , R∪ {p} R+R′ , R∪R′

(3) Prefix substitution. For each access path q in the given set R, if a prefix
of q is an alias of p, q is substituted by its alias q′ where q′ is not prefixed by
any alias of p. Other access paths are not changed. Predicate prefix(r, q) is
used to describe that r is a prefix of q.

R/p , R′ where R′⇔R∧∀q:R′.(¬∃r:P.(alias(r,p)∧prefix(r,q)))

Similarly, Q/p is defined.

(4) Predicate leak(S, p). When deleting access path p from a valid pointer set
S of Π (possibly when p is assigned), if all access paths in S are aliases of p or
are prefixed by p, then there exist memory leaks.

leak(S,p),∀q:S.(alias(q,p)∨∃r:P.(alias(r,p)∧prefix(r,q)))

Next the axioms and inference rules for statements of PointerC are presented. In
these rules, effects on the program state by each statement are reflected in deletions,
additions and substitutions on these access path sets. In the following rules, reason-
ing on access paths are based on the Ψ at the program point before the statement is
executed. And all the boolean expressions which can be absorbed are all absorbed
using rules given in Section 3.2.

1) Assignment statement of pointers (p = q and p = NULL)
Due to the limited space, one typical case is given as follows and rules for other
cases can be figured out similarly. When an alias of p is in some valid access
path set of Π and alias of q is in N , the rule is:
{{{S1 ∧ . . . ∧ Sn−1 ∧ Sp ∧ N q∧ D ∧ Q}}}
p = q

9



Li

{{{S1/p ∧ . . . ∧ Sn−1/p∧(Sp/p−p)∧(N q/p+p)∧D/p∧Q/p}}}
(if leak(Sp,p) is false based on the Ψ formed by the precondition)

2) Assignment statement of non-pointers (x = e)

{{{S1 ∧ . . . ∧ Sn ∧ N ∧ D ∧ Q}}}
x = e

{{{S1 ∧ . . . ∧ Sn ∧ N ∧ D ∧(∃x′.(x==e[x←x′]∧ Q[y1←x]. . .[yn←x][x←x′])}}}
(y1,. . .,yn are all aliases of x presented in Q,x′ /∈({x}∪FV(e)∪FV(Q))),

in which FV maps expressions and assertions to the set of free variables
in them.

3) Composition/Conditional/While rule
These rules and the consequence rule are the same to those in Hoare logic.

4) Malloc rule
This rule is for statement p = malloc(struct t) where t is a structure type
and r1,. . .,rn are pointer typed field names of structure t. One case is given,
and other cases are similar. If an alias of p is in N , the rule is:
{{{S1∧. . .∧Sn∧N p∧D∧Q}}}
p = malloc(struct t)

{{{S1∧. . .∧Sn∧{p}∧(N p−p)∧(D+{p->r1,. . .,p->rn})∧Q}}}
5) Case analysis rule

If the assertion is a DNF assertion, then this rule can be applied first to do
case analysis.

{{{Ψ1 ∧Q1}}}C{{{Ψ3 ∧Q3}}} {{{Ψ2 ∧Q2}}}C{{{Ψ4 ∧Q4}}}

{{{Ψ1 ∧Q1 ∨Ψ2 ∧Q2}}}C{{{Ψ3 ∧Q3 ∨Ψ4 ∧Q4}}}

where C is a program segment. Although the precondition x == 1 ∨ x ==
2 can be regarded as two cases, there is no such rule in Hoare logic because
assignment axiom can do substitution simultaneously to each clause of the
DNF assertion.

6) Frame Rule
In order to obtain more effective and modular reasoning method, sometimes
Ψ must be splitted or combined. If a legal Ψ (according to declared pointer
variables in set ∆) can be written as S1 ∧ . . . ∧ Sn ∧ N∧ D,

Ψ1 = S1 ∧ . . . ∧ Si ∧ N1 ∧ D1 Ψ2 = Si+1 ∧ . . . ∧ Sn ∧ N2 ∧ D2

where N 1 ∪ N 2 ⇔ N and D1 ∪ D2 ⇔ D. If Ψ1 and Ψ2 are legal according
to declared pointer variables in set ∆1, ∆2 respectively (∆1 ∪ ∆2 = ∆ and
∆1 ∩ ∆2 = ∅), then Ψ can be splitted as legal Ψ1 and Ψ2; Ψ1 and Ψ2 can be
combined as Ψ. Obviously here Ψ⇔ Ψ1 ∧ Ψ2 holds. Q can be splitted and
combined in a similar way. The rule for local reasoning is:

10



Li

{{{Ψ1 ∧Q1}}}C{{{Ψ′
1 ∧Q′

1}}}

{{{(Ψ1 ∧Ψ2) ∧ (Q1 ∧Q2)}}}C{{{(Ψ′
1 ∧Ψ2) ∧ (Q′

1 ∧Q2)}}}
(where both Ψ1 ∧ Q1 and Ψ2 ∧ Q2 are legal)
For example, at the program point of function calls, Ψ1 ∧ Q1 can be used to
represent assertions concerned with the called function and Ψ2 ∧ Q2 is not
concerned with the called function.

3.4 Inference rule for function construct

Besides the syntax features introduced in Section 2, PointerC also supports func-
tion definitions and function calls. This subsection discusses inference rules for the
function construct. To simplify the discussion, the restrictions or assumptions are
listed as follows.

(1) The form of function definition is

f(arg){vardeclist stmtlist},
where arg is the only parameter of f ,vardeclist is the local variables and
stmtlist is list of statements. And function call can only be used in an
assignment statement like ret = f(act), where act is the actual parameter.
In the following rules, v1,. . ., vk are all declared local pointer variables of
function f.

(2) Local variable res is a special virtual variable for reasoning the return state-
ment. It is initially a dangling pointer.The reasoning of return e can be
done by reasoning the sequence res = e; return res in order to simplify the
reasoning.

To reason the legalness of Ψ, declared pointer variables set is given. To support
function construct, it is based on the static scope rule to select which pointer variable
should be included in Ψ.

The following rules are for the case that both the parameter and return value are
pointer type and the other cases are much easier. And rules for recursive function,
procedure and recursive procedure are easy to figure out based on these rules.

1) Function definition.

{{{(Ψ ∧ {v1, . . . , vk, res}D) ∧Q}}}stmlist{{{Ψ′ ∧Q′}}}

{{{Ψ ∧Q}}}f(arg){vardeclist stmlist}{{{Ψ′ ∧Q′}}}
To certify the fuction body stmlist, {v1,. . ., vk, res}D is added into the
function precondition because local pointer variables and res are regarded as
dangling pointers before the body is executed.

2) Function call.

{{{Ψ ∧Q}}}f(arg){vardeclist stmlist}{{{Ψ′ ∧Q′}}}

{{{(Ψ ∧ {ret}N ∧Q)[arg← act]}}}ret = f(act){{{(Ψ′ ∧Q′)[res← ret]}}}
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If Ψ ∧ Q is only concerned with arg, act and ret must be declared vari-
ables because if they are access paths like s->next, then {Ψ ∧ {ret}N ∧ Q}
[arg←act] can not be legal. In order to simplify the rule, ret must be a NULL
pointer before function call.

3) Return statement.

{{{Ψ0 ∧Q0}}}v1 = NULL{{{Ψ1 ∧Q1}}} . . .
{{{Ψk−1 ∧Qk−1}}}vk = NULL{{{Ψk ∧Qk}}} {{{Ψk ∧Qk}}}arg = NULL{{{Ψk+1 ∧Qk+1}}}

{{{Ψ0 ∧Q0}}}return res{{{Πk+1 ∧ (N k+1 − {v1, . . . , vk, arg}) ∧ Dk+1 ∧Qk+1}}}

After return statement, the declared local pointer variables v1,. . ., vk and
parameter arg can not be accessed, they must be removed from the assertions.

4 Implementation of Pointer Logic in Coq

We have completed the safety theorem proof of the PointerC language and the
soundness theorem proof of the former version pointer logic [10] using the proof
assistant Coq [11]. The soundness theorem ensures that the axioms and rules of
pointer logic are sound with respect to the operational semantics of the PointerC
language. We have implemented a core part of redesigned pointer logic and verified
three non-trivial examples in the proof assistant Coq [18]. The implementation
mainly includes:

(1) PointerC language. Syntax, types and typing rules of the PointerC language
are formalized.

(2) Library. Lemmas of set operations and other utilities.

(3) Pointer logic. First, we formalized the syntax of assertion language based
on syntax of PointerC. Then rules for legal assertions and legal Ψ are given.
Finally, we implemented inference rules and axioms of the pointer logic. Since
our redesign mainly adds restrictions on the assertions, the rules are almost the
same. The soundness of the redesigned pointer logic can be similarly proved.

(4) Examples. We have verified three examples to show the usability of the
pointer logic. The programs are operations on singly-linked list, binary tree
and circular doubly-linked list. For each function, user must provide the pre-
condition, post-condition and loop invariant for each loop.

5 Case study

Using a certifying compiler prototype for the PointerC language, we have proved the
safety properties or partial correctness of some simple functions concerning shared
mutable data structures such as singly linked list, circular doubly-linked list and
binary tree.

We take the function

struct node *DeleteNode(struct node *p)
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as the second example to show the application of the pointer logic, using the defin-
ition of tree node in section 2.

The function deletes a node from a binary search tree pointed by the parameter
p and reconnects its left or right child. The precise layout of valid pointers and null
pointers in the tree pointed by p is unknown, but the tree pointed by p must meet
the definition tree(p) which is defined in section 3.

The annotated code of the function DeleteNode is shown in Figure 6. The
assertions are inserted in terms of the pointer logic. For the conditional branch
which states that neither the left nor the right child of the parameter p is null
(the function requires p is not null), assertions are inserted at most of the program
points; for other parts of the code, assertions are inserted only at some key points.

6 Comparison with separation logic

Pointer logic and separation logic [15,16] are both extensions of Hoare logic that
permit reasoning about imperative programs with shared mutable data structures.
Although it has some inference rules for high-level control structures (such as condi-
tional and while rules), separation logic is still not suitable to reason about high-level
imperative programs using long access paths directly. In separation logic, assertions
P and Q in separation conjunction P ∗Q hold for disjoint portions of the address-
able storage. And then in the programming languages related to separation logic, a
sequence of dereference operations is not allowed to appear in one expression. But
such operations are often used in high-level imperative programs. For example, the
following program segment written in C appears in some function of deleting an
element from a singly-linked list:

s = t->next;t->next = t->next->next; free(s);

Expression t->next->next is related to two separated heap blocks. There is no
inference rule in separation logic which can be applied to such expressions. The
following code which is transformed from the above code:

s = t->next; r = s->next; t->next = r; free(s);

can be verified in separation logic. But such transformation is not always trivial
because alias analysis is needed in some cases.

While extending Hoare logic, the strategy of separation logic can be understood
as follows: all pointers are assumed to potentially point to the same object, unless
they are explicitly expressed to point to different objects. Therefore, separation
logic needs to introduce new connectives such as separation conjunction (∗). The
disadvantage of this method is mentioned above. We believe that the most impor-
tant thing in reasoning pointer programs is to hold the equality information among
valid pointers at each program point. Based on the pointer information, we can
infer whether or not two access paths are aliases for each other, and then overcome
the difficulty that aliasing brings to Hoare logic. The start point of our extension of
Hoare logic is that different access paths are assumed to represent different point-
ers, unless it can be proved from the collected pointer information that they are
aliases for each other. The inference rules of the pointer logic are used to deduce
the pointer information at the program point after a statement from the pointer
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{{{{p}∧tree(p)}}}
struct node * DeleteNode (struct node *p)
{ struct node *q,*s;

{{{{p}∧{q,s,res}D∧tree(p)}}}
if(p->r==NULL) /* right child is null, reconnect left child */
{q = p; s = p->l; free(q); {{{{p,q,res}D∧tree(s)}}} return s;}

else if(p->l==NULL) /* left child is null, reconnect right child

*/
{ q = p; s = p->r; free(q);{{{{s}∧{p,q,res}D∧tree(s)}}} return

s;}
else /* neither left nor right child is null */
{ {{{{p}∧{p->l}∧{p->r}∧{q,s,res}D∧tree(p->l)∧tree(p->r)}}}
q = p; s = p->l;
if(s->r == NULL) /* reconnect *q’s left child */
{ q->l = s->l; p->data = s->data; free(s);

{{{{p,q}∧{s,res}D∧tree(p)}}} return p; }
else
{ {{{{p,q}∧{p->r}∧{p->l,s}∧{s->r}∧{res}D∧tree(p->l->l)∧tree(p->l->r)∧tree(p->r)}}}

q = s; s = s->r;
{{{∃n:N.({p}∧{p->r}∧∀i:0..n-1.{p->l(->r)i}∧{p->l(->r)n,q}∧{p->l(->r)n+1,s}
∧{res}D∧∀i:0..n.tree(p->l(->r)i->l)∧tree(p->l(->r)n+1)∧tree(p->r))}}}

/* loop invariant */
while(s->r != NULL) /* turn left, then go on end of the right

side */
{ q = s; s = s->r;}
{{{∃n:N.({p}∧{p->r}∧∀i:0..n-1.{p->l(->r)i}∧{p->l(->r)n,q}∧{p->l(->r)n+1,s}
∧{s->r}N∧{res}D∧∀i:0..n.tree(p->l(->r)i->l)∧tree(p->l(->r)n+1)∧tree(p->r))}}}

p->data = s->data;
q->r = s->l; /* reconnect *q’s right child */
{{{∃n:N.({p}∧{p->r}∧∀i:0..n-1.{p->l(->r)i}∧{p->l(->r)n,q}∧{s}
∧(({s->l,q->r}∧{s->r}N)∨{s->r,s->l,q->r}N)∧{res}D)
∧∀i:0..n.tree(p->l(->r)i->l)∧tree(p->l(->r)n+1)∧tree(p->r))}}}

free(s);
{{{∃n:N.({p}∧{p->r}∧∀i:0..n-1.{p->l(->r)i}∧{p->l(->r)n,q}∧({q->r}∨{q->r}N)
∧{s,res}D∧∀i:0..n.tree(p->l(->r)i->l)∧tree(p->l(->r)n+1)∧tree(p->r))}}}

return p;
{{{{res}∧tree(res)}}}

}
}

}
Fig. 6. Example of Deleting a Node from a Binary Search Tree

information at the program point before the statement. The information can also
be used to deduce other properties of programs.

Further more, separation logic does not care memory leaks, and its inference rules
do not rule out the commands that may cause memory leaks, although programmer
can do it using specific post-conditions for programs. On the contrary, the pointer
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logic refuses any command that causes memory leaks. Usually, a memory leak
means that there exists heap blocks which can not be traced from store variables.
For example, the following program segment with assertions:

{{{emp}}} x=cons(10) {{{x 7→10}}} x=nil {{{∃x.x 7→10}}};
can be verified using separation logic, but there is a memory leak when x is assigned
nil. It can not be ruled out because using assignment axiom of Hoare logic for the
statement x=nil. In order to solve this problem, Reynolds et al. presented the
concept of precise assertions [16], but its definition is based on the semantics of
abstract machine instead of the assertion syntax. The details for the relations
between pointer logic and separation logic is provided in [14].

If two restrictions as follows are given on the syntax of PointerC and the assertion,
the pointer logic is another form of separation logic in essence. And under these
two restrictions, alias reasoning can be simplified to a large extent.

(1) lval is restricted as
lval ::= ident | ident->ident,

and ident->ident can only appear in one side of the assignment statement.

(2) There is no superscript expression in lval of the assertion language.

This form of the pointer logic is different from separation logic in the following
two points. (1)There are several high-level languages features, such as types, access
via field name not offset. (2)Using access path set in assertions, there is no need to
use separation connectives but can express more meanings.

And the strongpoints lie in: the pointer logic can be used to verify programs
written in C-like high level languages without adding restrictions on access paths;
the calculus of assertion is simple and clear in contrast to separation logic; there
will be no memory leaks in the verified programs by the pointer logic.

7 Related Work

An important characteristic of Hoare logic is its use of variable substitution to
capture the semantics of assignments. Pointer logic essentially uses the idea of
precise alias analysis in program verification. But one of the prominent advantages
is using access path sets to represent pointer information of program points. Another
advantage is to express the effects of statements to pointer information using Hoare-
style inference rules. So pointer logic can be used in Hoare-style verification of
high-level programs.

Pointer information can be represented by many methods such as point-to graph,
point-to set and so on. Jonkers pioneered in introducing the storeless model [19] to
abstract memory address and use access path sets to represent pointer information.
In the storeless model, each dynamically allocated object is denoted by a set of
access paths which can reach it from declared variables. And thus the heap can be
represented by a group of such sets. Alias of an access path also appears in the
same set and it makes the information redundant. Recent researches using storeless
model [20,21] still use such representations. In our pointer logic, aliases of the
access path are not included in the set, but they can be inferred if needed. So data
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structures with cycles such as circular doubly-linked list can be better represented
in our method.

C.A.R. Hoare and Jifeng He’s Trace Model supports assertions about the gen-
eral topology of pointer based data structures [22]. The model deals with aliasing
directly by recording paths of field names (namely traces) which denote the same
object. We also use access paths similar to traces in essence, but we don’t record
all the traces because some traces can be inferred by other traces. For example, in
Figure 2, traces for the object O2 are root

head−−−→ O1
next−−−→ O2 (that is, access path

head->next) and root
p−→ O1

next−−−→ O2 (access path p->next). In our method, only
one of the two trace is selected (for details, see section 2). Furthermore, we classify
the access paths by what object they points to. With the help of Π, N and D, it is
easy to maintain precise pointer information at any program point concisely.

Common pointer analysis uses program analysis to obtain an estimate of the
pointer information without any given information. And we reason about the precise
pointer information at each program points under the help of pre- and post-condition
of functions and loop invariants. Pointer analysis has been studied for more than
20 years, and in history it mainly tried to answer the question: what is the possible
set of objects pointed by a pointer at runtime? Such pointer analysis can be used
in many fields of static analysis of programs and program optimization: liveness
analysis needed by register allocation and constant propagation, and static checking
of runtime errors such as dereference of null pointers. In recent years, it has also been
used to discover harmful buffer overflows and format string attacks. Similarly to
other static techniques, pointer analysis is bothered by the problem of decidability,
so that for most languages, the solution is always an approximation.

For the requirement of software safety, our pointer logic needs to realize an
accurate instead of approximate pointer analysis. Therefore, on the premise of not
affecting the functionality of the language, we have restricted some undecidable
operations of pointers in PointerC. And it is the restriction which makes it possible
to express the collection of pointer information using the inference rules of the
pointer logic.

As for proving program properties, Bornat also used Hoare logic to reason about
properties of pointer programs [23]. Inspired by the work of Burstall [24] and Mor-
ris [25], he treated memory heap as a pointer-indexed collection of objects, each of
which is a name-indexed collection of components. An object-component reference
in the heap corresponds to a double indexing, one of the heap and one of the object.
He introduced axioms for object component substitution for distinct component
names and used them to prove properties of programs with shared mutable data
structures defined by pointers. Mehta and Nipkow adopted a similar approach when
reasoning about pointer programs in a higher-order logic system Isabelle/HOL [26].
And so did Marché et al. in their prototype tool Caduceus [27]. Both approaches
of Bornat’s and ours can be considered to solve aliasing by using the double index-
ing. The axioms and rules introduced by Bornat are concise and used in weakest
precondition calculus, our axioms and rules are not as concise as Bornat’s ones but
collect more pointer information in a forward manner. Our approach has the fol-
lowing advantages comparing with Bornat’s approach. PointerC provides explicit
deallocation operation and the pointer logic can be used to detect memory leak,
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but Bornat’s approach can only be used in the situation where heap management
depends on garbage collection. And we can handle circular data structures but
Bornat assumed that data structures are acyclic. The inductive definitions of data
structures are much more concise in our approach than those in Bornat’s approach.

Advanced type systems have been used to check pointer programs for safety. For
instance, Smith, Walker and Morrisett presented alias types [28], the main feature
of the new type system is a collection of aliasing constraints. Aliasing constraints
describe the shape of the store and every function uses them to specify the store
that it expects. If the current store does not conform to the constraints specified,
then the type system ensures that the function cannot be called. Alias types very
much resemble the fragment of separation logic containing the empty formula, the
pointer-to predicate, and separating conjunction. It was also designed for low-level
programs. The main difference between the program logics and the type systems is
that type systems support better inference while the logics include a wider variety
of connectives and more sophisticated constraint systems, and therefore, are much
more expressive.

8 Conclusion

In this paper, we present an improved design of the pointer logic, a logic system
which can be used to do precise analysis on pointer programs. It can be used to
verify whether or not a pointer program satisfies the side conditions of PointerC
typing rules, and support the construction of safety proof and other properties
proof of pointer programs in PointerC. By now, pointer logic is mainly used to verify
programs concerning data structures, in which equality of pointers is well-regulated,
such as singly-linked list, circular doubly-linked list and binary tree. Structures like
DAG (directed acyclic graph) and other graph, in which equality of pointers is
uncertain, is unsupported. But it is our on-going work to add verification support
of such structures.
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Abstract: The Role-based access control (RBAC) model is a promising alter-

native to traditional discretionary and mandatory access controls. To formalize

the RBAC model, the administration of RBAC should be separated from its

use for controlling access to data and other resources, where the former con-

tains authorities to administrative actions and the latter, which we call the

management of permissions, contains various RBAC components that can be

modified by administration actions. Thus, we can view the RBAC in three

levels: the authority level, the administration action level and the RBAC com-

ponent level. To describe the three-level model, a dynamic description logic,

called DDLRBAC , is proposed, which is designed for 1) static specifications

of administration action authorities, 2) static specifications of administration

actions, and 3) static specifications of the regular RBAC components and the

dynamic specifications of components changed by actions. To characterize the

dynamic feature of RBAC, a new semantic of modality [a] is given, which is

different from that of the modal description logic and propositional descrip-

tion logic. A formal description of the whole RBAC is then represented with

DDLRBAC .

Keywords: RBAC, role-based administration, modal description logic, action,

possible world semantics.

1. Introduction

Role-based access control (RBAC) is a policy-neutral and flexible access con-
trol model as a promising alternative to traditional discretionary and mandatory
access controls. In RBAC, there are two kinds of management: the management
of permissions that controls the user’s access to system resources, and the other
is the management of RBAC itself. These two kinds of management can be
showed in many RBAC models, such as RBAC96 model [1], ARBAC97 model
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[2], NIST RBAC model [3], and lately, ANSI standard [4]. RBAC96 discusses
the basic components of RBAC, and ARBAC97 gives an administrative model
based on RBAC96. NIST RBAC model and ANSI standard further give the
precise definition of the basic components and constraints of RBAC, and add in
them the administration functions and query functions that should be included
in ordinary RBAC systems.

In the management of permissions, various RBAC components, such as user
assignment, can be modified to meet the need of changing security policies. And
the management is enforced by the configuration of various RBAC components
according to the security policies of organizations, so when the security poli-
cies changes, the deployment should be changed accordingly. Administration of
RBAC itself is very important, and must be carefully controlled to ensure that
policy does not drift away from its original objectives[2]. Therefore, both of these
two management are critical to the whole RBAC model. We need to unify them
into one RBAC model. And also we notice that the permission management
and the administration of RBAC itself should be described in different levels,
because the former is dynamic and can be changed by administration actions,
such as assign[2], and the latter is relatively static and unchanged.

However, the existing RBAC models do not completely express this meaning.
For example, though ARBAC97 model contains permission management and the
administration of RBAC itself, it lacks the representation of the logic relation
between the two levels. And NIST RBAC or ANSI RBAC doesn’t incorporate
the administration of RBAC into its reference RBAC model, which brings about
some different understandings to the RBAC model. For example, the notion
session is a special concept in RBAC, which can be used to achieving least-
privilege. We also noticed that both ordinary users and administrators should
create sessions to access resources, which means the session corresponds with
actions. Li et al. argue that the notion of session should be removed from
the Core RBAC model for some management system, such as ESM, has no
permissions to be controlled by sessions[5]. While one of the authors of ANSI
RBAC model, Ferraiolo, think when a user login a target system, he or she
creates a local session within a security context to get assigned roles which is
happened in a session of such ESM systems[6]. In fact, both the permission
management and the administration of RBAC contain the session notion, while
Li’s argument is on the permission management level or RBAC component level,
and Ferraiolo’s explanation is on the administration level, which means the lack
of a unified model may bring confusion to some concepts or properties of RBAC.

To get a unified RBAC model and further describe the dynamic properties
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and static properties of RBAC, we can view the whole RBAC in three levels of
(1) the authority level to describe all of the administration components, such as
administration roles, administration permissions, (2) the administration action
level to bring the administration and basic RBAC components together, (3)
the basic RBAC components level about regular roles and permissions, which is
dynamic relative to the first level and can be modified by the second level.

For formalizing RBAC, there are many logical-based approaches, including
description logic approaches. However, these description logic approaches give
formal descriptions to the aspect only related to the permission management
in RBAC [7,8]. We still need to give a formal description of the whole RBAC
including the administration of RBAC and the management of permissions.

To describe the three levels of RBAC, we propose a dynamic description
logic for RBAC, called DDLRBAC , which consists of three parts 1) the static
description for authority specifications of administration actions, 2) the static de-
scription for administration actions, and 3) the static description for the RBAC
components and the dynamic description for the changing of components by
actions. We take action a as a modality [a] and use [a]ϕ to represent the re-
sult that a acts on ϕ , where ϕ is the statement about RBAC components in
DDLRBAC . However, this reading of [a] is different from that of traditional
dynamic logics, such as the modal reading of the modal description logic [9,10]
or the propositional dynamic logic [11,12], and the programming reading of the
quantified dynamic logic [11,12]. We give a detail explanation in section 3.

The paper is organized as follows. The next section gives the three levels of
RBAC; the third section defines the logical language, syntax and semantics of
DDLRBAC ; the fourth section gives a DDLRBAC model for RBAC and some
examples; and the last section concludes the paper.

2. RBAC analysis

In this section, we first introduce a three-level RBAC, and then describe the
dynamic properties of RBAC, where we also give an analysis to the actions.

2.1 Three-level RBAC

RBAC is a flexible and policy-neutral access control technology. The pol-
icy that is enforced is a consequence of the detailed configuration of various
RBAC components. Administration of RBAC is also very important to ensure
the security policies not drift away from their original objectives [2]. RBAC96
model illustrates a general family of RBAC models including regular roles and
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permissions that regulate access to data and resources, and administrative roles
and permissions. This section will first review the model, and then present a
three-level RBAC.

Definition 2.1 RBAC96 model [1,2], M, is a 16-tuple

(U,R,AR, P,AP, S, UA,AUA, PA,APA, RH, ARH,

user, roles, permissions,∆′),

where
(1) U is a set of users, including regular users and administrative users;
(2) R and AR are disjoint sets of (regular) roles and administrative roles;
(3) P and AP are disjoint sets of (regular) permissions and administrative

permissions;
(4) S is a set of sessions;
(5) UA ⊆ U × R, user to role assignment relation (if (u, r) ∈ UA then u is

called a member of r); AUA ⊆ U × AR, user to administrative role assignment
relation (if (u, ar) ∈ AUA then u is called a member of ar);

(6) PA ⊆ P ×R, permission to role assignment relation; APA ⊆ AP ×AR,

permission to administrative role assignment relation;
(7) RH ⊆ R×R, partially ordered role hierarchy; ARH ⊆ AR×AR, partially

ordered administrative role hierarchy;
(8) user, roles and permissions are functions such that

(8.1) user : S → U maps each session s to a single user (which does
not change);

(8.2) roles : S → 2R∪AR maps each session s to a set roles(s) ⊆ {r :
∃r′ ≥ r((user(s), r′) ∈ UA ∪AUA)} (which can change with time);

(8.3) permissions : S → 2P∪AP maps each session s to a set of
permissions

⋃
r∈roles(s){p : ∃r′′ ≤ r((p, r′′) ∈ PA ∪APA)};

(9) ∆′ is a collection of constraints stipulating which values of the various
components enumerated above are allowed or forbidden.

Remark. To describe the dynamic aspect of RBAC itself, we assume that
regular roles and permissions can be modified by administrative actions, while
administrative roles and permissions are relatively static and unchanged since
we do not consider the administration of administrative roles and permissions in
this paper. Thus, we can define a basic RBAC model as a state of regular roles
and permissions by excluding administrative roles and permissions.
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Definition 2.2 Basic RBAC model, S, is a 11-tuple

(U,R, P, S, UA, PA, RH, user, roles, permissions,∆′).

2

The management of RBAC can be viewed as the ability to modify the basic
RBAC components, which involves the following administration actions [2]: 1)
creation and deletion of roles, 2) creation and deletion of permissions, 3) assign-
ment of permissions to roles and their removal, 4) creation and deletion of users,
5) assignment of users to roles and their removal, 6) definition and maintainence
of the role hierarchy, 7) definition and maintainence of constraints. For the sim-
plicity of discussion, we only consider two actions in RBAC: assign that grants
users to roles and revoke that removes users from roles. Obviously, these two
actions can only change the components UA.

The ARBAC97 model gives an explicitly definition of the administrative
permissions by using can-authority relations[2]. For example, the administra-
tive permissions that authorize assign and revoke are defined in the following
authority relations:
• can assign ⊆ AR×CR× 2R, where CR is a set of prerequisite conditions,

consisting of the boolean expressions t of the following form:

t = r|r̄|t1 ∧ t2|t1 ∨ t2,

where r is a role and r̄ is the negation of r. The meaning of can assign(x, y, X)
is that a member of the administrative role x (or a member of an administra-
tive role that is senior to x) can assign a user whose current membership, or
nonmembership, in regular roles satisfies the prerequisite condition y to be a
member of regular roles in X;
• can revoke ⊆ AR×2R. The meaning of can revoke(x, Y ) is that a member

of the administrative role x (or a member of an administrative role that is senior
to x) can revoke membership of a user from any regular role y ∈ Y.

Hence, we can describe RBAC in three levels: 1) The first level is about
administrative users AU , administrative permissions AP , administrative roles
AR, administrative role hierarchies ARH, administrative permissions assign-
ment APA, and administrative user assignment AUA. In this level, AP and
APA illustrate authorities to administrative roles, and the explicitly definition
of AP and APA is the authority relation, such as can assign(x, y, X). Thus, this
level contains the following elements: AU , AUA, AR, ARH and can-authorities.
Since we do not consider the administration over administrative roles and per-
missions, all of the components in this level can be static and unchanged; 2)
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the second level is about administrative actions, such as assign and revoke,
which should be compatible with can assign and can revoke, respectively, to
show they are authorized; 3) the third level is about various RBAC components
related to regular roles and permissions, including U , R, P , UA, PA, RH, S,
users, roles, permissions, and constraints. All of these components can be
modified by administrative actions.

2.2 A logical analysis to the administrative actions

In ARBAC97 model, the administration actions must be compatible with
authority rules. In order to represent this property and the effect of those actions,
we give a definition of compatibility and action rules in this section.

To describe the relation between actions, such as assign and revoke, and au-
thority rules, we use assignedby(x), assignedto(u) and assigned(r) as attributes
to describe assign, i.e., the member of x executes action assign, and role r is
assigned to user u, respectively; and use revokedby(x) and revokedwith(r) as
attributes to describe revoke, i.e., the member of x executes action revoke, and
user’s role r is revoked. Thus, to simplify the description, we use a(assignedby(x),
assignedto(u), assigned(r)) to represent an assigning action, and b(revokedby(x),
revokedwith(r)) to represent a revoking action.

Definition 2.3 An action a(assignedby(x), assignedto(u), assigned(r)) is
compatible with a control θ = can assign(ar, ϕ, X), denoted by θ ` a, if

(i) x ≥ ar; (ii) u |= ϕ, and (iii) r ∈ X, where X ⊆ R.

Definition 2.4 An action b(revokedby(x), revoked(r)) is compatible with a
control θ = can revoke(ar, Y ), denoted by θ ` b, if

(iv) x ≥ ar; and (v) r ∈ Y, where Y ⊆ R.

Definition 2.5 Given a user u, u satisfies t, denoted by u |= t, if:
1)∃r′(r ≤ r′ ∧ (u, r′) ∈ UA)), if t = r;
2)∀r′(r ≤ r′ → (u, r′) 6∈ UA), if t = r̄;
3)u |= t1 ∨ u |= t2, if t = t1 ∨ t2;
4)u |= t1 ∧ u |= t2, if t = t1 ∧ t2.
The conditions and effects that actions should be satisfied can be described

as follows:
(1) Assignment:

((x ≥ ar)∧(u |= t)∧(r ∈ X))→ [a(assignedby(x), assignedto(u), assigned(r))]((u, r) ∈ UA);

(2) Revocation:
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◦ Weak revocation: for any x,

((x ≥ ar) ∧ (r ∈ Y ))→ [b(revokedby(x), revokedwith(r))]((u, r) 6∈ UA);

◦ Strong revocation: for any x,

((x ≥ ar) ∧ r ∈ Y )→ [b(revokedby(x), revokedwith(r))]

((u, r) 6∈ UA ∧ ∀r′ ≥ r((u, r′) 6∈ UA)).

Given a partial order ≤ on R, we have a structure R = (R,≤). Given a user
u ∈ U, we have a sub-structure Ru = (UA(u),≤′), where
• UA(u) = {r ∈ R : (u, r) ∈ UA} ∪ {r̄ : (u, r̄) ∈ UA}; and
• (≤)′ =≤¹ UA(u).(¹ is to represent that ≤’ is limited in the range of

UA(u)).
Let Th(UA(u)) be the default closure of UA(u), that is, for any r ∈ R,

if there is a r′ ∈ R such that r′ ∈ UA(u), r ≤ r′, and r̄ 6∈ UA(u), then
r ∈ Th(UA(u)). Thus, if r ∈ UA(u), then u is the explicit member of r; and if
r ∈ Th(UA(u)), then u can be the implicit member of r.

Then we can have action rule as follows:
(1) Given an action a(assignedby(x), assignedto(u), assigned(r)) compatible

with can assign(ar, t, X), i.e., x ≥ ar, u |= t, r ∈ X, we have that

[a]UA(u) = UA(u) ∪ {r};

(2) Given an action b(revokedby(x), revokedwith(r)) that is compatible with
can revoke(ar, Y ), i.e., for any u, x ≥ ar, r ∈ Y ,

a) for weak revocation, we have that

[b]UA(u) = UA(u)− {r|(u, r) ∈ UA};

b) for strong revocation, we have that

[b]UA(u) = UA(u)− ({r|(u, r) ∈ UA} ∪ {r′|r′ ≥ r, (u, r′) ∈ UA}).

3. The Dynamic Description Logic DDLRBAC

The dynamic description logic proposed in this paper is based on the basic
description logic language ALC [13,14]. Description logics are originally designed
for representing static knowledge. To describe the dynamic properties of RBAC,
we can extend the description logic ALC with dynamic logics to get a dynamic
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description logic for RBAC, called DDLRBAC , inwhich Action a can be taken
as a modality [a].

Administration actions should be compatible with their authorities on the
higher level, so here to describe these actions, we can take the conditions that
should meet the requirement of authorities as the attributes of actions. Thus,
we can introduce action concept and action role. Accordingly, the ordinary
concept and role can be called object concept and object roles. In DDLRBAC ,
the execution of an action can be taken as an individual, we describe the change
of object by actions as a modality act on the object statements. So we use a
dynamic way to describe actions which is fit for RBAC.

In this section, we will first introduce the syntax and semantics of DDLRBAC ,
and then point out the difference with other dynamic logics.

3.1. Syntax of DDLRBAC

The logical language L for DDLRBAC contains the following symbols:
• object (constant) symbols: c0, c1, ...;
• atomic object concept symbols: A0, A1, ...;
• object role symbols: R0, R1, ...;
• object concept constructors: ¬,u,∀;
• statement constructors: v;
• atomic action symbols: a0, a1, ...;
• atomic action concept symbols: B0, B1, ...;
• action role symbols: S0, S1, ...;
• action constructors: ; , and
• logical connectives: ¬,→ .

Let A be the set of all the atomic action symbols.
Remark. To simplify the discussion and the logical system, we consider

only one action constructor, which is enough for the example we shall give in
the following section.

2

Definition 3.1 An object concept C is defined as follows:

C = A|¬C|C1 u C2|∀R.C|[α]C,

where α is an action, defined as follows:

α = a|α1;α2;

Definition 3.2 An action concept D is defined as follows:

D = B|¬D|D1 uD2.
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Remark. If the interpretation of object concepts is invariant with respect
to the possible worlds, then we can define ∀S.C as an action concept, where S

is an action role and C is an object concept.
2

Definition 3.3 An object statement ϕ is defined as follows:

ϕ = C(c)|R(c1, c2)|C1 v C2|¬ϕ|ϕ1 → ϕ2|[α]ϕ3,

where ϕ3 is a statement containing no modality.
Definition 3.4 An action statement ψ is defined as follows:

ψ = B(a)|S(a, c)|B1 v B2|¬ψ|ψ1 → ψ2.

Definition 3.5 The knowledge base ofDDLRBAC is KB = (TBox,ABox, RBox),
where ABoxo is a set of atomic statements; TBoxo is a set of non-atomic state-
ments containing no modalities; and RBoxo is a set of the statements of form
ϕ→ [α]ψ, where ϕ,ψ contain no modalities;

Remark. If we use DDLRBAC to describe static knowledge, the RBox is
an empty set, then KB = (TBox,ABox).

3.2. Semantics of DDLRBAC

Definition 3.6 A model M for the language of DDLRBAC is a 5-tuple
(W, {Ra : a ∈ A},∆,Σ, I), where

• W is a set of possible worlds;

• for each a ∈ A, Ra ⊆W ×W is the accessibility relation for action a, such
that for any w ∈W, there is at most one w′ ∈W with (w, w′) ∈ Ra;

• ∆ is a non-empty universe;

• Σ is a non-empty universe such that Σ ∩∆ = ∅;

• I is an interpretation such that

– for each constant symbol c, I(c) ∈ ∆;

– for each possible world w ∈W and atomic concept symbol A, I(A,w) ⊆
∆, satisfying that for any w′ ∈ W with (w, w′) ∈ Ra for some
a ∈ A, I(A,w)4I(A,w′) is finite, where 4 is the symmetric differ-
ence, i.e., X4Y = (X−Y )∪ (Y −X), and I(A,w)− I(A,w′) = {x ∈
∆ : x ∈ I(A,w), x 6∈ I(A,w′)};
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– for each possible world w ∈ W and role symbol R, I(R, w) ⊆ ∆2,

satisfying that for any w′ ∈ W with (w, w′) ∈ Ra for some a ∈
A, I(R, w)4I(R, w′) is finite, where I(R, w) − I(R, w′) = {(x, y) ∈
∆2 : (x, y) ∈ I(R, w), (x, y) 6∈ I(R, w′)};
Remark. In this possible world semantics, action a may change one
state to another state such that the symmetric difference of the two
states is finite. Thus the reading of [a] is different from the modal
reading and the programming reading. For the detail comparison of
the three readings please see subsection 3.3.

2

– for each atomic action concept B, I(B) ⊆ Σ;

– for each atomic action role S, I(S) ⊆ Σ×∆;

Definition 3.7 The interpretation CI,w of an object concept C at possible
world w is defined as follows:

CI,w =





I(A,w) if C = A

∆− CI,w
1 if C = ¬C1

CI,w
1 ∩ CI,w

2 if C = C1 u C2

{x ∈ ∆ : Ay((x, y) ∈ R⇒ y ∈ CI,w
1 )} if C = ∀R.C1

{x ∈ ∆ : Aw′((w, w′) ∈ Rα ⇒ x ∈ CI,w′

2 )} if C = [α]C2,

where

Rα =





Ra if α = a

Rα1 ◦Rα2 if α = α1;α2,

where R ◦R′ = {(x, y) : Ez((x, z) ∈ R&(z, y) ∈ R′)}.
Remark. (1) The interpretation I(c) of constant symbol c is independent

of possible worlds;
(2) Under the assumption that there is at most one w′ ∈ W with (w, w′) ∈

Ra, we use wa to denote the unique w′, and the interpretation ([a]C2)I,w is
reduced to CI,wa

2 .

2

Definition 3.8 The interpretation DI of an action concept D is defined as
follows:

DI =





I(B) if D = B

Σ−DI
1 if D = ¬D1

DI
1 ∩DI

2 if D = D1 uD2.
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Definition 3.9 The truth-value M, w |= ϕ of an object statement ϕ at
possible world w is defined as follows:

M, w |= ϕ iff





I(c) ∈ CI,w if ϕ = C(c)

(I(c1), I(c2)) ∈ I(R, w) if ϕ = R(c1, c2)

CI,w
1 ⊆ CI,w

2 if ϕ = C1 v C2

M, w 6|= ϕ1 if ϕ = ¬ϕ1

M, w |= ϕ1 ⇒M, w |= ϕ2 if ϕ = ϕ1 → ϕ2

Aw′((w, w′) ∈ Rα ⇒M, w′ |= ϕ3) if ϕ = [α]ϕ3

Definition 3.10 The truth-value M |= ψ of an action statement ψ is defined
as follows:

M |= ψ iff





I(a) ∈ I(B) if ψ = B(a)

(I(a), I(c)) ∈ I(S) if ψ = S(a, c)

BI
1 ⊆ BI

2 if ψ = B1 v B2

M 6|= ψ1 if ψ = ¬ψ1

M |= ψ1 ⇒M |= ψ2 if ψ = ψ1 → ψ2

Remark. Under the assumption that there is at most one w′ ∈ W with
(w, w′) ∈ Ra, we use wa to denote the unique w′, and the satisfaction M, w |=
[a]ϕ3 is reduced to M, wa |= ϕ3.

2

We assume that if there is a statement of form ϕ → [α]ψ in an RBox then
there is no other statement of form ϕ′ → [α]ψ′ in RBox, where the reading of
ϕ → [α]ψ is that if ϕ is true then after executing action α, ψ is true; and α

changes the truth-value of no other statements other than ϕ and ψ. Hence, for
any action a and possible worlds w, w′ ∈W, if (w, w′) ∈ Ra, then there is a finite
set Φw

a of atomic statements or the negations of atomic statements such that for
any ϕ ∈ Φw

a ,

w |= ϕ iff w′ 6|= ϕ;

and for any ϕ 6∈ Φw
a ,

w |= ϕ iff w′ |= ϕ.

Therefore, ϕ→ [α]ψ in RBox can be represented in the following form:

Φ→ [α]ϕ¬Φ,
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where ϕ is the precondition of action α, and for any w ∈W,

w |= Φ→ [α]ϕ¬Φ iff w |= ϕ&Aw′((w, w′) ∈ Rα ⇒
Aψ ∈ Φ(w |= ψ ⇔ w′ 6|= ψ)

&Aψ 6∈ Φ(w |= ψ ⇔ w′ |= ψ)).

3.3 Comparison

To compare with other dynamic representation, we use +/− to denote the
variance/invariance of the interpretation of constant symbols c, concept symbols
C, the truth-value of statements ϕ or assignment of variables x. Then, we have
the following table:

c C ϕ x

the modal reading +/− + + +/−
the programming reading − − +/− +

the ∗-reading − + + ×

Table 1. Comparison of three readings

where the ∗-reading is the semantics we have given in this paper; × means that
this case is undefined (because there is no variable); and +/− means that the
case depends on the semantics we use. For example, in the modal reading of
constant c, I(c, w) could be independent of (−) or dependent on (+) the possible
world.

Correspondingly, whether there are constraints on two possible worlds one
of which is accessible from another via the modalities, is summarized as in the
following:

• in the modal reading, there is no constraints on (w, w′) if (w, w′) ∈ Ra;

• in the programming reading, {x : v(x) 6= v′(x)} is finite if v′ is accessible
from v via some action a;

• in the ∗-reading, for any two possible worlds w, w′ with (w, w′) ∈ Ra for
some action a, for any atomic concept C, CI,w4CI,w′ is finite; and for any
role R, RI,w4RI,w′ is finite.
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4. Representation RBAC in DDLRBAC

This section will give a DDLRBAC for RBAC, and give some examples from
the reference [2].

4.1. DDLRBAC for RBAC

To describe the three levels of RBAC, we can translate all of the elements of
RBAC model, actions and authority into the symbols of DDLRBAC language.
Here we take every authority, such as can assign(x, y, X), as an individual such
as canassign, and we use atomic role assignBycan to describe the adminis-
trative role x of can assign, assignConcan to describe the prerequisite y and
assignWithcan to describe the roles in X be assigned by the authority indi-
vidual. We describe the authority can revoke(x, Y ) by an individual canrevoke,
and use atomic roles such as revokeBycan and revokeWithcan to describe the
administrative role x and the roles in Y to be revoked from users, respectively.

Hence we can get a language for the description logic for RBAC consisting of
three parts: L1 for the static authority specification; L2 for the static description
of actions; and L3 for the static description of RBAC state as well as the dynamic
changing, where

• L1 contains the following symbols:

¦ atomic can-authority concept names: Canassign,Canrevoke;

¦ atomic can-authority constant names: canassign0 , canassign1 , ...; canrevoke0 ,

canrevoke1 , ...;

¦ atomic can-authority role names: assginBycan, assignConcan, assignWithcan,
revokeBycan, revokeWithcan;

¦ atomic concept names: AU, AR, S;

¦ atomic role names: ARH, AUA;

¦ constant names: au for each member au(∈ AU) of administrative
roles; ar for each administrative role ar ∈ AR; s for each administra-
tion session;

¦ prerequisite condition constant name: t.

• L2 contains the following symbols:

¦ atomic action concept names: Assign,Revoke;
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¦ atomic action constant names: assign0,assign1, ...; revoke0, revoke1, ...;

¦ atomic action role names: assginBy, assignTo, assignWith, assignCon;
revokeBy, revokeWith, revokeFrom;

and

• L3 contains the following symbols:

¦ atomic concept names: U,R,P,S;

¦ constant names: u for each regular user u ∈ U ; r for each regular role
r ∈ R;p for each regular permission p ∈ P ; and s for each s ∈ S;

¦ atomic role names: UA,PA,RH, user, roles,permissions;

¦ a modality [a] for each action constant name a.

Definition 4.1 A statement ϕ1 for L1 is defined as follows:

ϕ1 = Canassign(canassign)|Canrevoke(canrevoke)|assignBycan(canassign,ar)

|assignConcan(canassign, t)|assignWithcan(canassign, r)

|revokeBycan(canrevoke,ar)|revokeWithcan(canrevoke, r)

|AU(au)|AR(ar)|AUA(au,ar)|ARH(ar,ar′)|S(s)

|¬ϕ1|ϕ1
1 → ϕ2

1.

Remark. We use ARH(ar,ar’) to denote the partial order ar≤ar’.
2

Definition 4.2 A statement ϕ2 for L2 is defined as follows:

ϕ2 = Assign(assign)|Revoke(revoke)

|assignBy(assign,au)|assignTo(assign,u)|assignWith(assign, r)

|assignCon(u, r′)

|revokeBy(revoke,au)|revokeWith(revoke, r)|revokeFrom(revoke,u)

|¬ϕ2|ϕ1
2 → ϕ2

2.

Definition 4.3 A statement ϕ3 for L3 is defined as follows:

ϕ3 = U(u)|R(r)|P(p)|S(s)

|UA(u, r)|PA(p, r)|RH(r, r′)

|user(s,u)|roles(s, r)|permissions(s,p)

|¬ϕ3|ϕ1
3 → ϕ2

3

|[assign]ϕ3|[revoke]ϕ3.
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Remark. We use RH(r,r’) to denote the partial order r≤r’.
2

To represent conditions (8.2)-(8.3), we need to extend the language to include
two role constructors:

∼, ◦,

and one role statement constructor:

⊆,

such that if R1, R2 are roles then so are ∼ R1 and R1 ◦R2. In such an extended
language, (8.2)-(8.3) are represented by

roles ⊆ (∼ (user◦ ∼ UA)) ◦RH−

permissions ⊆∼ (roles◦ ∼ (RH− ◦PA−)),

respectively.
2

To the whole RBAC, we have the following knowledge bases:
• KB1 = (TBox1, ABox1) is an authority knowledge base, where TBox1

is a set of subsumption axioms; ABox1 is a set of atomic statements about
authorities;
• KB2 = (TBox2, ABox2) is an action knowledge base, where TBox2 is a

set of axioms about actions, and ABox2 is a set of atomic statements about
actions;
• KB3 = (TBox3, ABox3, RBox3) is a knowledge base for the basic RBAC

model S, where ABox3 is a set of atomic statements; TBox3 is a set of non-
atomic statements containing no modality; and RBox3 is a set of the statements
of form ϕ→ [α]ψ, where ϕ, ψ contain no modalities.

Remark. In the TBox of a knowledge base, there is a set of the statements
specifying the basic properties of the components. For example, in KB3, there
is a set of the statements specifying the disjointness of any two components
(e.g., U uR ≡⊥), the domains and ranges of each relations (e.g., ∃UA.R v U
and ∃UA−.U v R) and the functionality of user, roles,permissions (e.g.,
(≤ 1user).U v S).

2

Definition 4.4 Given knowledge base about actions KB2, authority knowl-
edge base KB1, and knowledge base about RBAC model KB3, we say KB2 is
compatible with KB1, if
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(1) if Assign(a) v KB2, and AU(au), AR(ar), AUA(au,ar) ∈ KB1,
U(u), R(r) ∈ KB3, then

assignedBy(a,au) ∈ KB2 ⇒ ∃c(Canassign(c) ∈ KB0&assignBycan(c,ar) ∈ KB1);

assignedWith(a, r) ∈ KB2 ⇒ ∃c(Canassign(c) ∈ KB1&assignBycan(c,ar) ∈ KB1

&assignWithcan(c, r) ∈ KB1);

assignedTo(a,u) ∈ KB2 ⇒ ∃c(Canassign(c) ∈ KB1&KB3 ` u |= t),

where c represent an authority individual, and u |= t can be defined inductively
as follows: 




∃r′(RH(r, r′)&UA(u, r′)) if t = cr

∀r′(RH(r, r′)⇒ ¬UA(u, r′)) if t = c̄r

u |= t1 or u |= t2 if t = t1 ∨ t2

u |= t1&u |= t2 if t = t1 ∧ t2

(2) if Revoke(a) ∈ KB2, and AU(au),AR(ar) ∈ KB1,U(u),R(r) ∈ KB3,

then

revokedBy(a,au) ∈ KB2 ⇒ ∃c(Canrevoke(c) ∈ KB1&revokebycan(c,ar) ∈ KB1)

revokedWith(a, r) ∈ KB2 ⇒ ∃c(Canassign(c) ∈ KB1&revokeWithcan(c, r) ∈ KB1).

With action a with statements assignedBy(a,au), assignTo(a,u) and assignWith(a, r),
we have the following rules:

¬UA(u, r) ∧ assignedWith(a, r)→ [a]ϕUA(u, r),

and with an action b with statements revokeBy(b,au) and revokeWith(b, r),
we have the following weak revocation rule and strong revocation rule as follows,
respectively,

UA(u, r) ∧ revokedWith(b, r)→ [b]¬UA(u, r),

RH(r, r′) ∧UA(u, r′) ∧ revokedWith(b, r)→ [b]¬UA(u, r′),

where a and b are the actions compatible with can assign(ar, ϕ, R) and can revoke(ar,R),
where ϕ is a prerequisite and R is a role set.

Remark. Here u and are taken as parameters.
2

At any instant, we have a state description of the whole RBAC of the fol-
lowing form:

((KB1,KB2),KB3)
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where (KB1,KB2) does not change, and KB2 is changing as the state changes.

4.2. Examples

We use examples from [2] (p. 113) to show how the DDLRBAC can represent
the administration of RBAC. The role hierarchies are given by the following
diagrams (Fig. 1):

dir
»»»»»»»»

XXXXXXXXpl1
¡

¡
@

@

pe1 qe1
@

@
¡

¡

e1
XXXXXXXX

pl2
¡

¡
@

@

pe2 qe2
@

@
¡

¡

e2
»»»»»»»»

ed

e

Fig. 1 Role hierarchy example.

The statements for the role hierarchy:

RH(e, ed),RH(ed, e1),RH(ed, e2);

RH(e1, pe1),RH(e1, qe1);RH(e2, pe2),RH(e2, qe2);

RH(pe1, pl1),RH(qe1, pl1);RH(pe2, pl2),RH(qe2, pl2);

RH(pl1, dir),RH(pl2, dir).

The administrative hierarchies are given in Fig. 2.
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¡

¡

@
@

@
pso1 pso2
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Fig. 2 Administrative hierarchy example.

The statements for the administrative role hierarchy:

ARH(pso1, dso),ARH(pso2, dso),ARH(dso, sso).

The table for can assign with prerequisite roles

name Admin.Role Prereq.Role RoleSet

c0 pso1 ed {e1, pe1, qe1}
c1 pso2 ed {e2, pe2, qe2}
c2 dso ed {pl1, pl2}
c3 sso e {ed}
c4 sso ed {dir}

Table 2. can assign with prerequisite roles.

is represented by the following ABox :

{Canassign(c0),Canassign(c1),Canassign(c2),Canassign(c3),Canassign(c4),

assignBycan(c0, pso1),assignConcan(c0, ed),assignWithcan(c0, e1),

assignWithcan(c0, pe1),assignWithcan(c0, qe1);

assignBycan(c1, pso2),assignConcan(c1, ed),assignWithcan(c1, e2),

assignWithcan(c1, pe2),assignWithcan(c1, qe2);

assignBycan(c2, dso),assignConcan(c2, ed),assignWithcan(c2, pl1),

assignWithcan(c2, pl2);

assignBycan(c3, sso),assignConcan(c3, e),assignWithcan(c3, ed);

assignBycan(c4, sso),assignConcan(c4, ed),assignWithcan(c4, dir)}.

The table for can revoke

name Admin.Role RoleRange

d0 pso1 {e1, pl1}
d1 pso2 {e2, pl2}
d2 dso {ed, dir}
d3 sso {ed, dir}
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Table 3. can revoke example.

is represented by the following ABox :

{Canrevoke(d0),Canrevoke(d1),Canrevoke(d2),Canrevoke(d3),

revokeBycan(d0, pso1), revokeWithcan(d0, e1), revokeWithcan(d0, pl1);

revokeBycan(d1, pso2), revokeWithcan(d1, e2), revokeWithcan(d1, pl2);

revokeBycan(d2, dso), revokeWithcan(d2, ed), revokeWithcan(d2, dir);

revokeBycan(d3, sso), revokeWithcan(d3, ed), revokewithcan(d3, dir)}.

Example 1.(The user-role assignment) Let Alice be a member of the pso1
role and Bob a member of the ed role. Alice can assign Bob to any of the e1, pe1,

and qe1 roles. Let cana be the authority that Alice can assign Bob to any of
the e1, pe1 and qe1; and let a be the action that Alice assigns Bob to pe1. The
knowledge base is as follows:

Canassign(cana);

assignBycan(cana, pso1),assignWithcan(cana, e1),

assignWithcan(cana, pe1),assignWithcan(cana, qe1);

assignConcan(cana, ed);

AU(Alice),AUA(Alice, pso1);

Assign(a);

assignBy(a, Alice),assignWith(a, pe1),assignTo(a, Bob),assignCon(a, ed);

U(Bob),UA(Bob, ed);

¬UA(Bob, pe1)→ [a]UA(Bob, pe1).

Example 2.(The weak user-role revocation). Suppose Bob is a member of
pe1 and e1. If Alice revokes Bob’s membership from e1, he continues to be a
member of the senior role pe1, and therefore can use the permissions of e1.

Let b be the action that Alice revokes Bob’s membership from e1. The knowl-
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edge base is as following:

Canrevoke(canb);

revokeBycan(canb, pso1), revokeWithcan(canb, e1);

AUA(Alice, pso1);

Revoke(b);

revokeBy(b, Alice), revokeWith(b, e1), revokeFrom(b, Bob);

UA(Bob, pe1),UA(Bob, e1);

UA(Bob, e1)→ [b]¬UA(Bob, e1).

However, we have

UA(Bob, pe1) ∧RH(e1, pe1)⇒ UA(Bob, e1).

The statement UA(Bob, e1) means Bob is implied as a member of e1, and the
revocation is weak.

2

5. Conclusions

We have presented a three-level RBAC model that can logically distinguish
the static aspect, such as the components of RBAC administration, from the dy-
namic aspect, such as the components of permission management in RBAC. We
have also proposed a dynamic description logic for RBAC, DDLRBAC , which is
designed for 1) static specifications of administration action authorities, 2) static
specifications of administration actions, and 3) static specifications of the reg-
ular RBAC components and the dynamic specifications of components changed
by actions. To characterize administrative actions, a new semantic of modality
[a] is given in DDLRBAC , by which action a may change one RBAC state to
another state such that the symmetric difference of the two states is finite.
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Introduction to GRACE Center

Shinichi Honiden
National Institute of Informatics

Japan

Abstract
GRACE Center is a world-leading software research center in National Institute of Infor-
matics engaged in research, education and practical work in alliances with research orga-
nizations in Japan and overseas and as part of industry-academia collaboration. GRACE
Center seeks to put in place the foundations of 21st century software, while developing
world-class researchers and engineers who will go on to play central roles in the next
generation.
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Abstract

When a new machine is released, there must be a new toolchain for it. The toolchain, which includes
compiler, assembler, linker, loader, simulator .etc, is used for developing applications and operating systems
on the new machine. The task of creating a completely new toolchain is arduous and takes much time.
However, with GNU Toolchain, this task is rather simpler. GNU Toolchain provides ways to ”port” a new
CPU quickly and easily. This paper will explain the process of porting two important factors of GNU
Toolchain - GNU Compiler Collection and GNU Binary Utilities, for the C16X Microcontroller.

Keywords: Porting, GCC, Binutils, C16X.

1 Introduction

GNU Toolchain contains several projects: GNU make, GNU Compiler Collection
(GCC), GNU Binutils (Binutils), GNU Debugger (GDB), GNU build system (auto-
tools). Among those, GCC, a collection of compilers, and Binutils, a set of tools ma-
nipulating machine code such as assembler and linker, are two significant projects.
To create a necessary toolchain for a new machine, at least, we need to port GCC and
Binutils to the new machine. Documentations [1,2,3,4,5] for porting these projects,
however, are rather general and not going into details. In fact, one practical way to
port a new machine is to read available ports for other machines and try to apply
them to the new port. Some other related works [6,7,8] demonstrate the porting
process but concentrating on the task of porting GCC only. The toolchain could
not be completed without Binutils, which contains the assembler and the linker.

In this paper, we provide a systematic and understandable guidance for those
who want to port GCC and Binutils. We use C16X, a microcontroller introduced

1 Email: letonchanh@gmail.com
2 Email: lmvu@cse.hcmut.edu.vn
3 Email: phung@cse.hcmut.edu.vn



by Infineon, to demonstrate the process of creating a new compiler, assembler and
linker for a new machine. Users who want to port a similar architecture to C16X
could use this paper as a reference for their work.

The paper is organized as follows. In the next section, we describe briefly the
roles of GCC and Binutils. Section III presents the process of porting Binutils while
Section IV introduces how to port GCC. We summarize our work in Section V.

2 Overview

Figure 1 gives an overview about the roles of GCC and Binutils. GCC includes a
preprocessor that provides a set of services such as file inclusion, macro substitu-
tion and conditional compilation. An important component of GCC is a compiler,
named gcc, that translates a source code into assembly code. Binutils contains an
assembler, named as, that translates assembly code into object code, and a linker,
named ld, that allows making an executable file from many object code files. Given
an appropriate description of a new machine, these tools can generate and manipu-
late code of that machine. The next section explains how to give such a description
to Binutils.

Fig. 1. The roles of GCC and Binutils

3 Binutils Porting

Porting GNU Binutils basically consists of porting the followings components: BFD,
CGEN, gas and ld.
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3.1 BFD Porting

The first component which should be ported is BFD (Binary File Descriptor). This
component is a library which provides features to read and write object files, exe-
cutables, archive files, and core files in any format [1]. These features are used by
several other tools such as debugger (gdb), object dumper (objdump), object copier
(objcopy), assembler (gas), or linker (ld). Some following new files must be created
in directory bfd for porting BFD.

3.1.1 New files for porting BFD
• A new file cpu-CPU.c (e.g., cpu-c16x.c), which defines the information for each

machine that this architecture supports. This infomation contains the bit per
word, bit per address, bit per byte, architecture, machine...). This file must
include three “.h” files: sysdep.h, bfd.h, and libbfd.h.

• A new file elf32-CPU.c (e.g., elf32-c16x.c), which defines the way to map reloca-
tion types defined in BFD into those of the ported architecture (i.e., C16X).

• A new header file in the ‘include/elf’ directory called ‘cpu.h’ (e.g.,
c16x.h). This file should define any target specific information which
may be needed outside of the BFD code. In particular it should
use the START RELOC NUMBERS, RELOC NUMBER, FAKE RELOC,
EMPTY RELOC and END RELOC NUMBERS macros to create a table map-
ping the number used to identify a relocation to a name describing that relocation.

3.1.2 Adding porting information into existing BFD files
• config.bfd: This file converts a canonical host type into a BFD host type.
• targets.c: This file defines generic target-file-type support for the BFD library.
• archures.c: This file defines the BFD library support routines for architectures.

3.2 CGEN Porting

One goal of CGEN is to describe the CPU in an application independent manner
so that program generators can do all the repetitive work of generating code and
tables for each CPU that is ported [2]. A CPU description file, that provides some
specific types of CPU properties, is required to port CGEN.

3.3 GAS Porting

GAS is an assembler that translates assembly code into object code. Figure 2 de-
scribes the working process of GAS. It firstly initializes itself by calling init routines.
After that, it repeatedly reads one by one line in assembly code. For each line, GAS
performs appropriate actions depending on that the first word is pseudo-op or the
instruction. When it finishes reading file, GAS will write the object code into an
object file using BFD.

To port GAS, we need to provide the information of the target CPU in some
CPU files, tc-CPU.h and tc-CPU.c, located in directory config.

The following macros must be defined in tc-CPU.h file:
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Fig. 2. The working process of GAS
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• TC CPU: By convention, this macro should be defined in tc-CPU.h.
• TARGET FORMAT: This macro is the BFD target name to use when creating

the output file. This will normally depend upon the OBJ FMT macro.
• TARGET ARCH: This macro is the BFD architecture to pass to

bfd set arch mach.
• TARGET BYTE BIG ENDIAN: It should be non-zero if the target is big endian,

and zero if the target is little endian.

The following functions must be defined in tc-CPU.c file:

• md begin: GAS will call this function at the beginning of the assembly, after
the command line arguments have been parsed and all the machine independent
initializations have been completed.

• md assemble: This function will be called for each input line which does not
contain a pseudo-op. The argument is a null terminated string. The function
should assemble the string as an instruction with operands.

• md section align: GAS will call this function for each section at the end of the
assembly, to permit the CPU backend to adjust the alignment of a section.

• tc gen reloc: This function will be called by GAS to generate a reloc. GAS will
pass the resulting reloc to bfd install relocation.

Other macros and functions could be found in [3].

3.4 Ld Porting

LD is a linker that takes one or more object files and combines them into a single
executable program. For each target, the linker has its specific emulation that
replaces the linker default values with the other aspects of the target system. A
new emulation, therefore, needs to be created to port LD. The process of creating
a new emulation is perfomed by running the script ‘genscripts.sh’. More details are
given in [4].

4 GCC Porting

4.1 Introduction

4.1.1 The structure of GCC
GCC is the GNU compiler collection that allows to compile many programming
languages such as C, C++, JAVA and be able to produce assembly code for dozens
of systems. GCC achieves its flexibility with a modular design which is described in
Figure 3. It is broken into three parts: the front-end scans and parses the input code
of a program, and converts it to GENERIC, a language-independent intermediate
representation. The intermediate program then is passed to the language- and
system-independent middle-end, which does the majority of the optimizations with
the SSA-based GIMPLE language. Finally, the back-end transforms the program
into RTL representation, does the final optimizations and generates assembly code.

In the back-end, GCC relies on the RTL-form machine description, which de-
pends on respective target machine. The RTL can be thought of as an assembly
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language for an abstract machine that has unlimited number of registers. Be a
low-level representation, RTL works well for machine-specific optimizations (for ex-
ample, register allocation, delay slot optimizations, peepholes, etc) and assembly
code generation. The back-end of GCC has some tools, which are tasked with min-
ing the machine description. They extract machine-dependent information and use
this information to generate components, which are linked with the components of
front-end and middle-end to give the final compiler executable.

4.1.2 Porting GCC process
The porting GCC process is the declaration of the target machine’s information
for GCC. GCC offers a fairly flexible way for developers to describe their target
machine when porting GCC to a new architecture through the pre-defined macros
and the instruction patterns. The machine description contains in the following
files that belong to the folder <gcc root>/gcc/config/<machine> (<machine> is
the name of machine to which GCC is ported):

• <machine>.md: contains instruction patterns for generating a list of RTL in-
structions (insn, for short) from parse tree and generating assembly code. It also
contains the description of machine-specific optimizations.

• <machine>.h: contains macro definitions of target machine’s Application Binary
Interface (ABI).

• <machine>-protos.h and <machine>.c: contains the declaration and implemen-
tation of the user-defined functions used in

• <machine>.md and <machine>.h.

Some additional files used in linker phase of compilation such as the initial code
‘crt0.s’ or the libraries in assembly code ‘libgcc.s’ must be declared in t-<machine>
file. The <machine>.md and <machine>.h are the most important files in a ma-
chine description and they must be implemented. The following sections will intro-
duce the way to write the <machine.h> and <machine.md> for a machine descrip-
tion.

4.2 Write the machine description (<machine>.md) file

The substance of <machine>.md file is the instruction set of abstract machine
written by RTL. GCC provides an available set of standard pattern names. The
developers must write a pattern for each instruction that their target machine sup-
ports. The declarations for machine-specific optimizations are also written in this
file.

Firstly, the presentations of the instructions’ operands must be specified. They
are used when a single instruction has multiple alternative sets of possible operands.
The constraints are representative of those operands in an instruction pattern. They
are defined based on the target machine’s specification and instruction set. There
are many pre-defined standard pattern names in GCC. Only the instruction names
that are meaningful for the target machine need writing in <machine>.md file. The
implementation of name ‘movm’ is mandatory (m stands for a two-letter machine
mode name, in lowercase). In GCC-C16x, the name ‘moveqi’ and ‘movehi’ are im-
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Fig. 3. Modular design of GCC

plemented for moving the 8-bit and 16-bit data, respectively. The RTL expression
‘define insn’ is used to specify the instruction pattern. It has four or five operands.
In which, the RTL template operand is used to define which insns match the partic-
ular pattern and the output template operand is used for the generation of assembly
code. The ‘define expand’ expression generates a sequence of insn expressions for a
correlative complex task, which cannot describe by only one ‘define insn’ expression.

For optimization purpose, the ‘define split’ expressions specify how to split a pat-
tern into many multiple insns for scheduling by ‘delay slots’. The ‘define peephole’
and ‘define peephole2’ expressions contain definitions of machine-specific peephole
optimizations.

Most modern processors have a pipeline mechanism and GCC supports the de-
velopers to specify this feature by expressions:

(define_automaton automata-names)
(define_cpu_unit unit-names [automaton-name])
(define_insn_reservation insn-name default_latency condition regexp)

Based on those expressions, the finite state automaton based pipeline hazard
recognizer is generated automatically and the instruction scheduler inside GCC
uses this automaton for scheduling.
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4.3 Specify the ABI of the target machine in the header file (<machine>.h)

The Application Binary Interface (ABI) describes the low-level interface between an
application and its libraries, or between components of an application. Normally,
the ABI of a target machine includes information about registers, stack layout,
calling conventions, passing arguments, etc. GCC has about 500 macros, but the
developers do not need to define all of them because the default values of many
macros are suitable for various target machines. In reality, only about 150 macros
are implemented in the GCC-C16x.

To be able to use the needed macros, the target ‘<machine>.c’ file must declare
the global targetm variable, which contains pointers to functions and data relating
to the target machine as follows:

#include "target.h"
#include "target-def.h"
struct gcc_target targetm = TARGET_INITIALIZER;

Besides some simple macros that describe storage layout, data type layout and
register usage, some other groups of macros need to be redefined in the GCC-C16x
compiler as follows.

4.3.1 Calling conventions macros
In GCC-C16x, jump instructions are used in calling functions. Hence, the return
address of functions will be saved on the user stack instead of system stack. This
solution helps increase the number of calling recursive functions. In this case, it
only depends on the limitation of memory.

The GCC-C16x compiler implements two passing function arguments mecha-
nisms: passing on the stack and passing in the registers. Each of them has its own
advantages. Passing on the stack should be used for the functions that have many
local variables and have many operations on those variables in their body, so the
registers should be reserved for storing these variables. In the contrast case, which
the function is only the intermediary for passing arguments between other functions,
the speed-up of program will increase if its arguments pass via registers.

For implementing the calling conventions, the developers must
define two macros TARGET ASM FUNCTION PROLOGUE, TAR-
GET ASM FUNCTION EPILOGUE with the function prologue and the function
epilogue for callee, respectively in C source file ‘<machine>.c’.

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE c16x_asm_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE c16x_asm_function_epilogue

Besides two above files, the c16x asm expand call function must also be imple-
mented. This function is responsible for saving the return address and emits jump
instruction to callee’s address. It is used by define insn expression with ”*call”
name in <machine>.md.

The passing arguments on the stack is the default mechanism in the GCC-C16x
compiler. To instruct GCC to pass arguments on stack, the macro ACCUMU-

8



LATE OUTGOING ARGS must be defined as follow:

#define ACCUMULATE_OUTGOING_ARGS 1

This definition requires GCC to compute the maximum amount of stack
space required for outgoing arguments and place it into the variable cur-
rent function outgoing args size. The function c16x asm function prologue uses
this variable for setting up the space of argument block on the activation record of
each function.

For passing arguments in registers, user must insert compiling directive ‘-
mregsparm’ in the command line to enable this function. If this mode is enabled,
GCC-C16x reserves five registers from R5 to R9 for passing arguments of all func-
tions. If the number of function’s arguments is more than five, the remaining
arguments will be passed via stack.

The GCC-C16x also has a mixed mode for passing arguments on the stack
and in the registers in a same program concurrently. If a function is assigned the
attribute ‘get parameters from reg’ by programmer, it knows that it must receive
arguments from prescribed registers. When calling function that has this attribute,
the caller will put the parameters in the registers. These things can be achieved by
the declaration of the following macros:

#define NREGS_FOR_REG_PARM 5
#define FIRST_PARM_REG 5
#define FUNCTION_ARG(CUM,MODE,TYPE,NAME) func_arg(CUM,MODE,TYPE,NAME)

The function func arg is implemented in <machine>.c. The function controls
whether an argument is passed in a register, and which register, based on CUM
(the summary of all the previous arguments), MODE (the machine mode of the
argument) and TYPE (the data type of the argument). If this function returns
NULL RTX, the current argument must be passed on the stack.

The macro INIT CUMULATIVE ARGS (CUM, FNTYPE, LIBNAME, FN-
DECL, INDIRECT) is a C statement for initializing the variable cum for the state
at the beginning of the argument list. Based on the current compiling mode or
attribute of FNDECL, the compiler initials the correlative value of cum: 0 if pass-
ing arguments in registers or (NREGS FOR REG PARM * UNITS PER WORD)
if passing arguments on the stack.

The macro FUNCTION ARG ADVANCE increases the value of cum to advance
to the next argument in the argument list.

4.3.2 Macros for defining constraints used in the <machine>.md file
The machine-dependent operand constraint letters used in <machine>.md are de-
fined by the macros CONST OK FOR LETTER¶, for specifying particular ranges
of integer values, and REG CLASS FROM LETTER(C), for specifying the register
classes.

For two constraints of memory reference A and B, the macro EX-
TRA CONSTRAINT(X, C) will be defined with the function c16x extra constraint
in the <machine>.c file. The function checks whether the operand with constraints
A and B matches the form [Rw] and [Rw + #data16], respectively.
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4.3.3 Macros for assembly instruction output
Many macros must be defined for output assembly code accurately. The most im-
portant macros are PRINT OPERAND and PRINT OPERAND ADDRESS. The
macro PRINT OPERAND prints out operands of instruction in right assembly
code form based on constraints operands. Similarly PRINT OPERAND, the macro
PRINT OPERAND ADDRESS prints out operands with memory reference con-
straints.

4.3.4 Macros for adjusting the instruction scheduler
Besides writing RTL expressions for describing pipeline mechanism of machine,
many macros should be defined in <machine¡>.h to adjust the instruction scheduler.
If the developer decide to use an instruction scheduler in his compiler, the definition
of the macro TARGET SCHED USE DFA PIPELINE INTERFACE is mandatory.

5 Conclusion

We provided an overview of porting process Binutils and GCC. With those tools,
it is easy to make a linker, an assembler and a compiler for a new machine. In
fact, porting GCC for a microcontroller like C16X requires around 3500 lines of
codes while Binutils port contains more than 4000. We described the details of the
components in Binutils: BFD, CGEN, GAS and LD. These components help to
make a linker and an assembler through some description files. We also gave the
details of porting GCC that help to create a compiler for a new machine.
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Abstract

Parallel programs on lists have been intensively studied. It is well known that divide-and-conquer parallel
programs are efficient in the sense that they show good scalability with respect to the number of processors,
and associativity provides a good characterization for them. In particular, the third homomorphism theorem
is a theorem that is not only useful for systematic development of parallel programs on lists also useful for
automatic parallelization. The theorem states that if two sequential programs iterate the same list leftward
and rightward, respectively, and compute the same value, then there exists a divide-and-conquer parallel
program that computes the same value as the sequential programs.
In contrast to rich studies on lists, few studies have been done for characterizing and developing of parallel
programs on trees. Naive divide-and-conquer programs, which divide a tree at its root and compute inde-
pendent subtrees in parallel, show poor scalability with respect to the number of processors when the input
tree is ill-balanced, because a bit larger subtree will form a bottleneck.
In this presentation, we develop a method for systematically constructing scalable divide-and-conquer par-
allel programs on trees. We focus on paths instead of trees so as to utilize rich results on lists; then, we
demonstrate that associativity provides good characterization for scalable divide-and-conquer parallel pro-
grams on trees. Moreover, we generalize the third homomorphism theorem from lists to trees, in which two
sequential programs lead to a scalable divide-and-conquer parallel program. Our results, being generaliza-
tions of known results for lists, are generic in the sense that they work well for a large class of trees called
polynomial data structures.
This result was published in Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on
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Algebra of Programming using Dependent Types

Shin-Cheng Mu ∗ Hsiang-Shang Ko † Patrik Jansson ‡

Program derivation is the technique of successively applying formal rules to a
specification until one obtains a program. The program thus obtained is correct
by construction. In relational program derivation [2], a relational specification is
stepwise refined to a functional program by an algebra of programs. Meanwhile,
type theorists take a complementary approach to program correctness. Modern
programming languages deploy advanced type systems that are able to express
various correctness properties. This work aims to show, in the dependently
typed language Agda [6], how program derivation can be encoded in a type and
its proof term. A program and its derivation can thus be written in the same
language, and the correctness is guaranteed by the type checker.

As a teaser, Fig. 1 shows a derivation of a sorting algorithm in progress. The
type of sort-der is a proposition that there exists a function f that, after being
lifted to a relation by fun, is contained in ordered? ◦ permute, a relation mapping
a list to one of its ordered permutations. To prove an existential proposition, we
provide a pair of a witness and a proof that the witness satisfies the proposition.
The witness is left out as an underline ( ), while the proof proceeds by stepwisely
refining (through relational inclusion w) the specification. The first step exploits
monotonicity of ◦ and that permute can be expressed as a fold. The second step
makes use of relational fold fusion, but the fusion conditions are not given yet.
The shaded areas denote interaction points — fragments of (proof) code to be
completed. The programmer can query Agda for the expected type and the
context of the shaded expression. When the proof is completed, an algorithm
isort is obtained by extracting the witness of the proposition. It is an executable
program that is backed by the type system to meet the specification. All is done
by exploiting existing the type system and interactive environment of Agda.

Our work aims to be a co-operation between the squiggolists and dependently
typed programmers that may benefit both sides:

• this is a case study of using the Curry-Howard isomorphism which the
squiggolists may appreciate: specifications are expressed in their types,
whose proofs (derivations) are checked by the type system. Being able to
express derivation within the same programming language encourages its
use and serves as documentation.
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†Department of Computer Science and Information Engineering, National Taiwan Univer-

sity, Taiwan
‡Department of Computer Science and Engineering Chalmers University of Technology &
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sort-der : ∃ (λf → ordered? ◦ permute w fun f )
sort-der = ( , ( ordered? ◦ permute

w〈 ◦-mono-r permute-is-fold 〉
ordered? ◦ foldR combine nil

w〈 foldR-fusion-w ordered? { }0 { }1 〉
{ }2 ))

isort : List Val → List Val
isort = proj1 sort-der

Figure 1: A derivation of insertion sort in progress.

• We modelled a wide range of concepts that often occur in relational pro-
gram derivation, including relational folds [1], relational division, converse-
of-a-function [3]. We have presented several non-trivial derivations, includ-
ing an optimisation problem, and a relational derivation of quicksort.

• In dependently typed programming it is vital to ensure that a program
terminates. To deal with unfolds and hylomorphisms, we allow the pro-
grammer to model an unfold as the relational converse of a fold, but de-
mand a proof of accessibility [5] before it is refined to a functional unfold.
The connection between accessibility and inductivity [2] is explained.

The library we have developed, nicknamed AoPA (Algebra of Programming in
Agda), is available online [4].
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