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Abstract

Maintaining software systems at runtime becomes more and more im-
portant, and many researchers are considering the use of architectural
models for runtime management. For the research and application of
architecture-based runtime management, one unavoidable issue is how to
maintain the causal connection between the architectural model and the
system state, which are heterogeneous in structures. To address this is-
sue, researchers have proposed and implement many runtime architecture
infrastructures to maintain causal connection between the specific archi-
tecture and system concerned in their approaches, but as there are so
many kinds of architectural models and systems, a framework is neces-
sary to assist subsequent researchers or developers in constructing such
infrastructures between them. In this paper, we report a model-driven
framework, along with supporting tools we implemented, for constructing
runtime architecture infrastructures. With the help of code generation
and bidirectional model transformation, we support developers to con-
struct infrastructures by just writing two MOF meta-models and a QVT
transformation between them. We evaluate the usage and effectiveness of
our framework through a case study for achieving the runtime manage-
ment of JOnAS systems based on C2-styled architectural models.

1 Introduction

To adapt to the ever changing requirement and environment during its long and
non-stoping life cycle, a software system demands to be manageable at runtime.
On the one hand, researchers are designing effective mechanism to enable such



runtime management [5], and many of the mainstream platforms provide some
form of management capabilities to enable external management agents (either
human administrator or software-based agents) to monitor and control it at
runtime [I4] 21]. On the other hand, on the research of different forms of man-
agement activities, such as human-directed runtime evolution [I8] or automatic
self-adaptation [I1], many researchers are considering abstracting the system
states into some kind of models [I0], especially architectural models. Archi-
tectural models shield out the complex and technical details, and provide an
abstract and usually domain-specific view of the running system states. Man-
agement agents can monitor and control the systems by reading and writing
their architectural model in proper forms.

There are many research approaches towards architecture-based runtime
management, focusing on different issues, from low-level mechanism [5l, 24] [13]
to high-level management assistance [6} [11] [I8], but one issues is unavoidable for
all these approaches, i.e. how to make sure the architectural model reflects the
current system states and in the mean time the system states will be changed
correctly according the architectural changes [10, [3]. Some researcher name this
issue as “maintaining the causal connection between architectural model and
system states” [0, I3, B], and name the particular parts in their approaches
for maintain causal connections as “runtime architecture infrastructures”[I§].
We follow these two name in the rest of this paper to simplify the discussion.
Although it is not the main concern for all the approaches mentioned above, re-
searchers of all these approaches did propose different but effective methods for
maintaining causal connections, and implement corresponding infrastructures,
usually specific to the kinds of architecture models and running systems they
chose.

Only individual infrastructures are not enough. There are many different
kinds of running systems with different management capabilities, and there are
also many architecture styles, fitting for different domains and management
capabilities. If a developer wants to provide a proper kind of architectural
models for managing a specific kind of running system, she usually has to first
put much effort on implementing an infrastructure to connect the architecture
and the system, even if this is not her main concern. And moreover, these
particularly constructed infrastructures are often inevitable to have some kinds
of little defects, and are often not easy for maintenance. It is also a hard task for
developers to demonstrate the correctness of their infrastructures to the users
or subsequent developers. Having noticed this problem, some researchers begin
to consider a framework to help constructing such infrastructures.

Existing frameworks, as far as we know, still have some limitations. The
authors of Rainbow [I1] summarized a common structure of architecture-based
self-adaptable systems, and identified the reusable parts, but they did not pro-
vide automatic supports for constructing all these parts; In their succeeding
work [20], they provide a high-level language for specifying the relation between
system and architecture, along with an engine to execute this language, but
their language and engine are unidirectional, which cannot propagate the archi-
tecture change into running system; Genie [4] supports a model-based approach
for developing self-adaptive systems, but currently this tool is specific to one
kind of running systems, i.e. the systems running upon the Gridkit reflective
middleware platform.

In this paper, we report our initial attempt towards a framework to support



constructing runtime architecture infrastructures in a model-driven approach.
By utilizing bidirectional transformation [9 22] and model difference [I] in a
well-designed process, we support the maintaining of causal connections in both
directions. And moreover, by utilizing the standard model-driven techniques of
MOF, QVT and code generation, our framework can be used between different
kinds of architectures and systems, in a unified, model-driven way.

The advantages of our framework can be summarized as follows.

e Our framework can improve the productivity. Developers can construct
an infrastructure by specifying two MOF meta-models, writing a QVT
transformation and supplementing a small quantity of code. The mecha-
nism for maintaining the causal connection is transparent to developers.
We will demonstrate the improvement on productivity in our cased study.

e The behavior of the obtained infrastructures is clear, predictable, and
stable. For a constructed infrastructure, the architecture style, the sys-
tem management capability and consistency relation between them are
all specified explicitly, under formal and standardized languages, and we
also prove that the constructed infrastructures preserve some key proper-
ties. In addition, the clear behavior also makes our framework good for
maintenance and incremental development.

e We separate the development into three relatively independent concerns.
When a developer is in charge of specifying the system states, he or she
does not need to care about the architecture and the relation. This makes
the specification of one kind of systems, along with the filled hook methods,
reusable for different architecture styles. It is also the case for specifying
architectural model and the relation.

The rest of this paper is organized as follows. Section [2] gives an overview
of runtime architecture infrastructures, and how our framework supports con-
structing such infrastructures. Section[3|and Section[d]introduce how we support
specifying and accessing architectural models and system states in a unified,
model-driven way. Section [5] discusses how to specify the relation between ar-
chitecture and system using QVT relational, and how we achieve maintaining
causal connections according to such QVT specification. Section [f] presents a
case study for supporting managing JOnAS [16] systems based on C2 styled
architecture [I8].

2 Runtime Architecture Infrastructures

Before introducing our framework, we would like to give an overview of its
targets, i.e. runtime architecture infrastructures. We first use a simple example
to illustrate the approaches of architecture-based runtime management. Based
on this example, we will discuss the common structure and requirements of
runtime architecture infrastructures to support such approaches. At last, we
discuss the technical issues for implementing an effective infrastructure, and
introduce what support our framework will provide for these issues.
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Figure 1: A snapshot of using C2 architecture to manage JPS on JOnAS

2.1 An example of architecture-based runtime manage-
ment

We consider a typical example of architecture-based runtime management, i.e.
using a C2-styled architecture model to manage Java Pet Store (JPS) [15] run-
ning on JOnAS application server [16]. JPS is a J2EE blueprint application
implementing an online retail website, and JOnAS is a widely used open source
J2EE application server. JOnAS provides powerful management capability un-
der JMX standard [I4] for monitoring and configuring systems states, and de-
ploying or undeploying components (EJB, Database, Services, etc), at runtime.
By default, maintainers can manage the applications on JOnAS (like JPS) by
writing Java code to directly access the management API, or manipulate a
build-in web-based user interface. These two ways are powerful enough, but not
the best ways for every situation. If a maintainer is familiar with online shop
(in problem space), but not familiar with J2EE standards (in solution spaces),
these two ways are difficult for him to grasp. Architecture-based management
is a better choice in such situations. Researchers are working for years on an
architecture style named “C2” [I8], which is proper for design and runtime
management of GUI oriented systems like JPS.

Figure[I]is a snapshot of a simple graphical modeling tool, with an architec-
tural model of JPS in C2 style. The left part of the architectural model (outside
the red box) abstracts the original login and shopping relevant parts of JPS.
Ideally, this architectural model should be obtained from design time, but as the
JPS developers did not provide such a concrete model, we first construct one ac-
cording to JPS documents. Thanks to C2 style, this model clearly embody the



four layers of web-based applications as marked in the snapshot, and it is also a
hierarchical model (the “Customers” component encapsulate some components
dealing customer information). These features make it easy for maintainers to
understand and manipulate.

To use this architectural model for runtime management, we first develop
a runtime architecture infrastructure. Now maintainers can launch a “syn-
chronize” command to ask this infrastructure to synchronize the architectural
model and the system state. After the first synchronization, some components
will reflect the current state or configuration information of their corresponding
implementation elements (EJB, Database...). For example, through the bottom
part of Figure |1} maintainers can see that the current busy connection to this
data source is 1, and the size of connection pool is configured between 10 and
100. Maintainers can change some value on this window, e.g. reduce the max
pool size to 50, and after launching “synchronization”, the max pool size of the
database will be changed at runtime. The maintainers can also use this archi-
tectural model for runtime evolution. For example, suppose they would like to
supplement an RSS function to the JPS system, he can add new components,
like the ones in the red frame in Figure[l] just in the same way as supplement
a design model. Then they can provide this new architectural model to some
J2EE experts for developing corresponding EJBs or Web Modules. Finally, they
can add some necessary information to these components, like names and file
paths pointing to development result, and launch “synchronization” again. Now
the implementation EJBs and Web Modules are automatically deployed into the
running system, and users can use the url “http://localhost/rss” to retrieve an
RSS seed with all pet item information. If the maintainer think the current
RSS contents not satisfying, they can redirect the link from “//localhost/rss”
component to the connector under “ProductArtist” component, and after syn-
chronization, requesting the “http://localhost/rss” url will obtain an RSS seed
with different contents.

During the whole management process, maintainers do not have to care
about the J2EE specific techniques and concerns, as well as many irrelevant de-
tails like the many middleware services and components for other applications.
This example is just a simple illustration, and detailed discussion about the
advantage of using C2 styled architecture for runtime evolution can be found in
literature [I8]. And moreover, using C2 styled architecture model for manual
evolution is just one kind of architecture-based runtime management. We can
also provide architectural models in other styles as different views for main-
tainers with different concerns, and by employing the technologies presented in
literature [6], we can also help achieve automatic management. The precon-
dition is that we have effective runtime architecture infrastructures to connect
these architectural models with the running systems.

2.2 Requirements for runtime architecture infrastructures

From the above example, we can go on to discuss the requirements for runtime
architecture infrastructures. We first derive the the main capabilities a runtime
architecture infrastructure should have, then we present some facts which have
will affect the implementation of infrastructures, and finally we will discuss the
meaning the causal connection by listing a set of properties.

Figure 2] shows a common structure of architecture-based runtime manage-
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Figure 2: A common structure of architecture-based runtime management

ment approaches. Management agents perform the system only by reading and
writing the architectural model, through some kind of interfaces or modeling
tools. To ensure these management activities effective on the real system, there
needs to be a causal connection between the architecture and the system, and
the infrastructure is in charge of maintaining this causal connection. In partic-
ular, the infrastructure will read the architectural model and the system state,
calculate the modifications needed on both of them to maintain the causal con-
nection, and finally modify the architectural model and system states according
to its calculation result. This is a common structure, and literatures || also
discussed about similar structures. From such a structure, we can summarize
the three main capabilities of runtime architecture infrastructures, i.e. manip-
ulating the architectural model, manipulating the system state, and calculating
how to maintain the causal connection.

Besides the structure and capabilities, we would also like to clarify some
facts of architecture-based runtime management, and these facts have significant
influence on the implementation of runtime architecture infrastructures.

e Fact 1. The structures of architecture model and the system state are not
isomorphic. In the above example, the architectural model are hierarchi-
cal, but in the running system, all EJBs locate in the same layer. Another
example is that elements with the same type of “Component” may reflect
different kinds of elements in the system. The essential of this heterogene-
ity is that the architectural model and system states respectively locates
in problem space and solution space

e Fact 2. Both architectural model and system state may contain informa-
tion which are irrelevant to the other side. On the one hand, as archi-
tectural model is usually an abstract view to the system state, there is
certainly some information in system states which is not reflected. On
the other hand, the architecture model may contain some information for
easy to understand, like the comments on components or the layout in-
formation between components, and such information will not relevant to
system state.

e Fact 3. Management activities may not always lead to the expected effect
on the system. For example, if a maintain set the MaxPoolSize of the data
source with a very big number, the actual max pool size of the database



after synchronization will not the be the same number as the maintainer
have given. This uncertainty origins from the fact that the architectural
model abstracts out many complex relations exists in the running system.

In the end of this sub section, we emphasize on the most important part of
the requirements, i.e. the properties of maintaining causal connections, or in
other words, what is the proper behavior of runtime architecture infrastructures.

Commonly, the task of maintaining causal connection is simply defined as to
ensure that the architecture model is an ongoing representation of the running
system, that means the architecture should change as system changes, and vice
versa. To discuss this task more strictly, we introduce a consistency relation
between architectural model and system state, and if the current architectural
model and the system state satisfy this relation (or in other word, if they are
“consistent” ), we say that this architectural model reflects the current system
state.

e Property 1. Synchronization leading consistency. First of all, when man-
agement agents launch the synchronization command, they definitely ex-
pect that the resulted architectural model and system state are consistent,
otherwise, they cannot get the correct system state or the system state
does change as they want.

e Property 2. Non-interference reading. In order to check the fresh state
of system by reading architectural models, management agents have to
launch synchronization before reading. In such situations, the manage-
ment agents make no change on the architectural model,and the infras-
tructure should not do anything to interfere the running system and make
its state change.

e Property 3. Effective writing If management agents make some changes
on the architectural model and then launch synchronization, he wish that
these changes remain in the resulted architectural model. That means
the system has been changed properly according to these architectural
changes. Note that according to Fact 3, sometimes this property may
conflict to Property 1, and in such situations, the infrastructure should
make the agents aware of that.

e Property 4. No insignificant change Sometimes, before synchronization
the architecture and the system are already consistent. That may be
because there are no changes on architecture and system, or the changes
are all within the scope of irrelevant information (see Fact 2). In such
situations, the infrastructure should not change any of them.

2.3 Constructing a runtime architecture infrastructure

In short, constructing a runtime architecture infrastructure is the work of im-
plementing the 3 tasks.

The first two tasks, i.e. manipulating architectural model and running sys-
tem are relatively easier. For architectural model, developers can choose some
existing tools to read and write the model files usually in XMI format, and for
system state, developers can write code for accessing the management interface



Runtime Specifications
Architectures The Infrastructure (for developers)
(for maintainerg

read/write ‘ “ ‘ ‘

architectureadapter | ener architecture

meta-model

Architectur saved x relation S2T |
Model a CCesS domain = s:S{..}
domain t t:T{..}
c N E—— u model-to-runtime
ausa o synch engine
Connection auto maintain :
consistency
] Access relation
Runtime

mafagement

Systel

systemadapter b—\ J
— _I‘ﬁ
( generate@i__
ystel

meta-model

invoke

Figure 3: Approach overview

provided by the system, following some specific accessing method. The problem
here is that the code for implementing these two tasks should be independent
from the code for maintaining causal connection, otherwise, considering all these
things together may make the logic very complex, and the constructed infras-
tructure will be hard to maintain and reuse. Therefore, developers have to
decide either to consider all things together, sacrificing the maintainability and
reusability, or take some time to define clear and reusable interfaces between
the three tasks. The latter choice itself is a non-trivial technical issue.

The third task is more difficult. First, according to Fact 1, calculating how to
maintain causal connections is more complex than “comparing two piece of data,
since the heterogeneity between architecture and system must be considered.
Moreover, developers also have to consider the extra information (according to
Fact 2), and try to deal with situations when the management activity failed
(according to Fact 3). Finally and most importantly, to provide a effective causal
connection infrastructure for management agents, developers also have to satisfy
the four properties, and prove this satisfaction to the human maintainer who
will use this infrastructure, or the subsequent developers who will develop the
management agents based on this infrastructure.

From the above discussion, we can see that developing an effective runtime
architecture infrastructure manually is complex and tedious. Nowadays, model-
driven engineering has been wide-accepted as an approach to liberate develop-
ers from such tedious manual work. In this paper, we report a model-driven
approach for constructing runtime architecture infrastructures, along with a
framework to support such an approach.

Figure[3]is an overview of this model-driven approach. The left part shows an
architectural model and a running system used for architecture-based runtime
management, and the middle part (discarding its inner structure right now) is



the infrastructure for maintaining causal connection between them. Here we
make two assumptions. First, the architectural models are saved as XMI files.
XMI is an OMG standard format for restoring models, so this assumption is
reasonable. Second, the running system has provided a management interface
for external software to manipulate its runtime state, this is also a common case
for modern systems. Having these two assumptions, we can specialize the three
tasks to “reading and writing XMI files”, “invoking management interface for
retrieving and updating system state” and “calculating how to main the causal
connection”. We divide the generated infrastructure into three independent
parts for these three tasks, as shown in the middle part of Figure[3] The “Model-
to-runtime synchronization engine” automatically interacts with the other two
parts through an accordant interface which comply with the MOF reflection
standard.

Our framework supports developers to construct these three parts in a
model-driven way.

First, developers can define the meta-model of the architecture models using
a standard meta-modeling language named MOF. This meta-model specifies
what kinds of elements will appear in the architectural model, the attributes of
these elements, and the possible association between them, and it is actually
the specification of architecture style. From this meta-model, our framework
will automatically generate Java code for reading and writing XMI files storing
the architectural model.

Second, developers can use MOF to define the meta-model for system states,
specifying the kinds of manageable elements, the attributes of these elements
and the association between these elements, and use a fixed format of annota-
tions to specify the system-specific ways for accessing these system states. From
this meta-model, our framework will generate the system adapter for accessing
the system’s management interface.

Finally, developers can use a model transformation language, QVT, to spec-
ify the consistency rule he required between the architectural model and sys-
tem state, and input the two meta-models and the consistency rule into a pre-
implemented common synchronization engine. This engine can automatically
retrieve the architectural model and the system state through the two adapters,
calculating how to maintain the causal connection according to the consistency
rules, and finally write the calculated changes back to the architecture and the
system.

Notice that the steps in this constructing process are on the model level, and
thus this approach has the common advantages of model-driven engineering, like
productive, stable and maintainable. And moreover, we can also prove that the
infrastructures constructed under our framework will satisfy the 4 properties of
causal connection. This will not only deliberate developers from caring about
the correctness of their infrastructures, but also deliberate them from convincing
the users of their infrastructures.

3 Manipulating Architectural Models

Using our framework, developers just need to write a MOF meta-model to define
the architecture style, and the framework can generate the proper architecture
adapter from this meta-model. Through this generated adapter, the synchro-



nization engine can automatically manipulate the architecture models stored as
XMI files, according to the defined architecture style.

It is natural to define an architecture style as a MOF meta-model. An
architecture style defines what kinds of elements may exists in an architectural
model (usually, but not necessarily, some kinds of components and connectors),
the properties of each kind of elements, and the probable relationship between
model elements. Users can use MOF classes, attributes and associations to
define the the element types, properties and relationships, respectively. An
example can be found in Figure [] where we use a MOF meta-model to define
an architecture style imitating C2.

Currently, we do not restrict the ways for defining “constraints” in an archi-
tecture style, and users can choose some mature model-driven techniques like
OCL. Note that to support architecture-based runtime management, researchers
have tried to add dynamic features, like update operations, into architecture
styles [I9]. In our approach, developers do not need to specially define such dy-
namic features, and we support the standard model modification like changing
attribute, adding elements, etc. by default.

In our framework, we reuse a MOF implementation named Eclipse Modeling
Framework (EMF) [7] to automatically construct an architecture adapter from
the meta-model [[] From the meta-model, EMF can generate a set of Java
classese, and these classes implement the standard MOF reflection interface.
With the help of an XMI parser implemented by EMF, models stored as XMI
files can be reified as a set of Java objects under those generated classes. The
generated classes and the reused XMI parser forms an architecture adapter. The
synchronization engine can automatically manipulate the models represented as
Java objects through the standard interface, and the XMI parser ensure that
these modifications have effects on the XMI files.

4 Manipulating System States

To construct system adapters under our framework, developers also just need to
define the management states of the target systems using MOF meta-models.
Constructing system adapters is more complex than constructing architecture
adapters. Unlike architectural models that are all stored as a unified and stan-
dard XMI files, system states hide behind various management interfaces, and
each of these interfaces allows a specific method to access them. So the prob-
lems are how to provide a simple way for developers to describe such system
specific information, and how to automatically generate effect adapters for dif-
ferent management interfaces from such descriptions. In this section, we first
give an explanation about management states, and then discuss how to de-
fine management states using MOF meta-models. During the defining process,
we allow developers to add a series of annotations with system-specific access
methods, and this is the solution to the first problem. Finally, we introduce our
generation tool for addressing the second problem.

Management states are system states which can be observed or manipulated

* Strictly speaking, EMF is not an implementation of MOF, because its meta-modeling lan-
guage (named Ecore) is not strictly comply with MOF standard. But many model-driven
technologies on MOF have corresponding implementations on Ecore, and thus, in this paper,
we ignore the difference, and simply regard Ecore meta models as MOF meta-models

10



Table 1: Structural definition of management state

Aspects Meta-model Elements
management states Package

managed elements Class

life cycle states -(instance life cycle)

local state Attribute

functional dependency | -

connection Association

containment Association(containment=true)

by management agents through some kind of management interface. Literature
[21] gave a definition of management states by listing some common aspects.
In the authors’ opinion, a system’s management state is composed of some
managed elements which can be retrieved through the management interface
provided by the system. Each of the managed elements contains some local
properties and life cycle states, and may have some functional dependencies or
common connections with other managed elements, and a managed element
may also contain other managed elements. Take a J2EE system as an exam-
ple. The JMX implementation provided by the J2EE server is the management
interface for manipulating the management state. From this JMX interface,
we can manage different kinds of MBeans representing the EJBs, data sources
or middleware services currently running in the server. These MBeans are the
managed elements. An MBean for a data source may contain some local proper-
ties like the maximal pool size of the database, and it may have connection with
an EJB MBean because the EJB has to retrieve data from this data source.

To define the management states, developers must provide two kinds of
information. “Structural definition” specifies the types of the aspects discussed
above, using basic MOF meta-model elements. “Access method” specifies the
system-specific way for manipulating these aspects. Developers provide this
information by adding annotations into the defined meta-model elements. And
in the annotations, they can write an extended version of Java code.

Table [I] summarizes a guidance for the structural definition. The first col-
umn lists the aspects for management states according to literature [21]. The
second column list the meta-model elements to use for defining the left aspects.
Note that we do not require explicit definition for “life cycle states”, and such
states can be reflected by the life cycle of model elements. We also ignored
the “functional dependency”, because in architecture-based management, such
constraint specifications should better be handled at architectural level.

Table [2| lists the annotations a developer can add to specify the system-
specific access method. For each kind of annotations, we list the annotation
key name, the possible meta-model elements to annotate, and a short expla-
nation about what information developers should provide through this kind of
annotations.

Table (3] is a sample meta-model defining the managed elements for data
sources in a J2EE system, corresponding to the example we used earlier in this
section. Developers can first use a class to define data sources, and then use an
Attribute named “jdbcMaxConnPool” to define a local property which can be
managed. According to JMX standard, all the managed elements (implemented
as MBeans) are identified by a special Java object with the type of Object-
Name, and thus developers can annotate that the defined class’s “rawtype” is
javax.management.ObjectName. At last, they should annotate the class with

11



Table 2: Annotations for specifying access method

Key Meta-model Elements Explanation

mainEntry Package get an entry for further management

rawtype Class Java class for the managed elements

create Class create a new managed element

destroy Class destroy a managed elements

equal Class check if a model element is the

reflection of a managed element

get Attribute(upper bound=1) retrieve a local property
Association(upper bound=1) retrieve a connected managed element

set Attribute(upper bound=1) update a local property
Association(upper bound=1) connect to a managed element

list Attribute(upper bound>1) retrieve a list of local properties
Association(upper bound>1) | list connected or contained elements

add Attribute(upper bound>1) add a value into a multi-valued property
Association(upper bound>1) | add a new connected or contained element

remove Attribute(upper bound>1) remove a value from a multi-valued property
Association(upper bound>1) | add a connected or contained element

Table 3: A sample system meta-model

Package (name="J0nASJMX"){
Annotation(source="http://www.sei.pku.edu.cn/rsa"){
"mainEntry"->{...}
Class (name="JDBCDataSource"){
Annotation(source="http://www.sei.pku.edu.cn/rsa"){
"rawtype"->{javax.management.0ObjectNamel}
"create"->{...}
"destroy"->{...}

}
Attribute(name="jdbcMaxConnPool", type=Interger, upperbound=1){
Annotation(source="http://www.sei.pku.edu.cn/rsa"){

"get ll_){
$featureName=((Interger) $mainEntry
.getAttribute ($core, "$feature")).intValue();
}

"set"->{...}
}
}

the java code for creating a new data source runtime, and annotate the attribute
with the Java code for retrieving the maximal size of this data source’s connec-
tion pool. The text used inside an annotation is written by an extended version
of Java. The identifiers starting with “$” are some variables used in generation
time, and it will replace by a fix pattern of code during generation. Due to
the restriction of paper length, we only present one annotation, and a detailed
version of this meta-model can be found in Appendix

In our framework, we implement a code generation engine to automatically
generate the system adapter from such meta-models, based on the EMF code
generation. Inheriting from EMF, the generated Java classes from our engine
also implements the MOF standard reflection interface. Besides these standard
methods, this tool also generates a series of specific methods according to the
annotations, and these specific methods can actually manipulate the system
states. Finally, the framework contains some auxiliary classes which connect
the standard methods with the specific methods. We use a sample to show how
the generated system adapters work.

Table (4] shows part of the code generated by our framework from the meta-
model in Table eGet is an example of the the standard methods, while
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Table 4: A sample generated adapter
public class JOnASPackageImpl extends EPackageImpl...{

public Management getMainEntry (){...}

public class JDBCDataSourceImpl
extends CommonWrappingEObjectImpl ...{
public int getJdbcMaxConnPool () {
jdbcMaxConnPool=((Interger) JOnASPackage.eINSTANCE. getMainEntry ()
.getAttribute(getCore(), "jdbcMaxConnPool")).intValue();
return jdbcMaxConnPool;
}
public Object eGet(int featurelID,boolean resolve,boolean coreType){
switch (featureID) {
case JOnASPackage.JDBC_DATA_SOURCE__JDBC_MAX_CONN_POOL:
return new Integer (getJdbcMaxConnPool ());

getJdbcMaxConnPool and getMainEntry are examples of the specific methods,
which are generated according to the “mainEntry” and “get” annotations, re-
spectively. When the synchronization engine wants to know the max pool size of
an data source, it will automatically invoke the eGet with the proper featurelD
(it gets the meta information like class name and feature ID from the meta-
model), and eGet will forward the invocation to getJdbcMaxConnPool, where
the value will be retrieved from the J2EE server and returned. We choose a very
simple example for the ease of comprehension, and other parts of the generated
code are more complex. For example, if the synchronization engine wants to
get all the data sources and call eGet automatically, the generated adapter will
finally return an object of a specially implemented List class, which is one of
the auxiliary classes we implemented in the framework. This object will call
the corresponding 1ist method generated from “list” annotation to get all the
ObjectNames representing the available data sources in the current system, and
instantiate a set of Java objects of the type JDBCDataSourceImpl to wrap these
ObjectNames, so that the synchronization engine can go on to manipulate these
data sources through their wrappers. The implementation of this generation tool
is not the emphasis of this paper, and technical details will be discussed in a
later literature.

5 Maintaining Causal Connections

Maintaining causal connections is the main function of runtime architecture
infrastructures. In particular, maintaining causal connection is the activity
of synchronizing the architectural model and the system states when one or
both of them have changed, so that both of them reflect changes occurred on
the opposite side. Since the architectural model and the system states are
heterogeneous, the basis of this synchronization is not simply equivalence, but a
particular relation between them expected by developers. Under our framework,
developers only need to specify such relation on the model level, using a standard
model transformation language, the QVT relational [§], and a general model-to-
runtime synchronization engine can maintain the causal connection according
to this relation.
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Table 5: Sample relation between C2 and JOnAS

transformation C2J0nAS(arc:C2, sys:JOnAS){

top relation Root2Root {
host : String;
enforce domain arc s:Architecture{deployedHost=host};
enforce domain sys t:MBeanServer{serverHost=host};
when{s.parent.oclIsUndefined ();}

top relation Component2DataSource {
name : String;
maxPool:Integer;
enforce domain arc arch:Architecture{};
enforce domain arc conn:Connector{
parent=arch,name=’jdbc’};
enforce domain arc comp:Component{
below=conn,name=name ,maxPool=maxPool};
enforce domain sys server:MBeanServer{};
enforce domain sys data:JDBCDataSource{
name=name , parent=server,
jdbcMaxConnectionPool=maxPool};
when{Root2Root (arch,server) ;}
¥
}

Implementing this common synchronization engine is not trivial. First, when
a change occurred at architectural model, we have to calculate what this change
means for the system state according to the specified relation, and so is the
change on system state. Second, when architecture and system change at the
meantime, we have to merge these changes and calculate the correct subsequent
modifications on architecture and system. Third, for system state, chances are
that some modifications do not have expected effects, and for such situations
we have to give a reasonable result for architecture-based management. We
designed an algorithm based on QVT bidirectional transformation and model
difference to address the above issues.

When developing under some framework, developers usually expect that the
behavior of their product are predicable. On the basis of the properties of QVT
bidirectional transformation and model difference (discussed in literature [22]
and [I], respectively), we can demonstrate that our algorithm preserve a series
of properties. From these properties, along with the unambiguous semantics
of QVT transformation, developers can be clear about the behavior of their
infrastructures constructed under our framework.

At the last of this section, we will report how we implement this algorithm.

5.1 Specifying relation between architectures and systems

We choose QVT relational language for developers to specify the relation be-
tween architecture and system. Unlike operational transformation languages
like ATL and QVT operation, QVT relational is not for specifying how to cre-
ate a new model from an original one, but specifying a relation between two
sets of models complying with two meta-models respectively.

Table [5|is a sample QVT transformation specifying the relation between C2
architectural models and JOnAS system states. It is defined between the two
meta-models we used as samples in the last two sections, and it is also part of the
relation we defined to construct the sample infrastructure we have introduced
in Section
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Figure 4: Synchronization algorithm

Here Root2Root can be interpreted as follows: for each root Architecture
(not an inner structure of some component) in the architectural model there
must a MBeanServer in the system, and vice versa. And the Architecture’s
deployedHost must equal to the MBeanServer’s deployedHost. The second
relation Component2DataSource means that if there is a Component linked with
a Connector with type “jdbc”, then there must be DataSource with the same
name. Likewise, for each DataSource in the system, there must be a component
with the same name, and linked with a Connector typed “jdbc”.

We do not restrict the use of QVT language, that means any legal QVT
relational transformation are acceptable by our framework.

5.2 Synchronization algorithm

An overview of our synchronization algorithm is shown in Figure [4] This algo-
rithm processes two XMI files and a running system through the architecture
adapter and system adapter. Before the execution of this algorithm, the two
XMI files storing the architectural models before and after the management
agent’s modifying, and after the execution, the system state is changed accord-
ing the management agent’s modification, and the two XMI files reflect the
current system state.

The basic idea of our algorithm is: get the system-side meaning of archi-
tectural modifications by transforming the two architectural models into two
system models respectively and calculate the difference between them, then try
to manipulate the system according to the difference and retrieve the manipu-
lation result, and finally transform the resulted system state back and reflect it
in architectural level.

Before discussing the process, we first introduce the techniques we employed
in this algorithm.

e Architecture adapter and system adapter are constructed before
synchronization, as discussed in the previous two sections. The arrow from
an adapter to a model means loading a model through the corresponding
adapter. We achieve this by invoking the standard “get” method recur-
sively to retrieve the complete information from XMI files or state state,
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and then copy the constructed model. The arrows pointing to architec-
ture adapter means manipulating system states, for which we will discuss
later. Except for invoking adapters, the operations on the intermediate
models (represented as common rectangles) do not affect XMI files or
system states.

e Forward and backward transformation are bidirectional transforma-
tions on the basis of the relation defined by QVT relational. Forward
transformation “looks at a pair of models (m, n) and works out how to
modify n so as to enforce the relation: it returns the modified version”.
“Similarly, backward transformation propagate chages in the opposite di-
rection” [22].

e Model difference [I] calculates the difference between two models under
the same meta-model. The difference result is a set of model modifications
like creation of a new element or update to a feature. Model merger
[1] is the operation for modifying a model according to a difference, and
return the modified model. The arrow from a “diff” activity to the system
adapter means merging the modifications in the difference result on the
system state.

In the rest of this subsection, we use a small example to illustrate our al-

gorithm step by step. This example is about about maintain causal connection
between C2 architecture and JOnAS system. The meta-models, adapters and
the relation required for this example has already been introduced as exam-
ples in previous sections. We suppose that before synchronization, ori.xmi
only restored an empty architecture, while arc.xmi contains a Component and
a Connector, which are inserted by the management agent. At this time, the
JOnAS server only contain a data source.
Step 1. Loading architectural models. According to the example descrip-
tion, we get two models as follows. During the following discussion, we use a
simple notation to express models. We express a model element beginning with
its type at a non-indent line, and in the following lines, each with one indent,
listing the features and their values. For example, the Modified Arc shown
below contains tree model elements. The second element is a Component. Its
name is "MySQL", its parent is the #127.0.0.1 and its maximal pool size should
be 1000.

/% Original Arcx/
Architecture
deployedHost="127.0.0.1"

/*Modified Arcx/

Architecture
deployedHost="127.0.0.1",
component=#MySQL, connector=#jdbc

Component
name="MySQL" ,parent=#127.0.0.1,
below=#jdbc, maxPool=1000

Connector
name="jdbc" ,parent=0,above=#MySQL

Step 2. Forward transformation. We transform these Original Arch and
Modified Arch into Original Sys and Moidfied Sys, respectively. We use an
empty system model as the second input of forward transformation, because at
this time, we do not require extra system information.
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/*Original Sysk/
MBeanServer
serverHost="127.0.0.1"

/*Modified Sysx/

MBeanServer
deployedHost="127.0.0.1",
jdbcDataSource=#MySQL

JDBCDataSource
name="MySQL" ,parent=#127.0.0.1,
jdbcMaxConnectionPool=1000

Step 3. Retrieve System State. We invoke a model copy method from sys-
tem adapter to a intermediate model named Current Sys. During the copying
process, this method will recursively invoke the standard get methods, so that
the entire system state will be retrieved and stored in the Current Sys model.
Currently, we assume that the JOnAS server only contain a data source named
“HSQL” .
/* Current Sys*/
MBeanServer

deployedHost="127.0.0.1",

jdbcDataSource=#HSQL

JDBCDataSource
name="HSQL" ,parent=#127.0.0.1,

Step 4. Merge the management agent’s modification. We first differ
Modified Sys and Original Sys. The difference we obtained is actually the
management agent’s intention on changing system state. We merge this dif-
ference into Current Sys to get the Desired Sys, which is the system state
expected by the management agent.

/*Desired Sysx/

MBeanServer
deployedHost="127.0.0.1",
jdbcDataSource=#HSQL,
jdbcDataSource=#MySQL

JDBCDataSource
name="HSQL",parent=#127.0.0.1,

JDBCDataSource
name="MySQL",parent=#127.0.0.1,
jdbcMaxConnectionPool=1000

Step 5. Try to reconfigure the system. Differ Desired Sys and Current
Sys, and the resulted difference contains the modifications we need if we want to
change the system state according to Desired Sys. The difference is showned
below, in the format proposed by literature [1].
/+*Desired_Sys — Current_Sys*/
[ [ new(JDBCDataSource ,#MySQL) 1]
[ insert (#127.0.0.1, jdbcDataSource, #MySQL),
set (#MySQL, parent, #127.0.0.1)
set (#MySQL, jdbcMaxConnectionPool, 1000)

]
]

We merge this difference into the actual system state through the system adapter.
This merge process is the same as we used in the last step, i.e. translate the mod-
ifications in the difference into invocations to the standard MOF reflection inter-
face. As discussed in Section [4] the system adapter will finally reconfigure the
system according to these invocations. We name this step as “try to reconfigure
the system”, because such reconfigurations do not always lead to expected effect.
For example, the difference contains set (#MySQL, jdbcMaxConnectionPool,
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Table 6: Decision table for rechecking results

# Type Query i a Condition Explanation

1 new type, id 1 0 - failed to create this element

2 del type, id 1 0 - failed to destroy this element

3 set id, feature | 1 0 - failed to configure this feature

4 1 1 i.value!= a.value configured with another value

5 insert id, feature | 1 0 - failed to insert into this feature

6 remove id, feature 1 0 - failed to remove from this feature

1000), but this 1000 exceeds the server’s ability, then the final maximal pool
size will not be that high. After the reconfiguration, we get the final system
state as follows.

/*Final Sysx/

MBeanServer
deployedHost="127.0.0.1",
jdbcDataSource=#2,
jdbcDataSource=#3

JDBCDataSource
name="HSQL",parent=#1,

JD].3(.JI-JataSource

name="MySQL" ,parent=#1,

jdbcMaxConnectionPool=100
Step 6. Get final architectural model. We execute backward transforma-
tion between Modified Arch and Final Sys, to get the architectural model as
follows. The Component named “MySQL” is also inside the top architecture,
but its maxPool is 100 not 1000. A new Component appears to reflect the origi-
nal data source in the system. Note that this new component is not a child of
the root architecture, because the relation specified in Table tab:samplerelation
does not contain enough information to determine the parent of this component.
This behavior is reasonable, because as a hierarchical structure, this component
may be inside the root architecture or the some of the inner structures, de-
pending on the designer. Finally, we store this Final Arch into two XMI files,
preparing for the next synchronization.

Architecture

deployedHost="127.0.0.1",

component=#MySQL, connector=#jdbc
Component

name="MySQL" ,parent=#127.0.0.1,below=#jdbc_mysql,

maxPool=100
Connector

name="jdbc", parent=0, above=#MySQL
Component

name="MySQL" ,below=#jdbc, maxPool=100
Step 7. Check the synchronization result. The synchronization is over
at Step 6, but we have to inform management agents that some of their mod-
ifications do not have expected result. We do this by get an intended differ-
ence from Original Arch to Modified Arch, and an acutal difference from
Original Arch to Final Arch, and then check if the intended modifications
all remains in the actual modification. The decision table used for this check
is showed in Table [6l

This table means that for each Type of operations [I], we use the Query

condition (e.g. same element type and id) to find a pair of operations from
intended and actual difference respectively. Column i and a means we find
a pair (1,1) or we cannot found a corresponding operation from actual differ-

ence (1,0). For a found paire, if the Condition is true, then we regard report
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an exception. In our example, we have a pair (set (#MySQL,maxPool,1000),
set (#MySL,maxPool,100)) satisfying #4 situation, and this will be reported to
the managed agent. Note that we do not consider (0,1) situations as exceptions,
for example the actual difference contains a new(Component ,#HSQL) while the
intended one does not a corresponding operation. Although this situation is not
the agent’s intention, it does not conflict with the agent’s intention.

5.3 About the properties

In this section, we discuss how this algorithm satisfy the four properties we
listed in Section 2

Property 1. Synchronization leading consistency. According to the “Cor-
rectness” property discussed in literature [22], after the backward transforma-
tion, Final Arch and Final Sys satisfy the relation specified in QVT. There-
fore, synchronization always result consistent architectural model and system
state.

Property 2. Non-interference reading. If the Original Arch and the
Modified Arch equal to each other, we will get equal Original Sys and Modified
Sys, so the difference between them is empty, and thus Desired sys equals to
Current Sys. Finally, the empty difference between Desired sys and Current
Sys will not cause any modification to the system adapter.

Property 3. Effective writing. For normal conditions, this algorithm can
satisfy this property. The modifications on architecture side will be translated
to a proper modification stored in the difference between Desired sys and
Current Sys, and this modification will cause reconfiguration in the system
through the system adapter, and the correct reconfiguration result will be re-
flected. But as we have discussed before, there exists some kinds of exception
conditions, e.g. the modification on systems does not lead expected result, or
the modified part in architectural model cannot be transformed into the system
model. For such situations, we will inform the management agents.

Property 4. No insignificant change. If the modified architectural model
and the current system state satisfy the relation, then Desired Sys will equal
to Current Sys, and there will be no reconfiguration operations on the system
adapter. So the system will not be changed. Furthermore, according to the
“Hippocraticness” property [22], when executing the backward transformation,
the Modified Arch will not be changed.

5.4 Implementation and discussion

We use a QVT implementation named “mediniQVT” to execute the forward and
backward transformation, and reuse our previous model difference and merge
implementation developed in “Beanbag” project [23]. As we have tested, these
two implementation satisfy the properties discussed in literatures [22] and [I],
in most situations. The only exception we found so far is that medini QVT does
not reflect the element removal when executing backward transformation. To
resolve this problem, we add an additional step into the synchronization process
to check what element has been removed in the system, and amend the final
architectural model. As a implementation specific step, we do not discuss it in
detail.
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Figure 5: Process for constructing an infrastructure under our framework
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Note that our algorithm depends on one assumption, i.e. during the syn-
chronization process, the system state does not change. This assumption is
reasonable if the synchronization can be executed quickly enough, and in our
case study, this situation is satisfied. If in the actual usage, the system state
change too frequently, management agents have to lock the system state before
execute the synchronization.

6 Case Study

In this section, we report our case study for constructing an infrastructure to
support runtime management of JOnAS systems based on C2-styled architecture
model. We choose JOnAS as a target platform because JOnAS is a widely used
open source J2EE application server, achieving the scale of systems in actual
use. Moreover, we can use a well know application, JPS, to evaluate the effect
of the generated infrastructure, and use the build-in JOnAS admin tool as a
reference. We choose C2 styled architectural model in this case study because
C2 is a well-researched architecture style and its advantages on managing GUI
systems are widely accepted.

We have briefly revealed the effect this constructed infrastructure in Sec-
tion [2:1] and in this section, we will focus on how we construct this infrastruc-
ture based on our framework, demonstrating that our framework can improve
this constructing process to be productive.

6.1 Constructing the runtime architecture infrastructure

Our framework is implemented as several Eclipse plug-ins, depending on a num-
ber of reusable plug-ins or libraries like EMF, medini QVT, Beanbag, etc. The
whole constructing process is performed under Eclipse environment, as shown
in Figure

First, we use a graphical Ecore editor to construct an Ecore meta-model.
The architecture meta-model is shown in the left part of Figure [f] According
to C2 style, this meta-model currently includes three classes, i.e. Component,
Connector and Architecture. Components have some attributes, may link to
connectors through “above” or “below” references, and may contain some inner
architecture. From this meta-model, we generate three plug-in projects under
the help of EMF.
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Figure 6: Meta-models for architecture and system

Table 7: Manual, generated and framework artifacts

item artifact quantified workload
= define C2 Ecore model 29 model elements
2 | define JOnAS Ecore model 61 model elements
% | add annotation Java code 474 LOC
= define relation QVT text 207 LOC
= for arc Java code 8761 LOC
(05 for sys Java code | 18263 LOC
é common meta-model Ecore model 17 model elements
= | Synch. and utility Java code 2130 LOC*
*exclude reused libraries and plug-ins

Second, we construct another Ecore meta-model to specify the kind of sys-
tem states as show in the right part of Figure [f] This meta-model contains
classes like EntityBean, WebModule, DataSource, etc. according to the types of
MBeans provided by JOnAS JMX with same names. We add some attributes
into these classes according to the attributes of corresponding MBean types.
The inheritance structure between these classes agrees with the class hierarchy
defined between the MBean classes. MBeanServer is a special class defining
the JOnAS server itself. We also add annotations to these meta-model ele-
ments with the JMX specific code for accessing JOnAS server. An example of
these annotations can be found in Table [3] We also use EMF to generate three
projects.

Third and last, we define a QVT transformation to specify the consistency
relation we expect between architectural models and system states. In Table[5]
we list 2 of the 6 relations we defined.

Table lists the quantified manual workload for implementing this case,
comparing with the size of generated code and framework. From the simple
comparison we can at least conclude that that our framework does save some
effort for developers. We have not found a manual-developed runtime architec-
ture infrastructure with same capabilities as a control sample, but we believe
that seven hundred lines of code is not a heavy load for a developer familiar with
JOnAS JMX, and neither is the one hundred of model elements for a developer
familiar with EMF and QVT.

6.2 Using the constructed infrastructure

To use the constructed infrastructure, we can export the generated projects
into plug-in jar files, and copy them into the “plugins” directory of an Eclipse
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Table 8: Synchronization time spent

No. modifications on arch. model sync. time spend
1 - 5137 ms
2 - 3012 ms
3 change 1 attribute value 2917 ms
4 change 10 attribute value 3105 ms
5 add 1 WebModule 3262 ms
5 remove 1 WebModule and add 2 EJB 3327 ms
6 relink between WebModule and EJB 3329 ms

platform. After launching this Eclipse, we can create a empty project, and copy
the two meta-models and the QVT file into this project. Now we can import
an architecture model or create an empty one, modify it with text editor or a
tree-based model editor provided by eclipse, and synchronize it with a running
JOnAS system by clicking a tool-bar button.

In this case study, to intuitively reveal the effect of this infrastructure, we
also use Eclipse GMF to generate a graphical editor for the architectural model,
as shown in Figure To generate this graphical editor, we created 3 GMF
required models with 34 model elements in total, without writing a single line
of code. Notice that is work is actually outside the scope of our framework,
since it is only in charge of maintaining the causal connection.

We have briefly shown the effect of using this infrastructure in Section
through some basic scenarios for runtime management of the JPS application.

We did an experiment on the infrastructure constructed in this case study,
on a laptop computer with an Intel Pentium M 1.6GHz process, and 1.5G mem-
ory. The Eclipse 3.4 platform, which is the host of architecture editor and our
infrastructure, and a JOnAS 4.9.7 application server are all running on this
same computer. The architectural model contains 69 components and connec-
tors, while the JOnAS server contains over 300 manageable elements (MBeans),
and 47 elements among them, along with over 100 attributes will be reflected
to the architecture model. The experiment result is listed in Table 8]

The number in the first column represents the order for executing “synchro-
nization”. The first synchronization took quite a long time, and we doubt it
is because the JVM has to load many classes from the relevant plug-ins and
libraries. The 6th synchronization took the second long time because in our
current wrapping, to change a EJB reference, we have to reload the EJB or the
Web Module.

6.3 Discussion on some other concerns

Performance As an initial attempt, we did not pay too much attention on
the performance of constructed infrastructures, although performance is also
an important concerns. The experiment above shows that although this infras-
tructure’s performance is not good, but it is still acceptable. Several seconds of
time spent are reasonable for manual management. We have tried to use the
build-in JOnAS Admin web page to deploy a WebModule, and after clicking the
“confirm” button, we also have to wait for more than a second until the whole
page is refreshed.

Actually, there are many potential ways to improve the performance, like
caching the retrieved system state, employing incremental transformation [12],
etc. and these improvement may be important for the infrastructures to support
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automated management agents, like self-adaptation engine. We will emphasize
on the performance in our further work.

Maintainability and incremental development We are not very familiar
with JOnAS JMX interface, and thus we made some mistakes when filling the
hook method. So, the first version of the constructed infrastructure also have
some defects, like receiving exception when reading some attribute. Since the
specific code are directly mapped to elements, attributes or references, we can
easily locate the mistakes from a few lines of code in annotations. We think this
is a reflection of the maintainability of infrastructures constructed under our
framework. We also tried to reflect extra kinds of manageable elements into ar-
chitectural models, and the experiment confirm that we just need to supplement
the meta-models, QVT transformation, without breaking the existing effort. So
we can also say that our framework is good for incremental development.

7 Related Work

There are many approaches toward runtime architectures, focusing on different
aspects. Some of them focus on the low-level mechanisms for retrieving and
updating runtime states [5], and for ensuring the consistency of the running
system after reconfiguration [I7), [24]. Some other researchers focus on the high-
level representation and specification of the running system for intelligibility and
usability [I7], for automatically executing or evaluating the reconfiguration [18§],
or even for self adaptation [I1]. There are also approaches toward constraining
the runtime change from architecture level, and relevant approaches can be
found in the surveys [0].

Distinguished from these typical approaches, we focus on the issue of con-
structing infrastructures to automatically maintain the causal connections, and
allow developers to choose or construct their preferred architecture style and
runtime system. This issue is not emphasized in most of the existing approaches,
but it is important for the practical use of runtime architectures. By assisting
developers to easily combine runtime systems with architecture models, we actu-
ally provide an attempt toward leveraging the sorts of research results mentioned
above. We wish our common solution to this necessary issue can also help re-
searchers on runtime architectures to continue concentrating on the proper forms
or usages of architecture models, or the low-level mechanisms for manipulating
runtime systems, without worrying about how to connect them together.

Among the existing approaches on runtime architectures, Rainbow [I1] shares
the most commonality with ours. The difference is that Rainbow provides a
common structure and guidance for constructing different runtime architecture
infrastructures, and help reusing knowledge between the constructions, but we
provide a generating approach for constructing such infrastructures.

Our solution for maintaining the causal connection deeply roots in the re-
search on bidirectional transformation and model synchronization. Typical ap-
proaches include J. N. Foster et al.’s bidirectional tree transformation [9], M.
Antkiewicz and K. Czarnecki’s model-code synchronization [2], and H. Giese
and R. Wagnerand’s incremental model synchronization [I2]. Our approach
attempt to apply bidirectional transformation technologies to a new area.
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8 Conclusion

In this paper, we report our initial attempt towards a model-driven framework
for constructing runtime architecture infrastructures. Under this framework,
developers only need to write two MOF meta-models and a QVT transformation
between them. The tools we implement will automatically generate code from
the two meta-models for accessing architectural models and system states, and
a common synchronization engine will maintain the causal connection according
to the QVT transformation.

We do not wish to provide complete support for runtime architectures, but
only put emphasis on maintaining causal connections. Developers still have
to design the proper architecture style for their usage, and instrument their
target systems with management capability at runtim. As there are already
many research approaches on architecture styles and management capabilities,
subsequent researchers can use our approach combining with these existing ones.

As an initial attempt towards flexible approach on runtime architecture,
we current ignored some technical issues. One of these issues is about fault-
tolerance. The mistake in the specification of causal connection or the inaccu-
rate wrapping of management capability will all cause unexpected behavior of
the infrastructure. We had a discussion about these exceptions in Section
but our current solution still remains at the step of “informing something is
wrong” In the future, we’ll try to find effective approaches to tolerating the
faults in specifications, providing constructive information from the analysis of
exceptions, or assisting developers in deriving correct specifications. Currently,
we also paid little attention on the performance, which is a key issue for the
scalability of the infrastructure.

A model-based extensible infrastructure also has some additional features.
First, using MOF to define architecture styles will help reuse management poli-
cies between different approaches. Second, by explicitly specifying the causal
connections under QVT, it is possible to inspect, analyze, or even verify the
runtime architecture infrastructures before they are actually used. We plan to
give further research on these concerns.
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Appendix A.

Sample meta-model for defining data sources in JOnAS

Package (name="JOnASJIMX"){
Annotation(source="http://www.sei.pku.edu.cn/rsa"){
"mainEntry"->{

mgmtHome = (ManagementHome)

PortableRemoteObject .narrow(
initialContext.lookup("ejb/mgmt/MEJB"),
ManagementHome.class);

return mgmtHome.create ();
}
Class (name="JDBCDataSource"){
Annotation(source="http://www.sei.pku.edu.cn/rsa"){
"rawtype"->{javax.management.ObjectName}
"create"->{

$mainEntry.invoke (dbServerce,
"loadDataSource",
new String[]{getName(),pro,new Boolean(true)l},
new String[]l{"java.lang.String",
"java.util.Properties",
"java.lang.Boolean"}
)
}
"destroy"->{...}
}
Attribute(name="jdbcMaxConnPool", type=Interger, upperbound=1){
Annotation (source="http://www.sei.pku.edu.cn/rsa"){
"get”->{
if ($§core==null) return
$featureName=$mainEntry
.getAttribute ($core, $feature);

LTI
H

}
"set"->{...}
}
}
}
Class(name="MBeanServer") {
Association(name="jdbcDataSource", containment=true){
Annotation(source="http://www.sei.pku.edu.cn/rsa"){

list->{
ObjectName query=new ObjectName ("jonas:j2eeType=$featurName");
Set sets=$mainEntry.queryNames (query, null);
$return.addAll (sets);

}

add->{...}

Code generated from the above meta-model

public class JOnASPackageImpl extends EPackageImpl...{
public Management getMainEntry (){

}
}

public class MBeanServerImpl extends WrappingEObjectImpl...{
public List listSubCores(int featureID){
switch(featureID){
case JOnASPackage.MBEAN_SERVER__JDBC_DATA_SOURCE:

pack.getMainEntry.invoke (dbServerce,

"loadDataSource",
new String[]l{getName (),pro,new Boolean (true)},
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new String[]l{"java.lang.String",
"java.util.Properties",
"java.lang.Boolean"}
)
break;

}
public EList<JDBCDataSource> getJdbcDataSource() {
if (jdbcDataSource == null) {
jdbcDataSource = new
EObjectContainmentEListForWrapping <JDBCDataSource >(
JDBCDataSource.class,
this ,
JOnASPackage . MBEAN_SERVER__JDBC_DATA_SOURCE,
JOnASPackage .eINSTANCE. getJDBCDataSource ()
)
}
((EObjectContainmentEListForWrapping<JDBCDataSource >)
jdbcDataSource).refreshWrap ();
return jdbcDataSource;
}
public Object eGet(int featureID,boolean resolve,boolean coreType){
switch (featureID) {
case JOnASPackage.MBEAN_SERVER__JDBC_DATA_SOURCE:
return getJdbcDataSource ();

}

public class JDBCDataSourceImpl ...{

The complete QVT specifying relation between C2 and JOnAS

transformation C2J0nAS(arc:C2, sys:J0OnAS){
key C2::Connector{namel;
key C2::Component{namel;
key C2::Architecture{deployedHost};
key JOnAS::MBeanServer{serverHost};
key JOnAS::EJB{name};
key JOnAS::WebModule{namel};

top relation Root2Root {
host : String;
enforce domain arc s: C2::Architecture {
deployedHost=host

enforce domain sys t: JOnAS::MBeanServer {
serverHost=host
}s;
when {
s.parent.oclIsUndefined ();
}
}

top relation Component2EntityBean {
name : String;
address : String;
filePath : String;
jdbc:String;
checkonly domain arc arch:C2::Architecture{};
enforce domain arc conn:C2::Connector{
name=address
}s;
enforce domain arc comp : C2::Component{
name=name,
address=address,
filePath=filePath,
type=’Entity’,
below=conn,
above = conn2 : C2::Connector{
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name=jdbc
}
}s;

checkonly domain sys mbeanserver :JOnAS::MBeanServer{
};
enforce domain sys entitybean : JOnAS::EntityBean{
name=name ,
jndiName=address,
fileName=filePath,
parent=mbeanserver,
dataSourceJNDI=jdbc
}s;
when {
Root2Root (arch ,mbeanserver);
}
}

top relation Component2StatefulSessionBean {
name : String;
address : String;
filePath : String;
instancelife : Integer;
checkonly domain arc arch:C2::Architectured{};
enforce domain arc conn:C2::Connector{
name=address
}s;
enforce domain arc comp : C2::Component{
name=name,
address=address,
filePath=filePath,
type=’DurativeOperation’,
below=conn,
instancelLife=instancelLife
};
checkonly domain sys server :J0nAS::MBeanServer{
}s
enforce domain sys sb : JOnAS::StatefulSessionBean{
name=name,
jndiName=address,
fileName=filePath,
parent=server,
sessionTimeOut=instancelife
}s
when {
Root2Root (arch,server);
}
}

top relation Component2StatelessSessionBean {
name : String;

address : String;

filePath : String;

instancelife : Integer;

jdbc : String;

checkonly domain arc arch:C2::Architectured{};
enforce domain arc conn:C2::Connector{

name=address

}s
enforce domain arc comp : C2::Component{
name=name ,

address=address,

filePath=filePath,
type=’0OneStopOperation’,
instancelLife=instancelife,

below=conn,

above = conn2 : C2::Connector{

name=jdbc
}

};

checkonly domain sys server :J0nAS::MBeanServer{

};

enforce domain sys sb : JOnAS::StatelessSessionBean{
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name=name ,

jndiName=address,
fileName=filePath,
parent=server,
sessionTimeOut=instancelife,
dataSourceJNDI=jdbc

};

when {

Root2Root (arch,server);
}
}

top relation Component2WebModule {
name : String;
address : String;
filePath : String;
refjndi : String;

checkonly domain arc arch : C2::Architecture{};
enforce domain arc conn : C2::Connector{
name=’HTTP’,
parent=arch
}s
enforce domain arc comp : C2::Component{

name=name ,
address=address,
filePath=filePath,
below=conn,

above=refconn : C2::Connector{
name=ref jndi
}
}s;
checkonly domain sys server : JOnAS::MBeanServer{};
enforce domain sys webModule : JOnAS::WebModule{

name=name,
path=address,
warURL=filePath,
parent=server,
ejbref=refjndi
1

when {

Root2Root (arch,server);

}
}

top relation Component2DataSource {

name: String;
address:String;

checkonly domain arc arch : C2::Architectured{};
enforce domain arc conn : C2::Connector{
name=address,
parent=arch,
type=’jdbc’

H
enforce domain arc comp : C2::Component{
below=conn,

name=name,

address=address,
parent=arch

};
checkonly domain sys server : JOnAS::MBeanServer{};
enforce domain sys data : JOnAS::JDBCDataSource{

jndiName=address,
name=name,
parent=server
};
when{

Root2Root (arch,server);
}
}
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