GRACE TECHNICAL REPORTS

Proceedings of the First International Workshop on
Formal Methods Education and Training

Jim Davies, Jeremy Gibbons, Mike Hinchey and Kenji
Taguchi (editors)

GRACE-TR 2008-03 2008 October 28

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

Foreword

Formal methods have an important role to play in the development of com-
plex computing systems — a role acknowledged in industrial standards such as
IEC 61508 and ISO/IEC 15408, and in the increasing use of precise modeling
notations, semantic markup languages, and model-driven techniques.

There is a growing need for software engineers who can work effectively
with simple, mathematical abstractions, and with practical notions of inference
and proof. However, there is little clear guidance — for educators, for managers,
or for the engineers themselves — as to what might comprise a basic educa-
tion in formal methods. The present IEEE/ACM Software Engineering Body of
Knowledge (SWEBOK), in particular, lacks the kind of specific information that
teachers and practitioners need to establish an adequate, balanced programme
of learning in formal methods.

The workshop on Formal Methods Education and Training provided a fo-
rum for the discussion of the key issues in formal methods education, with a
particular focus upon the development and advocacy of a Formal Methods Body
of Knowledge (FMBOK), analogous to the Institute of Project Management’s
PMBOK. This BOK would facilitate the design of appropriate programmes of
education and training — undergraduate, graduate, and professional — for mod-
ern software engineers, as well as promoting the sharing of teaching approaches,
educational tools, and teaching materials.

Contributions were invited on this theme, and on a number of related aspects
of education and training in formal methods: teaching experience, both academ-
ically and industrially; curriculum issues, and the relationship with computer
science and software engineering; teaching methodologies; and the use of tools.

The extended abstracts that were submitted were reviewed for relevance. A
mixture of these extended abstracts and longer draft papers was presented at the
workshop on 28th October 2008, co-located with the International Conference
on Formal Engineering Methods at the Kitakyushu International Conference
Center, Kitakyushu, Japan. This National Institute of Informatics technical re-
port represents the workshop proceedings. After the workshop, full papers will
be solicited for submission and rigorously peer-reviewed for a special journal
issue to be published by ACM.

The Programme Chairs would like to thank the authors for their contribu-
tions to the workshop, the Programme Committee for their efforts in reviewing,
and the organizers of ICFEM for handling all the logistical arrangements.

Jim Davies

Jeremy Gibbons
Mike Hinchey
Kenji Taguchi

October 2008

Organizers

Programme Chairs

Jim Davies
University of Oxford, UK
Jeremy Gibbons
University of Oxford, UK
Mike Hinchey
Lero, University of Limerick, Ireland
Kenji Taguchi
National Institute of Informatics, Japan

Programme Committee Members

Toshiaki Aoki
Japan Advanced Institute of Science and Technology, Japan
Cyrille Artho
Advanced Industrial Science and Technology (AIST)/RCIS, Japan
Raymond Boute
Ghent University, Belgium
David Duce
Oxford Brookes University, UK
Lars-Henrik Eriksson
Uppsala University, Sweden
Chris George
UNU/IST, China
J. Paul Gibson
Telecom SudParis, France
Shaoying Liu
Hosei University, Japan
Hideaki Nishihara
Advanced Industrial Science and Technology (AIST)/CVS, Japan
Wolfgang Reif
University of Augsburg, Germany
Steve Schneider
University of Surrey, UK
Jing Sun
University of Auckland, New Zealand

T H. Tse

University of Hong Kong, China
Burkhart Wolff

Université de Paris 11, France
Wang Yi

Uppsala University, Sweden

External Reviewers

Holger Grandy
University of Augsburg, Germany

Table of Contents

FORMAL METHODS versus ENGINEERING
Tom Maibaum

Teaching Formal Methods in the Context of Software Engineering.

Shaoying Liu, Kazuhiro Takahashi, Toshinori Hayashi, Toshihiro Nakayama

Formal Methods: Teaching and Practicing Computer Science at the Uni-
versity Level
Raymond Boute

An Introductory Course on Programming based on Formal Specification

and Program Calculation. i,
Nazareno Aguirre, Javier Blanco, Maria Marta Novaira, Sonia Per-
migiani, Gastén Scilingo

Evolution of a Course on Model Checking for Practical Applications
Yasuyuki Tahara, Nobukazu Yoshioka, Kenji Taguchi, Toshiaki Aoki,
Shinichi Honiden

Model Checking Education for Software Engineers in Japan
Hideaki Nishihara, Koichi Shinozaki, Koji Hayamizu, Toshiaki Aoki,
Kenji Taguchi, Fumihiro Kumeno

A simple refinement-based method for constructing algorithms
Dominique Méry

Formal Methods for Electronic Government
Jim Davies and Jeremy Gibbons

33

FORMAL METHODS versus ENGINEERING

Tom Maibaum

Department of Computing and Software
McMaster University
1280 Main Street West, Hamilton ON, Canada
tom @maibaum.org

Abstract. Classical engineering is based on solid scientific and mathematical
foundations, but neither the science, nor the mathematics, is simply borrowed
from the scientists or the mathematicians. Engineers develop their own formula-
tions of the relevant science and mathematics, adapted to support the engineering
knowledge used in design of artifacts. There are many formulations of the same
science and mathematics, as classical engineering is highly domain specific. It
may well be argued that it is this high degree of domain specificity that makes en-
gineering effective. This scientific and mathematical knowledge is organised by
engineers into engineering methods, sometimes encoded in “cookbooks”. These
methods make engineering a normative discipline: follow the rules and you will
have some guarantees based on past success and failure. Formal Methods, so
called, are not really methods at all, as engineers understand the term. Firstly,
there is generally very little of “engineering maths” involved. Most computer
science or software engineering courses with mathematical foci are theoretical
courses in the sense that they focus on mathematics and not engineering. "Math-
ematicians prove, engineers calculate.” Secondly, there is very little method in
Formal Methods. There is no serious attempt at defining the methods that are the
organisational principle of all engineering. Thirdly, there is very little evidence
of domain specificity in software engineering. Until these shortcomings are ad-
dressed, there is very little point in talking about Formal Methods education.
Unfortunately, there is not all that much engineering material to communicate to
students.

Teaching Formal Methods in the Context of Software
Engineering

Shaoying Liu!, Kazuhiro Takahashi?, Toshinori Hayashi?, Toshihiro
Nakayama®-?

! Hosei University
2 The Nippon Signal Co., Ltd., Japan

Abstract. Formal methods were developed to provide systematic and rigorous
techniques for software development, and they must be taught in the context of
software engineering. In this paper, we discuss the importance of such a teaching
paradigm and describe several specific techniques for teaching formal methods.
These techniques have been tested over the last fifteen years in our formal meth-
ods education programs for undergraduate and graduate students at universities
as well as practitioners at companies. Our experience shows that students can
gain confidence in formal methods only when they learn their clear benefits in
the context of software engineering.

1 Introduction

Despite more than forty years of effort to develop various theories, languages,
methods, and tool supports, practical software engineering is still like a “desert”,
lacking directions and effective ways of finding the way out of the software
crisis. Formal methods were developed to address this problem by providing
mathematically-based techniques, including formal specification, refinement,
and verification. In theory, we now know how to use formal notations to write
specifications, use refinement calculus to gradually transform a specification
into a correct implementation, and use Hoare or Dijkstra’s logics to prove pro-
grams correct with the same degree of the rigor that we apply to mathematical
theorems. However, none of these techniques is easy to use by ordinary prac-
titioners to deal with real software projects. The problem is the complexity of
formal methods and the difficulty in manipulating mathematical formulas.
Having said the above challenges in directly applying formal methods, we
do not mean that formal methods are useless. In fact, they are more necessary
than ever when more and more software systems are embedded into systems de-
ployed in many places of our society, but their role is different from other soft-
ware techniques. The role of formal methods is education, and their power can
be transferred to software engineering projects through the developers who have
learned and mastered them. The way to use formal methods in practice is formal

engineering methods [1], not formal methods. For example, the SOFL formal
engineering method provides a three-step approach to constructing formal spec-
ifications to help requirements analysis and system design, and specification-
based review and testing for detecting bugs in both specifications and programs
[2]. Software projects are human activities; they must be completed by required
time and within specified budget, and they often face the instability of develop-
ment teams. In such a situation, completely applying formal methods is rarely
practical, but the improvement of software quality can be realized by equipping
the developers with a disciplined manner and rigorous way of thinking through
formal methods education.

In order to encourage more software developers to learn formal methods,
we must first build up their motivation by demonstrating the clear benefits of
formal methods in improving current software engineering practice. In fact, this
is rather challenging and even more difficult when more and more young people
become less interested in mathematics, especially in Japan. Nevertheless, this
seems the only way we can possibly move forward in formal methods educa-
tion. In this paper, we describe several techniques for teaching students formal
methods. The fundamental idea is to put the formal methods education in the
context of software engineering as far as we are concerned. Of course, as Parnas
pointed out [3], formal methods should not be restricted to software engineering,
but linked to and integrated in general engineering mathematics.

2 Teaching Techniques

In this section, we introduce some specific techniques for teaching formal meth-
ods. These techniques have been tested by the first author over the last fifteen
years of teaching VDM [4], SOFL [1], and Morgan’s refinement calculus [5] at
universities and companies.

2.1 Starting with Examples

Learning formal methods is similar to learning other theories or techniques, stu-
dents like to start with simple examples. These examples must come from the
daily life and must be able to link the problem in practice to a potential for-
mal methods solution. This way of teaching will motivate students and build up
their interests in formal methods. For example, when explaining the ambiguity
problem in informal specifications and the fact that it can be resolved by formal-
ization, we often use an operation for searching for an integer in an integer list
as an example. After explaining the impreciseness of the informal requirement
statements, we present a formal specification which is both precise and concise.
This example helps students understand the potential power of formalization.

2.2 Gradual Introduction to Important Concepts

The fundamental concepts are the key to understand the spirit of formal meth-
ods. It is quite effective to help students understand the essential principle of
formal methods if sufficient efforts are made to teach the concepts. For exam-
ple, when introducing formal specifications, we focus on the illustration of pre-
and post-conditions. An effective way to teach the pre-post concept is by com-
paring them with the corresponding algorithm and let students understand the
real difference and relation between a specification and an algorithm. The com-
parison can be made on the basis of simple scientific computation. For example,
we often use the operation for yielding the square root of an integer as an exam-
ple. The pre-condition of the operation is z > 0 and the post-condition of the
operation can be y? = x, where is input and ¥ is output. But the corresponding
algorithm would be something like y = Math.sqrt(z). This example gives rise
to a problem that output y produced by the algorithm may not satisfies the post-
condition of the operation because the algorithm obtains only an approximation
of the real square root of some positive integers. In this circumstance, it is use-
ful to tell the students the importance of noticing this inconsistency between the
specification and the implementation. This is also a good example to show the
need for using or building proper theories in the application domain.

Furthermore, an operation specified using pre- and post-conditions defines
a way of transforming an initial state to a final state. In order to let students
understand this essential idea, making great efforts on the explanation of the
fundamental concepts, such as state, type, and variable declaration, is helpful.
The explanation can be given from different angles, for example, from the views
of both mathematics and software. After students understand the basic concepts,
we can then show them, with simple examples, how an algorithm transforms an
initial state to a final state step by step through its statements, and how such a
transformation can be abstracted into a pre- and post-conditions. This way of
teaching helps students build an association between programs and specifica-
tions, which paves the way for teaching specification-based verification tech-
niques, such as formal verification, review, testing, or their combinations late
on.

2.3 Massive Exercises on Basics

Efficiently writing accurate formal specifications requires the developer to have
a good understanding of features of various data types and high skills in apply-
ing the well-defined operators on the data types, such as boolean, set, sequence,
and map types. Therefore, massive exercises on the basic operators must be done
by students. The most effective way to incorporate exercises into the teaching

4

program is to let students do exercises immediately after a data type is intro-
duced. For example, after the introduction of the set types, students must learn
the meaning of the operators, such as union, intersection, cardinality, member-
ship, subset, proper subset, and so on by applying them to specific set values.
If time allows, a public discussion on students’ results is helpful. According to
our experience, such a discussion can help capable students find out the reason
for their mistakes and ordinary students find out the correct way of thinking.
This training is similar to the basic training in sports. To be an excellent foot-
ball player, for example, one must run fast and have a strong body. To build
up these qualities, he or she must spend much time and make great efforts in
the basic training. Anybody who ignores the basic training will fail to perform
satisfactorily in matches.

The same principle is applicable to the teaching and study of formal refine-
ment and verification techniques. To master the refinement calculus, students
must be required to do many small exercises on applying every refinement law
in the calculus. To be skillful for formal verification, students must be required
to do the same in understanding the meaning of each axiom and inference rule
in the corresponding logics and their applications to small programs. The im-
portant point here is to let them understand the underlying principle and skills
of these techniques so that they will be possibly apply them, even informally, in
practice.

2.4 Teaching Specification Patterns for Abstraction Skills

Effectively using a formal method requires the developer to have high skills
and ability in mathematical abstraction, especially in the context of software
development. How to help students strengthen their abstraction skills and abil-
ity therefore becomes an important issue in formal methods education. While
this has been recognized widely as the most difficult thing in teaching, we have
gained sufficient knowledge and understanding through our long time teaching
experience. Considering the fact that the basic operations required in a soft-
ware system usually include searching, sorting, merging of two collections of
objects, adding some elements to a collection of objects, eliminating some ele-
ments from an existing collection of objects, updating some elements from an
existing collection of objects, mathematical computation, and their combina-
tions, we put the emphasis on the teaching of how to express all of the above
functions using appropriate data types and their related operators. Each of such
expressions will form a specification pattern that will remain in students mind
and available for application in real software development. For example, what
are possible specification patterns for a function which tests that a collection of

integers is empty? To answer this question, we first define a collection of inte-
gers as a set and a sequence in SOFL (or VDM), respectively, such as int_set:
set of int and int_seq: seq of int. We then discuss the most commonly used
specification patterns for each of the data abstractions. For example, for the set
of integers, we can use the following patterns to express the fact that the set is
empty: int_set = {} and card(int_set) = 0. Of course, we could have more
patterns to express the same meaning, but those would be much more complex
and no good for readability. For instance, a possible pattern can be: forall[z:
int] | x notin int_set. It is up to the teacher to decide whether to discuss such
a complicated pattern within the required teaching time. In the case of a se-
quence of integers, we can use the following patterns to express the fact that the
sequence is empty: int_set = [| and len(int_set) = 0.

After each basic specification pattern is mastered by students, we can then
go further to explain how such basic patterns can be applied in a more compli-
cated situation. Let us take an operation to search for an integer in a collection
of integers as an example. To explain how such an operation is specified, we
take the same approach as the one to teaching the basic patterns by first defining
the collection of integers as a set of integers and a sequence of integers, respec-
tively, and then explaining how the operation can be specified by combining the
basic patterns for each of the data abstractions.

2.5 Practice through Small Projects

While the basic training is important in teaching and studying formal methods,
we should never forget to give students opportunities for linking formal meth-
ods to software engineering. In other words, they need to be taught how formal
methods will possibly help them in software development practice; otherwise,
students (perhaps with some exceptions) will likely to lose the motivation of
learning or applying formal methods in practice. The most effective way for this
is to let students conduct small projects. For example, after the introduction of
VDM-SL and massive exercises on the basics, we can ask students to do one or
two small projects. One project can be the construction of a formal specification
for a small library system, and another possibility is to let students complete a
formal specification for an ATM software. Through such small projects, students
can really feel how formal specifications can be built and organized in real soft-
ware development projects. Of course, such a practice may also give students
an opportunity to find the weakness of the specification language they are using.
For example, lacking an intuitive mechanism for structuring a whole system in
a structured manner in VDM could be found by students. The answer to this
problem is to introduce the SOFL specification language to them, since SOFL
has solved this problem by using intuitive and formalized data flow diagrams

and process decompositions. In fact, many existing formal notations focus only
on one aspect of the problem in software engineering and ignore the others, but
a real software project needs to take care of all possible aspects. If a method or
technique merely helps solve one problem but create more other problems in the
context of software engineering, it is unlikely to be popular among practitioners
and to be applied in real projects. In this regard, the SOFL method has shown
to be the exception, because it provides a systematic and rigorous process to
integrating formal techniques into existing software engineering practices and
creates no more problems.

2.6 Teaching Formal Methods Using Formal Engineering Methods

The ultimate goal of teaching formal methods (FM) is to create possibility of
students applying them in practice. Formal engineering methods (FEM) show
how FM can be applied in real projects. One of the very important aspects of
FEM is the emphasis of combining diagrams, formal notation, and natural lan-
guage in a coherent and systematic manner for writing specifications [1]. The
purpose of this is to help the developer easily understand the specifications they
are writing and the specifications written by others. Visualization is intuitive and
suitable for describing the overall idea and system architecture; formal notation
has a strength to achieve preciseness of statements in specifications; and natural
language can be used to provide a friendly interpretation of formal expressions.
In general, FEM differs from FM in that FM tries to answer the question “what
should we do and why?” in software development, but FEM tries to answer the
question “what can we do and how?”. To this end, FEM focuses on techniques
and methods for integrating formal methods into the entire process of software
development so that the strength of formal methods can be utilized in practice
and their weakness of being complex can be avoided. FEM offers how soft-
ware systems, including all level documents, are actually created and expressed
formally, not just a simple mixture of formal notations with pictures. Since a de-
tailed introduction to FEM is beyond the scope of this paper, we refer the reader
to the SOFL book [1] for a comprehensive description of FEM.

In fact, the same principle of FEM can also be effectively applied to the
teaching of formal methods courses, since teaching is actually a kind of soft-
ware project whose product is educated students. For example, when explaining
a mathematical expression, such as Z = X union Y, we can use a graphical
representation (e.g., Venn diagrams) to illustrate the union operation, and at the
same time use English, for instance, to explain the meaning of the operation.
When introducing an operation in VDM, we can draw a process as we do in the
SOFL language to show the input, output, and external variables, but the details
of the function of the operation are defined using pre- and post-conditions. With

informal explanations in English, the meaning of the whole operation specifica-
tion can be easily digested by students.

2.7 Tool Support in Education

Almost all of us may have experienced using tools in teaching programming
languages, such as Java and C, and found that it is effective to help students
write, execute, and test programs (they need many pre-defined packages). Many
of formal methods educators apply this idea to the teaching of formal meth-
ods courses as well. However, our experience in teaching both VDM and SOFL
courses, which focus on formal specification techniques, suggest that using tools
in teaching formal methods is not necessarily effective; perhaps less effective
than not using tools in some circumstances. There are two reasons. One is that
learning formal methods requires students to learn both syntax and semantics
of the related specification language. The most effective way for students to re-
member them is to write formal specifications by hand, as they learn English
as a foreign language. It is feasible, because exercises assigned to students in
classes are of small scale. It is also effective in strengthening students’ memory
of the syntax and in deepening their understanding of the abstraction techniques,
because students would have no chance to “copy and paste” without thinking by
themselves, as we often do on a computer. Another reason is that the purpose
of writing a specification is not for a computer to directly run it, but for peo-
ple (including himself or herself) to read and to understand. Therefore, letting
themselves write a good style of formal specifications by hand is much more
helpful for learning than by using a tool to automatically improve the style and
format of their specifications. In the case of programming, without a tool, such
as a compiler, we cannot run the program. But in the case of writing a specifi-
cation, there is no need to run it, so without a tool support will not create any
significant inconvenience. Instead, for some students who do not want to study
formal methods, tool support will create chances for them to “copy and paste”
without thinking.

Having said the above, it does not mean that tool support is not necessary
for using formal methods in practice. On the contrary, tool support is crucial for
improving productivity and reducing chances of creating mistakes in practical
developments. For this reason, we let students use a supporting tool, such as
IFAD VDMTools [6] or SOFL GUI editor, when they carry out a small project,
after a systematic learning of formal specification techniques in classes. This
way also has an effect that students feel extremely happy with the tool offering
high automation in both writing and analyzing specifications. They have this
kind of feeling because they have gone through a hard time in learning formal

methods by hand. This is similar to the situation where a person feels happy
when he or she has a chance to eat delicious food after a long time starving.

2.8 Dealing with Time Constraint

Mathematical concepts and expressions usually require students to take time to
digest, the teaching of them should take slow pace with many examples. How-
ever, a course is like a software project: it also has time constraint. As a teacher,
we often face a dilemma. On the one hand, we want to teach more contents
which are all important for studying formal methods, but on the other hand, we
do not have enough time. To tackle this problem, our experience suggests that
each course should not be too ambitious; instead, it should be focused. For ex-
ample, we can teach formal specification, refinement, and formal verification in
three different courses, and it would be effective to focus the teaching in each
of them on the most fundamental but important parts and give students suffi-
cient time for them to apply the learned techniques. For example, when teaching
SOFL, particularly techniques for writing formal specifications using pre- and
post-conditions, to students, we usually take the interleaving approach: teaching
concepts and asking students to practice using them. After finishing the whole
course, we ask students to carry out a small project in which all knowledge
learned is required to use. Such a way provides students with many opportuni-
ties to learn how theoretical results can be effectively applied in practice.

2.9 Continuing Education

Formal methods education is necessary, but it does not necessarily mean that
it is popular among students. According to our experience in teaching VDM to
the employees of the Nippon Signal Co., Ltd. and SOFL to university students,
people with certain working experience usually find formal methods, particu-
larly formal specification techniques, easy to learn and use, but this may not
be true for students without working experience. The important reasons include
that the students usually do not deeply understand the importance of the role
of formal methods in software quality assurance and the contents of formal
methods are quite complex and detailed. Since formal methods education is
necessary, a possible solution to this problem is to arrange formal methods as
compulsory rather than optional courses. Thus, every student will be forced to
learn formal methods. In addition to this assurance, by applying effective teach-
ing methods such as those mentioned above and appropriate requirements for
different level students, it would be highly possible to let more and more stu-
dents learn formal methods. However, even if this possibility becomes reality
at present or in future, it will not guarantee that formal methods will become

attractive to students. Our experience has suggested that to be attractive, formal
methods must achieve a good balance among the three qualities: simplicity, vi-
sualization, and preciseness, and must also demonstrate its benefits in ensuring
software quality and reducing the cost of software projects as well as providing
fun for students, such as computer graphics or animation, but unfortunately, few
of existing formal methods have satisfied these criteria and it is hard to imag-
ine that any teaching method would significantly improve this situation. Since
software development needs mathematical way of thinking, we believe that no
matter whether formal methods are attractive or not, education in formal meth-
ods must continue at university and hopefully in industry as well. Only formal
methods education can make the application of formal methods, either directly
or indirectly, in software engineering possible.

3 Conclusions

Education is the necessary and most effective way to transfer formal methods to
software industry. The most important influence factor for the success of formal
methods education is whether the education is put in the context of software
engineering. In this paper, we have described several techniques for teaching
formal methods in the context of software engineering to both experienced and
inexperienced students, each of which has been tested in practice. We believe
that no matter whether formal methods can be used as an effective software en-
gineering technique in practice, their education will definitely benefit software
engineering practice. The only way to effectively transfer formal methods to
industry is: education, education, and education.

References

1. S. Liu, Formal Engineering for Industrial Software Development Using the SOFL Method,
Springer-Verlag, ISBN 3-540-20602-7, 2004.

2. S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba, SOFL: A Formal Engineer-

ing Methodology for Industrial Applications, IEEE Transactions on Software Engineering,

24(1):337-344, January 1998. Special Issue on Formal Methods.

D. L. Parnas, Education for Computing Professionals, Computer, 23(1):17-22, 1990.

C. B. Jones, Systematic Software Development Using VDM, 2nd edition, Prentice Hall, 1990.

C. Morgan, Programming from Specifications, 2nd edition, Prentice-Hall, 1994.

The VDM-SL Tool Group, Users Manual for the IFAD VDM-SL tools, The Institute of Ap-

plied Computer Science, February 1994.

Sk w

10

Formal Methods: Teaching and Practicing
Computer Science at the University Level

Raymond Boute

INTEC — Ghent University, Belgium,
boute@intec.UGent.be http://www.funmath.be

Abstract. At too many universities, CS curricula are not taught at the university
level. This causes stagnation in professional practices. The missing element is the
pervasive presence of mathematical modeling throughout the curriculum. This is
the role of formal methods (FM) in its original sense. Mathematical fundamen-
tals and concepts are crucial, software tools are secondary and even misleading
without the former.

Social, professional, educational and local influencing factors are discussed.
Recommendations are given for for curriculum structure, for specific key cources
and for attitudes to instill in students and educators. As a conclusion, FM should
break outside the limitations caused by the conservatism of policy makers but
also the self-imposed ones.

1 Observations

Conventions Drawing boundaries between Computer Science and Engineering
is more in the interest of departmental power games than epistemologically use-
ful, so we take CS in a wide sense, including (even adopting) the engineering
view.

Parnas [21] observes that “Professional engineers can often be distinguished
from other designers by the engineers’ ability to use mathematical models to de-
scribe and analyze their products”. The central role of mathematics is a fortiori
evident to those viewing CS as a more theroretical activity than engineering.

Hence the use of mathematical modeling is a proper working criterion for
what constitutes “university level” in teaching as well as in professional practice.

For completeness, some earlier material [5] will be recalled in passing.

1.1 The level of Computer Science curricula

In classical pure science and engineering disciplines, the pervasive use of math-
ematics throughout the curriculum has become self-evident since centuries.

Also, quite a large number of universities do teach Computer Science at the
university level, and hence give no cause for concern.

11

Still, too many universities teach CS at the level of pre-Newtonian mechan-
ics. When colleagues who teach classical engineering courses (say, electronics)
look at the computing courses in such curricula, they often remark that these
courses are merely descriptive, lacking in intellectual content, and altogether
little more than inflated programming courses—an opinion reinforced by the
kind of assignments: writing programs, more programs and reports, and doing
uninstructive projects [20]. Unfortunately, this remark is all too often justified.

Indeed, many CS curricula seem to be designed as a refuge for mathpho-
bic students just to increase the student count. The study by Tucker et al. [28]
uses American data, yet reflects European trends equally well (see section 3.3).
Instead of devoting the scarce teaching resources to solid fundamentals [20],
they are wasted on trendy topics that students could easily pick up on their own.
Courses like “Introductory Programming” usually teach some language (which
is better learned in passing via the assignments) rather than program design.

Formal Methods, if taught at all, have a small place in the curriculum, look-
ing like an afterthought. Students see this as the best “proof” of their uselesness:
if FM were af any value, wouldn’t all professors use them? Very few students are
mature enough to see that curricula reflect the faculty [12] rather than relevance.

1.2 The level of professional practice

It is eery to see how little software practice has changed over the past 50 years.

Some younger software professionals suggest that things were better in the
“old times” [24]. For instance, Spolsky also notes that “programmers seem to
have stopped reading books” [25]. However, a 1975 paper [19] already com-
mented on the computer illiteracy of professional programmers!

Google yields ample comments on the phrase “Programmers don’t read”,
indicating that many programmers find the books worthless anyway. However,
the titles quoted in the rejection are on programming languages, not program
analysis or design. This just reflects the old misconception that the main capa-
bility of a programmer is the language.

Lethbridge surveyed “what knowledge is important to a software profes-
sional” [17]. The use of the preposition “to” rather than “’for”, also in the cited
paper’s abstract, is significant: it indicates that the survey is about subjective
views. Circumstantial evidence leaves little doubt that many topics score low
with the “average programmer” because they are not sufficiently known or mas-
tered to be applied, rather than because they are truly less relevant or useful.

Hence, whereas Lethbridge advocates that “efforts to develop licensing re-
quirements, curricula, or training programs for software professionals should
consider the experience of the practitioners who actually perform the work”, it

12

may be wise to use this information to detect the gaps, and educating profes-
sionals in what they need for advancing their professionalism rather than what
they want, which is just more of the same in what they already know.

An important question is: how could the extreme conservatism that has been
dominating software practices over the past 50 years survive, whereas practice
in other engineering disciplines has kept abreast with technology? The answer
is manifold, but the common element is complacency.

— Software thrives on the spectacular advances in hardware technology. In-
creased circuit speed and density often compensate for the stagnation in
software design practices.

— Every few years some “method” is promoted that relies on acronyms rather
than intellectual content, yet promises panacea with little effort. By con-
trast: formal methods promise considerably less and require more effort. In
other words, adapting Gresham’s law somewhat, “continuous injection of
bad commodities keeps the good ones out of circulation”.

— In the economic situation of the recent decades, computer and information
technology have seen continued growth with only rare periods of faltering.
Due to this fast pace, there always are plenty of urgent development tasks to
be done at all levels. Even people with no computing background who in-
vest a minor effort in self-study can contribute usefully, and many well-paid
tasks are easily learned “on the job”. With the urgent demand for quantity,
and industry still uncertain about the exact qualifications software designers
need, level and scientific basis are easily neglected.

The main problem is that many universities cater for the latter category, and
actually advertise this attitude as “being responsive to the demands of industry”.
Demands maybe, needs certainly not. Students do deserve better.

Students are also the key. Indeed, Max Planck is reputed to have said

Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise durchzusetzen, da
ihre Gegner iiberzeugt werden und sich als belehrt erkldren, sondern vielmehr dadurch,
daf} ihre Gegner allméhlich aussterben und daf3 die heranwachsende Generation von
vornherein mit der Wahrheit vertraut geworden ist.

Translated: “A new scientific truth usually does not break through in such a
manner that its opponents are convinced and declare themselves informed, but
rather because its opponents gradually die out, and the emerging generation has
become familiar with it beforehand.” The task of the universities is clear.

The Formal Methods community should also heed Planck’s advice. All too
often, the failure of FM is attributed to insufficient arguments for convincing
practitioners. This has lead to considerable effort in producing successes in in-
dustrial applications that are impressive by themselves, but whose effects es-

13

sentially remain limited to the industries who benefit and the participanting re-
searchers.

The effective lever for FM is not convincing the practitioners but educating
the emerging generations.

2 Realizing the full potential of Formal Methods

2.1 Formal Methods

As observed by Gopalakrishnan [10], the term “formal methods” seems to sug-
gest the sudden discovery by computer scientists of the use of mathematics—so
evident in other branches of engineering that a separate appellation is redundant.

Still, the specific term could be justified by the fact that CS/ECE requires
a more formal kind of mathematics than the classical mathematical/engineer-
ing disciplines, a point also emphasized in Lamport’s book on specifying sys-
tems [14].

Here “formal” means that expressions are manipulated on the basis of their
form (syntax) following precise calculation rules. This contrasts with traditional
practice in math/engineering, where expressions are often manipulated on the
basis of their interpretation (semantics) in some application domain. The benre-
fitis in letting the symbols do the work, which is especially useful in areas where
intuition for the application domain is still nascent. It also develops a “parallel
intuition” for handling symbols that supports domain-oriented intuition [7].

Understood in this wider (actually, more original) sense, Formal Methods
point the way not only to teaching CS at the university level, but also provides a
refreshing new style to mathematics [9]. The realization has been demonstrated
for discrete mathematics [11] and essentially all of engineering mathematics [4,
6].

Hence the non-CS engineering mathematics can equally benefit, and the
entire curriculum considerably streamlined by unification.

2.2 The role of tools

To realize the aforementioned potential of FM, the use of software tools has to
be led into the proper channels.

For the sake of completeness, we first mention that some tool developers
consider that tools are essential to FM or even “the only important thing” [23].
Taken literally, this statement is self-refuting by reductio ad absurdum. Still, it
reflects the acceptance by industry of formal methods for solving specific kinds
of problems economically. Epistemologically, however, it is far off the mark.

14

In mathematics, classical engineering and CS/ECE, software tools are meant
to alleviate the burden of handling tedious details in calculations and proofs, and
to reduce mistakes or avoiding pitfalls. Yet, this works only for users with am-
ple mathematical maturity: for novices it can only lead to sorcerer’s apprentice
attitudes and even ruin [13]. Indeed, current tools are far from mature:

— No single tool has sufficient scope; even small systems require multiple
tools;

— Implementation restrictions cause a very narrow view on mathematics;

— The many irrelevant syntax details and even semantic errors confuse novices.

For instance, tools like Maple and Mathematica seem designed fairly well for
calculus and algebra, but in nearly every use for discrete mathematics the au-
thor found calculations going astray in unexpected and educationally hazardous
ways. Here is an example, arising from number representation. Consider the
functions

— digits such that, for any natural number n, the base 10 representation
is digits (n), defined as a function such that digits (n) (i) is the i-
th digit; in Maple: digits := n -> i -> floor (n/1071) mod
10;

— decnum such that decnum (f) (k) is the number represented by the &
lowest digits in representation (function) f;

in Maple: decnum := £ -> k —> sum(f(i)*10"1i, i = 0..k-1);.

One expects decnum (digits (n)) (k) = n if k digits suffice to repre-
sentn. Yetdecnum (digits (210)) (3); yields 620 while decnum (1 —>
i) (3); yields 210. The idea that “tools help students discover their errors”
thus gets a new meaning!

In mathematics education, the trap of thinking that tool use can obviate solid
mathematical reasoning abilities seems to have been largely avoided. Some cal-
culus textbooks [27] even wisely contain examples and assignments involving
tool use especially to foster awareness of the pitfalls. Likewise, insofar as Ral-
ston [22] advocates tools over pencil-and-paper simulation of computational al-
gorithms (e.g., “long division”) in elementary school, he does not do so at the
cost of reduced awareness for numbers and mathematics. To the contrary: he
proposes more emphasis on head calculation as an antidote to rote and the er-
rors typical for using calculators without numeric awareness.

Electronics engineers routinely use tools like Maple, Matlab etc. by rely-
ing on a good mathematical background which, more than the tools themselves,
explains the successful results. Tool vendors do not boast or encourage math-
phobia; to the contrary: an announcement for a textbook on Simulink [8] states:

15

“students should have the appropriate mathematical preparation [such as] cal-
culus and differential equations”.

Unfortunately, in the FM area tools are often advertised as “hiding the math”
for professionals (thus depriving them of the most powerful intellectual tool)
and depicted by some lecturers as an aid to learn math for students (instead
of mathematics preparing for tools). Tools are popular because they cater for
the affinity of some students for video games, while seemingly “realistic” tool-
based projects give them the illusion of becoming “real engineers” quickly and
easily: the “sics munce ago i coodnt evun spel enguneer, now i are won” syn-
drome.

Proper FM courses are essentially mathematical, do not teach tools, but con-
tain assignments where students learn the use of tools and their defects.

3 Curriculum and course design

3.1 The mathematics content of engineering curricula

Learning by analogy from classical engineering disciplines and also consid-
ering the huge body of mathematical knowledge generated by CS in recent
decades [10], we propose the mathematical content for a computing engineering
curriculum.

Table 1. Fundamental engineering mathematics at various levels

l(level) \EM. Engineering Math. \CM. Computer Engineering Mathematics
Basic Analysis, Linear algebra |Formal proposition and predicate calculus
(general) |Probability and Statistics |Function(al)s, relations, orderings

Discrete mathematics Lambda calculus (basics)

(combinatorics, graphs) |Lattice theory, induction principles, . . .

Targeted |Physics, Circuit theory, |Formal languages and automata
(modeling) |Control theory Formal language semantics

Stochastic processes Concurrency (parallel, mobile calculi etc.)

Information Theory, ... |Type theory, ...
“Advanced” |Functional analysis Category theory

Distribution Theory Unified algebra

Hilbert and Banach spaces|Modal logic

Measure theory, . . . Co-algebras and co-induction, . . .

Table 1 draws an epistemological parallel in terms of topics and levels, not
course names. Here “basic” and “targeted” are proper for undergraduates; “ba-

16

sic” is domain-independent, “targeted” is more domain-oriented. We put “ad-
vanced” in quotes because it is debatable: given today’s state of the art, some
topics are arguably valuable for undergraduates as well.

EM is mathematics for classical engineering, e.g., electrical (EE). CM is the
mathematics for Computing Engineering (CE). In view of curriculum design,
the columns are meant to complement, not replace each other.

Indeed, considering just the first two rows, the EM topics are generally (and
rightly) considered crucial in the formation of every engineer, and there is no
reason to start making exceptions for CE’s, to the contrary [20]: CE’s can learn
from the rich variety of examples and styles in mathematical modeling.

Conversely, the new mathematical style that emerged from Computing Sci-
ence [9] is relevant to all exact sciences, as amply demonstrated for discrete
mathematics [11] and for engineering mathematics in general [6]. For instance,
[6] shows that it is useful for electrical and computer engineers (ECEs) to be as
fluent in calculating with quantifiers (V, 3) as with derivatives and integrals.

3.2 A Bachelor program in Computer Engineering

A program following the principles set out thus far is outlined in table 2. Note
that it is a concept program, intended as an archetype for curriculum design by
tailoring it to the local goals and possibilities. It can also be extended by either
a 4th Bachelor year or a 2-year Master program.

Whereas most of the topic titles are familiar, the added value is in the unified
mathematical modeling throughout all courses. In other words, the use of For-
mal Methods is ubiquitous, obviating a separate course named ‘“Formal Meth-
ods”.

The basis is a first-semester course in logic in a form that is useful in the
spirit of Gries [12], not only for CS but for all of engineering mathematics,
starting with analysis. To reflect this, we called it Application-Oriented Formal
Logic. The style is calculational. We briefly outline one actual realization. Apart
from the usual proposition calculus (e.g., [11]), the two main elements provided
are

a. Generic functionals [4]: using higher order functions supporting systems
modeling and mathematical reasoning in a point-free style, and smooth con-
version between point-free and the more common pointwise style.

b. Functional predicate calculus [6], supporting the aforementioned fluency in
calculating with quantifiers in the context of applications.

This unifying framework forms the bridge between the continuous world of
classical engineering and the discrete world of computing. By providing a ref-
erence frame, it also facilitates introducing greater diversity in the formalisms

17

Table 2. A concept BCE Program (3 years, extensible to 4)

First semester Second semester
6| Application-Oriented Formal Logic ||6|Physics B (electricity & magnetism)
6|Mathematical Analysis A 6|Mathematical Analysis B
3| Algebra 3|Languages and Automata
3|Geometry 3| Disctete Math (combinatorics, graphs)
6|Physics A (particle & wave mechan.)||6|Classical Mechanics
6|Introductory Programming 6| Algorithms and Data Structures

Third semester Fourth semester
6|Probability and Statistics 6|Programming Languages
6|Complexity 6| Thermodynamics, heat & mass transfer
6|Signals and Systems 6|Database & Information Systems
3|Elements of Quantum Mechanics 3|Elements of Quantum Computing
3|Basic Electronics 3|Electrical Networks
6|Computer Architecture 6|Operating Systems

Fifth semester Sixth semester

6|Chemistry 3|Properties of Materials

3|Digital Systems 3|Elements of Relativity

3|Information Theory 6|Communications Systems
6|Concurrency 6|Communication Networks & Protocols
6 6

6

Software Engineering A Software Engineering B
Embedded Systems 6|Hybrid Systems
(Legend: the numbers are a measure for the size of the course — see text)

and tools in the various other courses. No valuable time is wasted on “teach-
ing” tool use or language features: these are picked up via the assignments. The
courses themselves are fundamental and the appropriate body of knowledge can
be structured around mathematical modeling (analysis, specification, design).

This point characterizes the curriculum, rather than a detailed listing of the
topics in each course, which would be beyond the scope of a paper anyway.
Yet, some additional observations help convey the guiding idea of “unity in
diversity”.

Many non-CS courses are included, such as physics and engineering, for two
reasons: (a) to enhance professionalism, as many students will need some clas-
sical engineering in their later career [20], (b) to broaden the intellectual horizon
and bring students in contact with a wide variety of modeling techniques.

As in any science curriculum, courses form streams, with dependencies and
prerequisites, which restricts ordering somewhat but also provides opportuni-
ties.

18

For instance, arguably the best language choice for Introductory Program-
ming is Scheme, with Abelson and Sussman [1] as a reference textbook. Of
course, programming assignments should use Haskell as well. This background
in computing meets with Physics A in Classical Mechanics (Sussman and Wis-
dom [26]). The Lagrange-Hamilton approach used to be covered in classical
engineering curricula and has been neglected for some years (perhaps for being
less intuitive initially), but the time is ripe for reinstating it. This also paves the
way for the later courses on quantum mechanics and quantum computing.

Algorithms and Data Structures emphasizes formal specification and deriva-
tion of algorithms (rather than just listing them) and elementary type theory. The
main criterion is correctness; other issues are covered in Complexity.

The Signals and Systems course is another crucial link between continuous
and discrete modeling. The book by Lee and Varaiya [16] is one of the rare text-
books so far that, in addition to providing a good overview of the field, identify
and correct most of the numerous notational defects in classical mathematical
notations. Such defects have always hampered clean formal reasoning.

Traditional CS topics like Computer Architecture, Operating Systems and
Information and Database Systems may have become less central to curriculum
design in the past decades, but they are included as yet another opportunity for
exercising and consolidating mathematical modeling techniques. This assumes
the traditional content is revamped in this spirit.

Needless to say, Programming Languages is not meant to introduce lan-
guages, but to provide an introduction to language modeling, e.g., lattices and
fixpoints, denotational semantics and more advanced type theory: language the-
ory is the materials science for software. Application examples are the languages
already encountered via the assignments in other courses (say, Scheme, Haskell,
Maple, TLA+, Matlab, Simulink, LabVIEW, VHDL, Java, C++, .. .).

The sequence starting from Physics A to Elements of Quantum Computing
expands the students’ horizon with nonstandard computational models.

Software Engineering is left most open to interpretation; the only assump-
tion being that it meets the standards of the remainder of the curriculum. The
Formal Methods community has generated a wealth of suitable material. Lec-
turers may opt for staying within a single series with a wide scope, such as
Bjgrner’s Software Engineering trilogy [2], or devote a full course to a specific
approach (such as refinements) using diverse sources, or any other combination
or variant.

In a 4-year BCE, table 2 can be extended with Software Engineering C
and D, Computer Security, with more advanced topics such as category theory
and refinements, and with “integrating” courses combining mathematical mod-
eling techniques. Examples are: Global timekeeping, positioning and navigation

19

and Embedded Systems in the Automotive Domain. The Automotive -, Train -
and Avionics Domain are typical examples of domains where a great variety of
modeling techniques must be used in harmony. Hence, although such titles may
sound specialistic, the content can be given a wide scope. The educational value
of topics with this characteristic is well-known in classical engineering, but the
domains idea has been given a new impetus for (E)CE by Dines Bjgrner [3].

Course metrics The numbers in table 2 indicate course size in units, assuming
a 60 units per year system. The design is adaptable to various local situations.

For instance, regulations at our own School of Engineering stipulate per
semester 30 units involving 900 hours of study (classes, guided or lab exercises,
self-study), amounting to 30 hours per unit. The smallest useful size of a course
is 3 units, with classes over 12 weeks at li h/week. The exam period is 4 weeks.
Arithmetic shows that this does not favor activity during the 12 weeks of classes
(and that the 900 hours are administrative fiction).

A better option is spreading the courses over 15 weeks, assuming per 3 units
weekly 1 hour of classes plus 3% hours of self-study and lab exercises, if any.
Own experience at various universities indicates that homework is considerably
more effective than guided exercises in stimulating activity!, but puts heavier
demands on the staff. Anyhow, the total load of 45 hours/week is reasonable,
and low in comparison to what is expected at world-class universities.

3.3 Local and international context

Effects of the local context Thus far, too many universities have been unable
to integrate mathematical modeling throughout the CS/CE curriculum or ap-
proached the university level considered normal in classical engineering fields.
Still, a well-documented design of an actual curriculum integrating mathe-
matics education with software engineering is the BESEME (BEtter Software
Engineering through Mathematics Education) project [18].
This report also outlines the impediments to be expected [18, p. 6]:

— Students find it demanding.
— Most instructors must revise notes.

In reality, “revising notes” is a euphemism for acquiring essential background [12].

Whereas students are young and (hence supposedly) flexible, many lecturers do

not embrace lifelong learning, especially if it entails novel ways of thinking [9].
Here are two more small “case studies” illustrating other concrete situations.

! Regular homework also better prepares students, making 1 week for exams sufficient.

20

(1) At our School of Engineering, the effects just mentioned have proved
quite manifest. As a result, weaving mathematical modeling in the CE curricu-
lum remains a faraway target supported by a minority, but felt as a threat by
others.

At one stage, our CE program included a course designed like Application-
Oriented Formal Logic and a sequel on formal modeling, both non-optional.

The positive effects were most apparent in how students who had taken these
courses applied the acquired abilities in their MSc and PhD dissertations under
various supervisors who were themselves not even involved in FM.

Still, courses with a strong mathematical content taught by various lecturers,
not only in FM but also in classical engineering, got negative evaluations from
a few CE students. This was used as an argument by a certain faction among
the faculty to clamp down on the classical engineering course involved, and
to relegate FM to just one course, for a few last-year students. The fact that
foundations are most efective when laid early in the program was well-known.

(ii) In the design of their CS program, our School of Science made a more
constructive use of this fact, and placed Application-Oriented Formal Logic
with the contents described earlier in the first semester. The professor teach-
ing the course is one of the author’s best former students, although scarcity of
qualified teaching assistants may have eroded the application-oriented elements
somewhat.

These experiences confirm the observation by many authors regarding the
overwhelming importance of general acceptance by the faculty, or at least toler-
ance from those not wanting to invest effort in new ways of thinking [12, 15, 29].
Other major obstacles against teaching CS/CE at the university level are in-
breeding and the idea that CS-related courses can be entrusted to lecturers from
a different engineering area (e.g., EE) with just some programming experience.

In principle, students pose fewer problems. Of course, in curricula where
formal methods courses are isolated, their mathematical content and lack of ap-
plications in other courses demotivates some students. This is why, judging from
the literature on teaching FM, so much effort is spent on student motivation, and
positive results are strongly highlighted (although difficult to measure).

However, consider for the sake of comparison the student acceptance of
Mathematical Analysis by the less mathematically inclined students (the math
enthusiasts are not at issue here). Much of the acceptance stems from this topic
being an unavoidable part of any first and second year engineering program.
Choosing engineering means choosing Mathematical Analysis, even for CE ma-
jors. Ubiquitous use in other courses confirms relevance in the classical areas.

If a basic course like Application-Oriented Formal Logic is also made a
fixed part of the first-year program (as in case study (ii) above), students tend to

21

accept it more easily as characteristic for university-level (E)CE education. The
basis given can then be assumed without further ado in all other courses, pro-
viding further consolidation by various applications, which motivates students
by confirming relevance. Whether other courses pick up the thread depends on
the lecturers, but at least the basis is there and the other courses can evolve
gradually. Moreover, with this background the better students will be more de-
manding with respect to methodology, and subconsciously or consciously exert
gentle pressure on the lecturers if necessary. The attitude of faculty towards this
prospect is a decisive factor (and a quality measure), which closes the circle.

In this context, course evaluations must be used wisely. The comments of the
students always provide very valuable information for the instructors. However,
if students are given the impression (or confirmation) that their feedback is used
uncritically for making ad hoc curriculum reforms, their answers will become
heavily biased and only serve hidden agendas incompatible with quality.

International context Traditions regarding the mathematical content of engi-
neering curricula vary greatly between countries, and are subject to oscillations
and mutual feedback.

For instance, Belgian engineering schools used to have very strong mathe-
matical requirements, enforced by an entrance examination. The high standards
were set since the early 19th century by the Grandes Ecoles and in particular the
Ecole Polytechnique in France.

Recent politically-inspired European reforms such as the Sorbonne-Bologna
declaration have reshuffled the landscape, increasing the differences they pre-
tended to reduce.

For instance, the entrance examination has been cancelled in Flanders, not in
Wallonia. The impact has been downplayed, since at that time Flanders scored
first among Western countries in the TIMSS (Trends in International Mathemat-
ics and Science Study) surveys. However, as a result the mathematically strong
programs in secondary school experienced less interest, and declined. As the
effects became noticeable in the TIMSS scores, attention shifted to the PISA
(Programme for International Student Assessment) criteria. These critera are
based on RME (Realistic Mathematics Education), which has strongly influ-
enced math education for young children in some Western European countries.
As expected, these countries now tend to get a better place in the PISA rankings
than they formerly did under TIMSS, creating the illusion of improvement.

The catch is that RME focuses on concrete “everyday life” problem situa-
tions, for which actually just a modicum of common sense suffices. Now com-
mon sense is laudable, but genuine mathematics involves considerably more,
such as developing abilities for logic and symbolic reasoning and for making

22

abstraction. These abilities are precisely the most important ones for engineer-
ing, classical as well as computer-oriented.

The mathphobia deplored in [28] is certainly not limited to the U.S., where
even ample effort is devoted to countering it, but has become a matter of fashion
among certain groups of children and adults in Western Europe, even in coun-
tries that used to have a strong mathematical tradition. There are indications,
needing further study, that some Eastern European countries have escaped this
fashion.

Due to these various factors, the mathematical level of students entering en-
gineering schools has decreased in various European countries. Since technol-
ogy does not comply by lowering its complexity, the first year of the curriculum
is important for helping the students to bridge the gap. A framework unifying
the mathematics for classical and for computer engineering can be instrumental.

The top scores in the TIMSS are achieved by Asian countries. This indicates
considerable potential for maintaining universities at a suitable level to meet the
challenges of the future. The names in the literature constitute ample evidence.
Judging by the faculty lists of universities in various regions, the U.S. appear to
have tapped these intellectual resources more effectively than Europe.

The emphasis on mathematics that was consciously maintained throughout
this discussion may appear excessive if one sees mathematics just as a collection
of tricks and facts, which is the view held by many laypersons. However, the
main educational value of mathematics resides in the development of effective
problem solving, reasoning and abstraction abilities and the attitudes it imparts.

4 Conclusion

Referring to the quotation by Max Planck, we have argued that the most effec-
tive way for making Formal Methods an evident part of everyday practice is not
convincing the current practitioners but investing in the education of future gen-
erations. Formal Methods, in the sense of mathematical modeling, can be the
lever to lift the entire computing curriculum to the scientific and professional
level that would be considered acceptable in classical university-level engineer-
ing. It goes without saying that this strategy is not directly needed, yet can still
be inspiring, for universities where (E)CE education is already world class.

We have outlined the design principles and to some degree the content of
a no-nonsense program that can serve as an archetype for various curriculum
designs by tailoring it to the locally available structure and human potential.
Graduates from such a program will consider formal methods as evident in their
professional practice as classical engineering math in, say, electronics or me-
chanical engineering.

23

On the other hand, we have seen that the road to an integrated curriculum
is fraught with many impediments, the most important obstacle perhaps being
lack of intellectual flexibility and curiosity and, as Gries notes [12], sometimes
even mathphobia on the part of the lecturers for the computing-related courses.

The last part of the paper addressed some local and international factors
affecting the availability and effective use of intellectual resources in various
parts of the world.

One final observation: throughout our argumentations, we have hesitated to
invoke one of the primary tasks of a university, because the focus on direct utility
in recent years has made even its mentioning suspect. This task is conveying to
our students a rich intellectual heritage and stimulating curiosity, and ultimately
contributing to their cultural development, not just their professionalism.

Such goals may appear overly ambitious and perhaps lofty today, but the
least one can do is avoiding a curriculum ridden with shortcuts.

Acknowledgement The author thanks the anonymous reviewers for their many
helpful comments and observations, some of which appear in the text this paper.

References

1. Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and Interpretation of
Computer Programs. The MIT Press (1996).

2. Dines Bjgrner, Software Engineering (3 volumes). Springer (2006).

3. Dines Bjgrner, “What do I mean by Domain?”. http://www2.imm.dtu.dk/ "db/

4. Raymond Boute, “Concrete Generic Functionals: Principles, Design and Applications”, in:
Jeremy Gibbons, Johan Jeuring, eds., Generic Programming, pp. 89-119, Kluwer (2003).

5. Raymond Boute, “Can lightweight formal methods carry the weight?”, in: David Duce
et al., eds., Teaching Formal Methods 2003, Oxford Brookes University (2003). Web:
http://cms.brookes.ac.uk/tfm2003/papers/boute.pdf

6. Raymond Boute, “Functional declarative language design and predicate calculus: a practical
approach”, ACM Trans. Prog. Lang. Syst. 27, 5, pp. 988-1047 (2005).

7. Raymond Boute, “Calculational semantics: deriving programming theories from equations
by functional predicate calculus”, ACM Trans. Prog. Lang. Syst. 28, 4, pp. 747-793 (Jul.
2006).

8. James B. Dabney and Thomas L. Harman, Mastering Simulink 4 (2nd ed.). Prentice Hall
(2001).

9. Edsger W. Dijkstra, “How Computing Science created a new mathematical style”, EWD
1073. University of Texas at Austin (Mar. 1990).

Web: http://www.cs.utexas.edu/users/EWD/ewdl0xx/EWD1073.PDF
10. Ganesh Gopalakrishnan, Computation Engineering: Formal Specification and Verification
Methods (Aug. 2003).
Web: http://www.cs.utah.edu/classes/cs6110/lectures/CH1/chl.pdf
11. David Gries and Fred Schneider, A Logical Approach to Discrete Math. Springer (1993).
12. David Gries, “The need for education in useful formal logic”, IEEE Computer 29, 4, pp.
29-30 (April 1996).

24

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Henri Habrias and Sébastien Faucou, “Linking Paradigms, Semi-formal and Formal Nota-
tions”, in: C. Neville Dean and Raymond T. Boute, eds., Teaching Formal Methods, pp.
166-184, Springer LNCS 3294 (Nov. 2004).

Leslie Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley (2002).

Web: http://research.microsoft.com/users/lamport/tla/book.html
Edward A. Lee and Pravin Varaiya, “Introducing Signals and Systems — the Berkeley
Approach”. First Signal Processing Education Workshop, (Oct. 2000).

Web: http://ptolemy.eecs.berkeley.edu/publications/papers/00/spel/
Edward A. Lee and Pravin Varaiya, Structure and Interpretation of Signals and Systems.
Addison-Wesley (2003).

Timothy C. Lethbridge, “What knowledge is important to a software professional?”, IEEE
Computer 33 5, pp. 44-50 (May 2000).

Rex L. Page, “Software is discrete mathematics”.

Web: http//www.cs.ou.edu/ "beseme/besemePres.pdf

A. Parkin, “Professional Programmers — Do They Read?”, Computer Bulletin, Series II, 4,
p- 23 (1975).

David L. Parnas, “Education for computing professionals”, IEEE Computer 23, 1, pp. 17-22
(Jan. 1990).

David L. Parnas, “Predicate Logic for Software Engineering”, IEEE Trans. SWE 19, 9, pp.
856-862 (Sep. 1993).

Anthony Ralston, “Let’s Abolish Pencil-and-Paper Arithmetic”. Journal of Computers in
Mathematics and Science Teaching, Vol. 18, No. 2, pp. 173-194 (1999).

Web: http://www.doc.ic.ac.uk/ ar9/abolpub.htm

John Rushby and Natarajan Shankar, “Theorem Proving and Model Checking for Software”,
Tutorial, Fourth Symposium on the Foundations of Software Engineering (Oct. 1996).
Web: http://www.csl.sri.com/users/rushby/slides/fsedtut.ps.gz
Joel Spolsky, “The Perils of Java Schools”, in: Joel on Software (Dec. 2005).

Web: http://www. joelonsoftware.com/articles/ThePerilsofJavaSchools.html
Joel Spolsky, “Stackoverflow.com”, in: Joel on Software (Apr. 2008).

Web: http://www. joelonsoftware.com/items/2008/04/16.html

Gerald Jay Sussman and Jack Wisdom with Meinhard E. Mayer, Structure and Interpretation
of Classical Mechanics. The MIT Press (2001).

George B. Thomas, Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas’s Calculus,
11th ed. Addison Wesley (2004).

Allen B. Tucker, Charles F. Kelemen, Kim B. Bruce, “Our Curriculum Has Become Math-
Phobic!”, ACM SIGCSEB, SIGCSE Bulletin 33 (2001).

Web: http://citeseer.ist.psu.edu/tucker0lour.html

Jeannette M. Wing, “Weaving Formal Methods into the Undergraduate Curriculum”, Proc.
8th Intl. Conf. on Algebraic Methodology and Software Technology (AMAST) pp. 2-7
(May 2000). Web:
http://www—2.cs.cmu.edu/afs/cs.cmu.edu/project/calder/www/amast00.html

25

An Introductory Course on Programming based on
Formal Specification and Program Calculation

Nazareno Aguirrel, Javier Blanco?, Marfa Marta Novaira', Sonia Permigianil,

Gastén Scilingo!

! Departamento de Computacién, FCEFQyN, Universidad Nacional de Rio Cuarto, Argentina,
{naguirre, mnovaira, spermigiani,gaston}@dc.exa.unrc.edu.ar
2 Facultad de Matemética, Astronomia y Fisica, Universidad Nacional de Cérdoba, Argentina,
blanco@mate.uncor.edu

Abstract. In this paper, we report on our experience in teaching introductory
courses on programming based on formal specification and program calculation,
in two different Computer Science programmes. We favour the use of logic as a
tool for software development, the notion of program as a formal entity, as well
as some issues associated with efficiency. We also review and use in practical
cases some important program transformation strategies, such as generalisation,
tupling and modularisation.

We will describe our approach, as well as the advantages and drawbacks that we
have observed over the years teaching these courses.

1 Introduction

It is generally agreed that teaching introductory courses on programming is a
very difficult task. Often, such courses have various different aims in Computer
Science curricula, besides providing students with the basics of programming.
Some of these “extra” aims are training students in some of the necessary tech-
nologies they will need in later courses, and provide a glance of a bigger picture
in software development, and the many challenges associated with it. It is not
surprising then that many of the current approaches to a first course on program-
ming are related to what is thought to be more useful to students in their later
programming practices, typically strongly based on modern and sophisticated
programming languages such as Java, and including small to medium size pro-
gramming projects where students can experience, to some extent, some typical
activities in software development (e.g., separated phases for analysis, design
and implementation, the importance of modularity, testing, etc). This situation
generally leaves lecturers with limited time to teach students the complexities
associated with “programming in the small”, and concentrating on reasoning
about small programs (it is not surprising then the growing belief amongst prac-
titioners that dealing with programming in the small is easy).

26

Some approaches related to the use of formal methods in introductory courses
to programming have an emphasis on program verification. Often, these courses
are based on structured programming, and tend to treat program verification as
a task to be performed after one constructs a program. In our opinion, based on
our own experience, and discussions with students and colleagues, this generally
leaves students the feeling that verification is an additional “burden”. Further-
more, if this is combined with the fact that usually one picks relatively simple
problems for teaching programming and verification in introductory courses,
students are typically left with the feeling that verification is not only additional
burden, but also optional burden (students get the idea that they have to verify
programs that they already know to be correct).

Partly motivated by the drawbacks of the above mentioned approaches, which
we experienced in the past in our programmes when following them, we decided
to try a formal approach to introducing students to programming based on for-
mal specification and program calculation. The idea of this course is to attempt
to make students feel the use of logic as a necessary tool, during the initial
stages of programming, in the formal specification of problems, and as part of
the body of rules for transforming these specifications into programs. We report
on our experience in teaching introductory courses on programming based on
this approach, in two different Computer Science programmes, at the National
Universities of Cérdoba and Rio Cuarto, in Argentina. As we mentioned, the
approach is based on program calculation. In order to make the calculations
smooth, and not having to deal with the complexities of imperative languages,
most of our approach is based on functional programming. The connection to
imperative programming, although limited, is based on program transformation.
As it will be described later on, we skip many of the important “programming in
the large” issues, as well as technicalities associated with imperative (or object
oriented) languages. We favour instead the use of logic as a tool, the notion of
program as a formal entity, as well as some issues associated with efficiency. We
also review and use in practical cases some important program transformation
strategies, such as generalisation, tupling and modularisation. Also, as it will be
explained more throroughly later on, we try to carefully choose the exercises,
trying to emphasise the cases in which problems would be extremely difficult
to solve if they are not formally manipulated. We describe our approach via
one of these cases, the segment of minimum sum problem. We will also discuss
about some of the effects of our courses in the corresponding Computer Science
programmes, and how these have influenced later courses.

27

2 Description of the Course

As explained before, the course we are describing here is an introductory course
on programming taught at two different Universities. In the National Univer-
sity of Cérdoba, the course is taught during the first two semesters of a 5-year
Computer Science programme. In the National University of Rio Cuarto, on the
other hand, the course is taught during the third and fourth semesters, again of a
5-year Computer Science programme. In the former, students have no previous
courses on programming or logic, but they take simultaneously with this course
one on discrete mathematics; In the latter case, when students start the course
they had already taken a 2-semester introduction to imperative programming
course, and a basic course on mathematical logic.

Although the course is taught in different contexts in the two Universities,
we seek achieving the same general goals. Essentially, we want the students to
accomplish the following:

— Develop the ability to formalise problems, using logic as a tool.

— View specifications and programs as formal entities, and consider program-
ming as the manipulation of these formal entities.

— Obtain considerable training on using recursion as a powerful mechanism
for defining functions/programs.

— Understand that reasoning about functions can be exploited not only in func-
tional programming, but also in imperative programming (particularly via
transformation schemata).

— Get acquainted with a very elementary theory of abstract data types (and its
relevance in program development).

The contents of the course is composed of the following three main modules:

— Logic and specifications. We employ an equational version of predicate
logic with generalised quantifiers [7] (see also [9, 6]). The main goal is to
have a suitable tool for reasoning with large formulae (mainly programs).
This logic is used for both the functional and the imperative paradigm.

— Construction of functional programs. The students learn how to formally
construct functional programs from specifications, with their correspond-
ing inductive proof of correctness. We make an induction guided use of
the fold/unfold rules, in order to guarantee termination in the calculated pro-
grams, as in [10] . Operational reasoning appears only as a motivation for the
axioms of the calculus, and for efficiency considerations. In this paradigm,
programs and specifications are written in the same formalism (programs
are a subset of the possible formulae) [10].

28

— Construction of imperative programs. This module is rather traditional (see
for example [5, 8, 6, 11, 4]). We try, however, to use what was learned in
the previous module to help in this process. The main tool is to translate
functional programs into the imperative formalism by using tail recursion,
which not only allows us to translate the program itself, but also its proof
of correctness. Although the underlying computational models are different
in the functional and imperative paradigms, the students can get the feeling
that proofs in the two contexts share similar ideas (e.g., invariants can be
seen as a restricted way to use induction). Also when introducing impera-
tive programming, students are faced with the notion of abstract data type.
We employ the case of lists (which are somehow inherent to functional pro-
gramming) and an array based implementation of lists in imperative pro-
gramming, to show how functional programs handling lists are transformed
into imperative programs manipulating arrays. The usual formal concepts of
abstraction function, representation invariant and the like are used superfi-
cially.

3 A Sample Exercise

In order to better illustrate our approach, and the notation used, let us provide an
example, which is an exercise used in the course. Consider the problem of, given
a list xs of integers, finding the sum of the elements in the segment of minimum
sum of xs. A segment of xs is simply any sublist of xs. So, for instance, if list
xsis [1,-4,-2,1,-5,8,-7], then the minimum sum segment of xs is
[-4,-2,1,-5], and its sum equals —10; if we consider the list [1, 2], then
its minimum sum segment is []. This problem has been discussed by various
researchers (particularly in the context of program transformation), for example
in [2, 3, 10].

A first step is to formally specify the problem. For this task, the specification
language we use provides generalised quantified expressions (with general rules
for dealing with these), which can be built out of any binary operator, as long
as it admits a neutral element, and is associative and commutative. This style is
similar to that used in [9] The generalised expression corresponds to applying
the operator under consideration to a range of values. The operator Min satis-
fies the above conditions, and therefore can be used in a quantified expression,
allowing us to straightforwardly specify the problem in the following way:

minSum.xs = (Min as, bs, cs : ©s = as++bs++cs : sum.bs)

where sum is a function that computes the sum of the elements of a list, for
which we already have an operational version. Deriving a recursive function

29

from the above specification is done via induction on the length of xs. A de-
tailed calculation of function minSum can be found in [10], page 147. The re-
sulting recursive function is the following:

minSum.|| =0
minSum.(x > xs) = g.(x > xs) Min minSum.xs

where g is defined as follows:

8-l =0
g.(x>xs)=0min (z + g.zs)

From these functions, we can do various things. For instance, we can em-
ploy schemata for transforming the above functions to tail recursive versions,
and from the resulting functions straightforwardly obtain imperative programs.
Also, we could attempt to derive a more efficient version of minSum, using
transformation strategies (in this case, tupling is a suitable one). The resulting
more efficient version of minSum, obtainable using tupling on minSum and g, is
the following:

h.[] =(0,0)
h.(z>xzs) = ((x 4+ b) min a,0 min (z + b))
I[(a,b) = h.zs]|

4 Experiences in the two Programmes

We have been using the described approach for the past 10 years in the National
University of Cérdoba, and for the past 6 years in the National University of Rio
Cuarto. The experience we gained along these years enabled us to improve the
course in various respects, in particular, collect better exercises, with interesting
non trivial solutions, illustrating some of the benefits of program calculation.
This task has benefited from newer mature bibliography, such as [1], and in-
cluding bibliography in Spanish (e.g., [12, 13]).

We have also observed various advantages and drawbacks associated with
the course. As advantages, we can say that students who get to assimilate the
principles taught in the course have demonstrated to incorporate these in their
programming practices, in particular in later courses. Also, although they gen-
erally do not use formal approaches in later programming courses, the acquired
skills in logic and program manipulation leads to producing better programs
(with fewer bugs and clearer), and to a more careful reasoning when program-
ming. This is noticed in later courses on data structures and algorithms; the stu-
dents who assimilated the concepts taught in our course tend to specify routines

30

(e.g., provide pre- and post- conditions for methods in object oriented imple-
mentations of abstract data types), write well structured programs, and exploit
recursion when solving problems in imperative and object oriented languages.
In general, good students tend to appreciate formal methods and their associated
benefits, which is evidenced in the optional courses they choose later on in the
programmes, and the topics they choose for their final projects. We also detected
a number of drawbacks. First, about 50% of the students fail the course. This
seems to be a very critical point against the approach; however, previous ver-
sions of the introductory courses (more traditional ones) had roughly the same
failure rate. This is the case in both Universities. In the case of the University
of Cérdoba, where the course is taught in the first year of the Computer Science
programme, a great part of the students failing the course switch to a different
programme (this is normal in the first year of most programmes in Argentina).
In the case of the University of Rio Cuarto, on the other hand, the 50% failure
rate in the second year of a programme is not normal (although it has been the
usual for this course, even for previous, more traditional, versions of it). In both
Universities, students failing the course can take it again the following year (i.e.,
they are not forced to abandon the corresponding programmes).

Another important drawback is that the average student usually becomes
too “syntactic” (or “mechanical”) in reasoning about programs, which has a
negative impact in abstraction. In particular, it is usually rather difficult for stu-
dents to “jump” in and out from the calculus (i.e., take perspective on the situ-
ation of the derivation at hand, and decide accordingly). In order to overcome
this problem, we are currently seeking for an integration between the described
course and a later course on data abstraction and the implementation of abstract
datatypes. We hope that as a result of this integration the students will have a
chance to exercise the role of abstraction in problem solving, which requires
them to combine thinking outside the calculus, for designing data representa-
tions, and using the calculus, for deriving correct implementations for the oper-
ations associated with the data abstractions.

5 Conclusions

We have described an approach to a first course on programming strongly based
on formal specification and program calculation, that we have been using in
the National Universities of Rio Cuarto and Cérdoba in Argentina. We have
enumerated some of the advantages that we have observed, as well as a number
of important drawbacks of the approach. Overall, we have been satisfied with the
results. For the particular case of the course in Rio Cuarto, where the course is
taught in the second year, surprisingly the results have generally been worse than

31

in Cérdoba. We believe this might be due to the case that, since the students have
already learned the basics of programming in an informal setting, most tend to
feel that the rigour associated with the program calculus used in the course is not
necessary for programming. Solving more complicated problems, compared to
those in their first course, and developing more sophisticated solutions, helps in
making students appreciate the benefits of a calculational approach. Students in
Rio Cuarto also exhibit a greater resistance, compared to students in Cérdoba,
to learning and applying logic for specification.

As work in progress, we are starting to conduct a more thorough study of
the consequences of our approach, mostly based on qualitative analysis.

References

1. R.Backhouse, Program Construction, Calculating Implementations from Specifications, Wi-
ley, 2003.
2. J. Bentley, Programming Pearls, second edition, Addison-Wesley, 2000.
3. R. Bird, Algebraic Identities for Program Calculation, The Computer Journal, 32(2), Oxford
University Press, 1989.
4. E. Cohen, Programming in the 1990s: An Introduction to the Calculation of Programs,
Springer-Verlag, 1990
E. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.
E. Dijkstra and W. Feijen, A Method of Programming, Addison-Wesley, 1988.
7. E. Dijkstra and C. Scholten, Predicate Calculus and Program Semantics, Monographs in
Computer Science, Springer-Verlag, 1990.
8. D. Gries, The Science of Programming, Monographs in Computer Science, Springer-Verlag,
1981.
9. D. Gries and F. Schneider, A Logical Approach to Discrete Math, Monographs in Computer
Science, Springer-Verlag, 1993.
10. R. Hoogerwoord, The Design of Functional Programs: A Calculational Approach, PhD The-
sis, Eindhoven University of Technology, The Netherlands, 1989.
11. A. Kaldewaij, Programming: The Derivation of Algorithms, Prentice Hall, 1990.
12. N. Marti-Oliet, Y. Ortega-Mallén and J. Verdejo-Lopez, Estructuras de Datos y Métodos
Algoritmicos, Ejercicios Resueltos, Pearson Educacién, 2004.
13. N. Marti-Oliet, C. Segura-Diaz and J. Verdejo-Lépez, Especificacion, Derivacion y Anélisis
de Algoritmos, Ejercicios Resueltos, Pearson Educacién, 2006.

oW

32

Evolution of a Course on Model Checking for Practical
Applications

Yasuyuki Tahara!, Nobukazu Yoshioka?2, Kenji Taguchi2, Toshiaki Aoki®, and
Shinichi Honiden*

! The University of Electro-Communications, Japan
2 National Institute of Informatics, Japan
3 Japan Advanced Institute of Science and Technology
4 National Institute of Informatics / The University of Tokyo, Japan

Abstract. Although model checking is expected as a practical formal verifica-
tion approach for its automatic nature, it still suffers from difficulties in writing
the formal descriptions to be verified and applying model checking tools to them
effectively. The difficulties are found mainly in grasping the exact system be-
haviors, representing them in formal languages, and using model checking tools
that fit the best to the verification problems. Even capable software developers
need extensive education to overcome the difficulties. In this paper, we report
our education course of practical applications of model checking in our educa-
tion program called Top SE. Our approach consists of the following two features.
First, we adopt UML as the design specification language and create the descrip-
tions for each specific model checking tool from the UML diagrams, to enable
easy practical application of model checking. Second, we build taxonomies of
system behaviors, in particular behaviors of concurrent systems that are main tar-
gets of model checking. We can organize the knowledge and the techniques of
practical model checking according to the taxonomies. The taxonomies are based
on several aspects of system behaviors such as synchronization of transitions,
synchronization of communications, and modeling of system environments. In
addition, we make clear which model checking tools fit which types of systems.
We treat the three different model checking tools: SPIN, SMV, and LTSA. Each
tool has its specific features that make the tool easier or more difficult to be ap-
plied to specific problems than others. In our education course, we explain the
taxonomies, the knowledge, and the techniques using very simple examples. We
also assign the students exercises to apply the knowledge and the techniques to
more complicated problems such as the dining philosopher problem, data copy-
ing between a DVD recorder and a hard disk recorder, and the alternating bit
protocol.

1 Introduction
This paper describes one of our courses on model checking given in the Top SE

program [1]. This project was established to bridge the gap between the soft-
ware industry and software engineering education in Japan. The model checking

33

technique typically addresses such a gap between education focusing on the fun-
damental theories, basic techniques and toy problems, and industry demanding
techniques applicable to practical problems of decreasing faults in large-scale
complex software products. Thus our model checking courses should aim ad-
dressing practical applications of the technology.

In our previous work [1], we explained two model checking courses as sam-
ple courses of Top SE, called “Verification of Design Models”. The main fea-
tures of the courses consisted of the following four: (1) it treated UML, (2) it ar-
ranged practical knowledge and techniques according to the verification process,
(3) it treated three model checking tools (SPIN [2], SMV [3], and LTSA [4]),
and (4) it provided practical project work using evaluation boards from prototyp-
ical digital home appliances (hard disk (HD)/DVD recorders). The two courses
were originally given as one course. After giving these original courses to the
first year students, as many as nineteen, and examining their achievements and
their responses to the course, we noticed the following two issues. First, the stu-
dents felt the gap between the basic usage of the tools and their application to
the practical problem of verifying HD/DVD recorder software. Second, students
did not succeed in understanding the differences of the three tools and how to
choose one from them that is the most appropriate to the specific problem they
were tackling.

In this paper, we describe the newly organized advanced course as the solu-
tions to the above issues. We described the Verification of Design Models (Foun-
dations) courses in [1]. The model checking courses are currently called “De-
sign Verification”. Thus this paper treats the “Design Verification (Advanced)”
course. In this course, we built taxonomies of system behaviors and made the
students apply the model checkers to various design models which represents
the different types of the behaviors. The taxonomies are based on several as-
pects of system behaviors such as synchronization of transitions, synchroniza-
tion of communications, and modeling of system environments. According to
the taxonomies, we provided various types of examples. For example, we can
model the dining philosopher problem using the different synchronization mode
of the transitions. This means that we can assume each philosopher behaves
synchronously or asynchronously. We expected that the students can well un-
derstand how to choose the most appropriate tools to their specific problems.
It is ideal if the students can find a new tool or customize existing tools for
themselves and judge if the tool is more appropriate to the problems.

This paper is organized as follows. Section 2 presents a brief overview of the
Top SE program. Section 3 describes the details of our courses devoted to model
checking of system behavior designs. In particular, we focus on the features of
our new Advanced course that makes use of the taxonomies. Section 4 compares

34

our course with existing similar ones. Section 5 gives some concluding remarks
and the future work.

2 Overview of Top SE

In this section, we will briefly introduce our education program Top SE. Top
SE is a non-accredited program at Masters level fully funded by the Japanese
Government, and is operated through a close collaboration between industry
and academia at the National Institute of Informatics. The whole curriculum,
which consists of five lecture series (Requirements Analysis, System Architec-
ture, Formal Specifications, Model Checking and Implementation) is shown in
Table 1. The overview and the curriculum design of the program are discussed
in [1].
The program has the following distinguishing features:

— The treated topics include only advanced software engineering technologies
that have theoretical backgrounds and supporting tools that are easily avail-
able. For this characteristic, the students are required to have sufficient basic
knowledge about software engineering in advance.

— Top SE has currently seventeen courses shown in Table 1. Each course con-
sists of twelve lectures for three months. Students needs to finish at least
eight courses for each one to start their final year projects. Completing the
entire curriculum requires at least one year and a half.

— Each course includes a considerable amount of exercises based on prac-
tical problems usually carried out by groups. Each course usually treats
multiple techniques and tools to give the students skills and knowledge to
choose techniques or tools appropriate to the practical development situa-
tions. Some courses use even actual devices to practice on the developed
software embedded and operated in the devices. Figure 1 shows a set of
evaluation boards as an example of the devices.

— Course materials are developed under close coordination of the academia
and the industry. The academia provides their advanced knowledge about
software engineering, while the industry provides practical problems they
are tackling in the actual working situations.

That is, it covers a wide range of cutting-edge software engineering tech-
nologies, e.g., software patterns, aspect-oriented development and model check-
ing. We regard our education program as a medium to transfer these new tech-
nologies to industry. In order to do so, we tailor our program to meet educational
needs from industry and create case studies for laboratory work with industrial
partners (Hitachi, NEC, Toshiba, NTT Data, Fujitsu, and Nihon Unisys, among

35

Table 1. Curriculum

Series Courses

Requirements Analysis|Requirements Analysis

Security Requirements Analysis
System Architecture |Component-based Development
Software Patterns

Aspect-Oriented Development
Formal Specifications |Formal Specifications (Foundation)
Formal Specifications (Advanced)
Formal Specifications (Security)
Model Checking Design Verification (Foundation)
Design Verification (Advanced)
Real-time Model Checking
Modelling and Verifying Concurrent Systems
Implementation Testing

Program Analysis

Software Model Checking
Foundations Basic Theory

Software Engineering Practice

others). We also have close collaborative relationships with academic partners
(Shinshu Univ. , Tsukuba Univ. , etc) to develop and deliver the courses.

As Software Engineering is a practical engineering discipline, we teach
good practices rather than theories in all courses. We specifically emphasize
the use of tools and all courses are based on laboratory works in which several
tools are used.

3 Design Verification Courses

This section describes our courses devoted to model checking of system behav-
ior designs.

3.1 Verification Process

As described in [1], these courses focus on efficient use and proper application
of model checking tools that use the automata theory, specifically SPIN, SMV,
and LTSA. The reorganized courses still share these aims and the four features
to achieve them described in Section 1. Therefore we teach the following ver-
ification process (Figure 2 [1]). The verification process consists of six steps
and five kinds of verification models and descriptions: the design model (DM),
verification requirements (VR), model checker independent model (MCIM),

36

Fig. 1. Evaluation Board Used in Top SE Courses

model checker specific model (MCSM), and model checker description (MCD)
as shown in Figure 2. Figure 3 explains why so many models are used. Once an
MCIM is created, the developer needs to know only the methods of transforma-
tion from the MCIM to the MCSM if the developer uses a new model checker.
Therefore this process enables the developer to choose appropriate model check-
ers easily. The process presupposes that the developer has finished requirements
analysis and abstract design for the target system without considering the ver-
ification process. Thus the process takes as inputs three kinds of information:
(1) a DM described in UML, (2) a requirement specification representing the
required behaviors of the target system which the DM should realize, and (3) a
test specification representing the constraints on system behaviors that the DM
should satisfy. All of them are given from the development process. The veri-
fication process should produce two kinds of information: (1) possible design
faults and (2) the verification results including verification succeeded or not and
the counterexample if verification did not succeed. The design faults and coun-
terexamples are then fed back to the development process.

The Foundation Course treats only SPIN and teaches the verification process
using toy problems and practical problems. The practical ones are about the
HD/DVD recorder problem. On the other hand, the Advanced course treats some
other problems with intermediate complexity. The details are explained below.

37

Design Faults

o

R o

of s, R
0’ ““ 'h. ‘O
o e Yeen %
s .I e,
S -

.

1.Verification
Requirement
Analysis

) e * T erification
2.Design ..y ““‘7 5.Verification

3.Coding P{4.Sanity Check

6.Design Fault
Detection

Inputs of the process: DM, requirement specification, and test specification
Outputs of the process: Design faults, and verification results.

Fig. 2. Overview of the Verification Process

3.2 Taxonomies of System Behaviors

The aim of the Advanced course is to enable students to choose the most ap-
propriate model checker for the specific problems they are tackling and to make
effective use of the tool. For this purpose, we first introduce taxonomies of sys-
tem behaviors as the criteria of choosing the tools and the modeling policies.
The taxonomies are based on the following characteristics of system behaviors.

— Synchronization of transitions
In concurrent systems, the processes may execute their actions in a variety
of timings. In our Design Verification courses, we use state machine dia-
grams to specify the system behaviors. Therefore the executions of the ac-
tions are represented by transitions. We classified system behaviors into the
following two types from the viewpoint of transitions. One is synchronous
transition model and the other is asynchronous transition model. In the syn-
chronous transition model, all the processes should trigger their transitions
in each execution step. If even only one of them can trigger no transitions
at some time, the entire system falls into deadlock. On the other hand, the
asynchronous transitions model forces no constraints on triggering the tran-
sitions. The latter model is usually represented by the interleaving semantics
formally.

— Synchronization of communications
Even asynchronous transition model usually requires synchronization mech-
anisms for the processes. We treat communication among such mechanisms
in particular because it is easily represented by UML. It is natural to classify

38

MCSM Tra‘ns-l MCD

8% _
8 2 A for SPIN fermation for SPIN
8
2 g
< S
=
Abst- © 3 MCSM Trans- MCD
Models DM ractior? MCIM <3 =¥ Formbtion,
g 5 | for SMV o for SMV
D S5
- 0
=)
S
28 MCSM | mraps | MCD
4 S |for LTSA[C™M8M for LTSA
Design Model Model Checker | Model Checker Model Checker
Independent Model | Specific Model Description
Modeling i - Process diagrams, Description
UML (class diagrams)
Ianguages . structure diagrams, | languages of each
and statechart diagrams) FSM, etc. model checkers

Fig. 3. Use of Models in Verification Process

the mechanisms into synchronous ones and asynchronous ones. Each type
is rigorously defined by the semantics of UML state machine diagrams.

— Environment modeling
Practical systems interact with the external environments in most cases. We
need to consider such interactions when verifying the system behaviors. In
this course, we treat the behaviors of communication media as an example
of such environments. We classify the behaviors according to the following
types of the characteristics of the media: (1) the communication is stable: it
always carries the signals correctly, (2) the signals may be altered, and (3)
the signals may vanish.

Among these taxonomies, we explain the details of the above two. In theory,
we have two times two, that is, four types of behaviors by combining these two
classifications. However, we do not treat the synchronous transition model with
communication because it is not easy and not so useful. Therefore we treat only
the three types.

We teach to the students the taxonomy according to the synchronization
of communication by using the simple example shown in Figure 4. Figure 4
represents a system composed by the two processes P and Q.

1. The first action is common to both of the synchronization modes. It makes P
send the event el and change its state to state2, and Q receive el and change
its state to state2 (Figure 5).

2. Next, both of the synchronization modes allow one of the following behav-
iors.

39

S S
statel statel
- -
/el el
S S
/el | state2 state2 el

Q I

Fig. 4. Example of State Machine Diagram

— After only Q changes its state to statel, P and Q exchanges el again.
The state of P is now statel and that of Q is state2 (Figure 6).

— P and Q exchanges el again. The state of P is now statel and that of Q
is still state2 (Figure 7).

3. Only the asynchronous communication model allows the following action.
Though P sends el and changes its state to statel, Q does not receive el. Q
also changes its state to statel (Figure 8). The synchronization communica-
tion model does not allow this action because this model forces a sender or
a receiver of an event to wait until its counterpart appears.

After that, we show the students the following summary of the above expla-
nations. The asynchronous communication model allows all the behaviors (1),
(2), and (3) of Figure 9. On the other hand, the synchronous communication
model does not allow (1).

As for the synchronous transition model, we avoid interprocess communi-
cations and use the state machine diagram shown in Figure 10 This diagram
allows only the behavior shown in Figure 11.

Next, we teach the students how to create input descriptions for each model
checker. The details of the creation method are as follows.

1. Create preamble parts of the descriptions such as definitions of variables,
symbols, and communication channels.

2. Create descriptions of a module for each process. Such a module is repre-
sented by a proctype for SPIN, a module for SMV, and a process for LTSA.

40

piq

Lo

statel statel
l/el lel
/el | state2 state2 el

Fig. 5. First Action

3. Transform each transition to the corresponding descriptions. Such descrip-
tions are, for example, changes of state variable values and message ex-
changes for SPIN.

After that, we make the students work on the small exercises described af-
terwards.

3.3 Course Organization

The Advanced course is organized as Table 2.

In the week 1, after giving a brief review of the Foundation course, we show
the difficulties in modeling concurrent distributed systems. In detail, we make
the students understand the difficulties involved in the synchronization modes of
transitions and communications and the difficulties in modeling environments.
We use the following problems in the explanations

— The dining philosopher problem
This problem is appropriate for the issues about the synchronization modes
because we can design the behaviors using both communications and shared
variables. We can also use both synchronous and asynchronous communi-
cations.

— The HD/DVD recorder problem We use a version of this problem simpler
than the one used in the Foundation course as follows.

e The problem is about copying data between one DVD recorder and one
HD recorder.

41

P © 1

statel statel
/el el

—)
/el | state2 state2 el

! 1
P i Q

ﬁ

statel statel
-/
/el el
)
/el | state2 state2 el
-~/

R

Fig. 6. Second and Third Actions: Pattern 1

e The DVD recorder the HD recorder an event requesting permission to
record the data stored in the HD recorder to DVD media. The HD recorder
sends back an acknowledge event as the response.

e The students need to verify if the copying functionality works correctly.
This problem is also concerned with the difficulties of the synchronization
modes. The aim of using this problem is to make the students understand
that the difficulties also arise in practical systems.

— The alternating bit protocol [5] problem
This protocol is used for unstable communication media that may alter or
lose the data. This problem is used to make the students understand how to
model such environments and carry out verification considering the environ-

42

statel statel
N N
/el el
—
/el | state2 state2 el

L

=)

Fig. 7. Second Action: Pattern 2

ments. The students need to verify if the data are correctly transferred from
the sender to the receiver in each type of environment.

Finally, we order the students to examine the problems to work on in the final
group work. It is desirable if the students choose problems they are facing at
their workplaces.

The weeks 2, 5, and 7 treat the issues of the synchronization modes of transi-
tions and communications. As exercises The students work on the simple exam-
ples shown in 3.2, the dining philosopher problem, and the HD/DVD recorder
problem. The weeks 3, 6, and 8 treat the issues of environment modeling using
the alternating bit protocol problem. The students apply the model checkers to
the problems as follows.

1. They examine how the systems behave using the simulation functionalities
of the tools.

2. They verify the properties such as deadlock-freedom, livelock freedom, and
progress. They use the options and the functionalities to verify LTL formu-
lae of the tools.

The week 9 is devoted to teaching tips and techniques of model checking
such as abstraction, fairness constraints, optimization of verification, and the
property specification patterns described in [6].

In the weeks 10 and 11, the students are divided into groups and carry out
the group work. Each group consists of three to five people. Each group chooses
a problem one of the members has been examining since the first week. They
are instructed to make explicit the following data.

43

))
statel statel
- -
/el el
S S
/el | state2 state2 el

Fig. 8. Second Action: Pattern 3

— The problem descriptions including:

e The requirements specifications described in natural languages and use
cases,

e The prerequisites and the assumptions of the system described in natural
languages and UML diagrams, and

e The extents of the system to be designed including exceptional cases
described in natural languages and use case descriptions (for exceptional
scenarios).

It is desirable if the problem can be modeled using as many synchronization
modes as possible.

Property specifications to be verified
— Chosen tools and the reason of the choice

— Design specifications to be verified (MCIM in 3.1) including the system
itself, the environments, and the considered abstractions

Verification activities including the used functionalities of the tools, the or-
der of the use of the functionalities, and the adopted tips and techniques

Verification results including the counterexamples, the detected faults in the
design specifications, and the corrections of the faults

Finally, in the week 12, representatives of each group make presentations of
the group work results. The students and we discuss the results.

44

statelmstat& statel]——»{aatez]——-[satel
el el

statel F{ state2 X statel F{ state2--{ state2

[1
[]
[statel]—;[stateZ]i—{ statel]——;[stateZ]
[)
{ 1
[}

statel -+ state2 —{ statel F{ state2 F-{ state?

statelm statezJ—-{statel]——»{statez]——-[statel

stat state2]——{staie2]——{sta¢e2

statel

Fig. 9. Behaviors Allowed by Asynchronous Communication Model

Table 2. Course Organization

Week 1 Introduction, Review of the Foundation Course, Issues to be handled
in this course (difficulties in modeling concurrent distributed systems)

Week 2 Verification of synchronous and asynchronous system behaviors
using SPIN

Week 4 Introduction to SMV

Week 5 Verification of synchronous and asynchronous system behaviors
using SMV

Week 6 Verification considering environment models using SMV

Week 7 Introduction to LTSA and verification of synchronous
and asynchronous system behaviors using LTSA

Week 8 Verification considering environment models using LTSA

Week 9 Tips and techniques for model checking

Week 10, 12|Group work for practical problems

Week 12 Group presentations and conclusions

3.4 Current Status

At the time this paper is written (the end of November 2007), the first operation
of the Advanced course has just finished. Therefore we cannot much evaluate the
achievements. Seven students participated in the group work. They are divided
into two groups. Each group chose the following problems.

— Verification of the RTS/CTS protocol for the hidden node problem
This protocol is used in the IEEE 802.11 standard for wireless LAN. The
group tried to verify the deadlock-freedom and the correctness of the func-
tionalities of the protocol.

— Verification of a shared resource management system

45

Initial values: x =y =0

P I Q x=0]

statel statel
"/)
[x=0]/x=1 x=1]/y=1
e
state2 state2
[x=1]/y=0

[x=1]/x=0 ~——

[x=0]

Fig. 10. Example of Synchronous Transition Model

P (statel}—{ state2—{ statel -—{ state2 - statel |

synchronization

Q [(statel}{statel - state2 - state2 -+ statel |

Fig. 11. Behavior of Synchronous Transition Model

The group tried to verify the same properties as above for an abstract design
of a realistic system. A member of the group is working on development of
the system in his company in practice.

Only a few students completed all the coursework reports so far. Seeing this fact
and the presentations of the group work, the students understood the difficulties
and the outlines of the solutions to the difficulties. We need more time to judge
if the students can use the model checkers efficiently in practice.

4 Related Work

There are a huge number of courses treating model checking easily found by
WWW search engines such as Google with keywords such as “model checking”,
“course” and “lecture”. There are many courses sharing features similar to ours.
The following courses are just a few examples.

— Treating multiple model checkers

46

Atlee [7] treats SMV, LTS A, and Alloy (called Alcoa at that time). Chechik [8]
treats SMV, SPIN, and some software model checking tools. There are many
coursed treating two model checkers.

— Treating synchronization modes of communications

The chapter 10 of [9] describes how to verify systems with synchronous and
asynchronous communications using LTSA.

— Including project work on practical problems

Atlee [7] also provides a project work on a problem of an elevator system.
Mitchell [10] treats several analysis problems of practical security protocol
including model checking.

However, we can find no courses treating various types of problems that re-
quire considerations on various types of modeling strategies including synchro-
nization modes of not only communications but also transitions and various
types of environment modeling strategies. We incorporated such treatments into
our course through our experiences of providing the previous model checking
course. By these treatments, we expect our course succeeds in making the stu-
dents choose tools appropriate to specific problems.

5 Conclusions

In this paper, we described one of our courses on model checking given in the
Top SE program. In particular, we focused on the newly organized “Design Ver-
ification (Advanced)” course. In this course, we built taxonomies of system be-
haviors and made the students apply the model checkers to various design mod-
els each one of which represents each type of the behaviors. The taxonomies
are based on several aspects of system behaviors such as synchronization of
transitions, synchronization of communications, and modeling of system envi-
ronments. In addition, we made the students work on exercises using the various
types of modeling strategies in the taxonomies. The exercises treat various types
of problems, too. We expected that the students can finally find or create a new
tool for themselves and judge if the tool is more appropriate to the problems.

As described in 3.4, we have not yet completed the evaluations of the achieve-
ments of this course. We will carry out them by analyzing the coursework re-
ports and the questionnaires given to the students. Next, we will improve the
course on the basis of the analysis as well as the other related courses of Top SE
including those in the Model Checking course series.

47

References

10.

. Honiden, S., Tahara, Y., Yoshioka, N., Taguchi, K., H.-Washizaki: Top SE: Educating super-

architects who can apply software engineering tools to practical development in Japan. In:
Proc. of ICSE 2007. (2007) 708-717

. Holzmann, G.J.: The SPIN model checker: Primer and reference manual. Addison Wesley

(2004)

McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA (1993)

Magee, J., Kramer, J.: Concurrency: State Models & Java Programs, Second Edition. John
Wiley & Sons (2006)

. Carver, RH., Tai, K.C.: Modern Multithreading : Implementing, Testing, and Debugging

Multithreaded Java and C++/Pthreads/Win32 Programs. Wiley-Interscience (2006)
Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proc. of ICSE’99. (1999) 411420

. Atlee, J.: Automated analysis of specifications.

http://se.uwaterloo.ca/ jmatlee/746/ (2000) Lectures in University of Wa-
terloo, School of Computer Science.

Chechik, M.: Automated verification. http://www.cs.toronto.edu/ chechik/
courses07/csc2108/index.html (2007) Lectures in University of Toronto, Depart-
ment of Computer Science.

Magee, J., Kramer, J.: Concurrency: State models & java programs slides.
http://www.doc.ic.ac.uk/” jnm/book/

slides.html (2006) A set of lecture notes for Chapters 1-10 of the book.

Mitchell, J.: Security protocols. http://www.stanford.edu/class/cs259/
index.html (2006) Lectures in Stanford University, Department of Computer Science.

48

Model Checking Education for Software Engineers in
Japan

Hideaki Nishihara!, Koichi Shinozaki?, Koji Hayamizu3, Toshiaki Aoki?,
Kenji Taguchi®, Fumihiro Kumeno®%

1 Research Center for Verification and Semantics
National Institute of Advanced Industrial Science and Technology(AIST)
2 The Kansai Electric Power Co., Inc.
3 Melco Power Systems Co., Ltd.
4 Research Center for Trustworthy e-Society
Japan Advanced Institute of Science and Technology
5 Grace Center, Information Systems Architecture Research Division,
National Institute of Informatics
6 Mitsubishi Research Institute, Inc.

Abstract. This paper is the preliminary report of a joint research project on ad-
vocacy of a Body of Knowledge on Model Checking being carried out by six or-
ganizations which deliver model checking courses to software engineers in Japan.
In this paper we will explain the main objective of the project and report the eval-
uation results of our model checking programs.

1 Introduction

Model checking has been used as a verification methodology for hardware and
software systems and taught in computer science and software engineering cur-
ricula mostly at higher education. On the other hand, our organizations, National
Institute of Advanced Industrial Science and Technology (AIST), Melco Power
Systems Co., Inc. (MPS), Japan Advanced Institute of Science and Technology
(JAIST) and National Institute of Informatics (TOPSE) have been delivering
various courses on model checking to software engineers over the years. Our
programs have very strong focus on practical aspects on model checking, which
make ours different from those in academia.

Formal methods have been recognized as a rigorous software development
methodology for safety critical systems and it is now recommended to be used
in safety and security areas such as functional safety (IEC 61508) [2] and se-
curity assurance (ISO/IEC 15408) [1]. Particularly model checking is attracting
software engineers as a rigorous verification methodology for system develop-
ment and we have been meeting their demands by providing education courses,
consultancy works and system developments using this technology.

49

We started our joint research project to standardize courses on model check-
ing and soon realized that model checking education was still not mature yet due
to lack of curriculum guidance based on a description of knowledge, which cov-
ers the whole area of model checking. SWEBOK standardized by IEEE CS and
ACM for software engineering education [3] is too broad and model checking
is only referred in Validation and Verification so that it is largely insufficient for
our purpose. This observation motivated us to work on the Body of Knowledge
on Model Checking (MCBOK). A precursor of this kind of BOK in Formal
methods could be found in a work by Oliveira [8]. He presented a survey on
the undergraduate curricula on formal methods as a part of FME-SoE (Formal
Methods Europe, subgroup on Education). The paper shows a wide variety of
formal methods courses in Europe, but does not present a well structured body
of knowledge on formal methods. It is unfortunate that there has not been any
follow-up activity from this group since then, even the demand for education of
formal methods is becoming more important than it has ever been.

In this paper, we will report the first result of our joint project, i. e., eval-
uation of each courses based on student feedback. The paper is organized as
follows. The next section briefly explains each course delivered by AIST, MPS,
JAIST and TOPSE. Section 3 presents evaluation results based on question-
naires taken by each course, and in Section 4, we will conclude the paper.

2 Model Checking Courses

This section briefly explains four courses on model checking offered by each
organization. Although these organizations deliver their courses independently,
several commonalities can be found in them.

— There are many common topics (summarized in Table 1). In particular fun-
damental theories are dealt with in each course.

— Each course aims at software engineers, who have experience in software
development.

— A special emphasis is placed on practical skills and knowledge. Each course
mainly teaches laboratory works, tool support, and good practices.

2.1 AIST

CVS/AIST (Research Center for Verification and Semantics, National Institute
of Advanced Industrial Science and Technology) was founded to promote For-
mal Methods as standard verification methods, and CVS/AIST has had experi-
ences in applying model checking in industries. As a direct way to support the

50

Table 1. Courses Summary

Common topics Different topics
Tools AIST:
- Spin - Differences between LTL and CTL
- SMV - Composition and Shared variables
ConFuHency - Kripke structure transformation
Logics - Empty word problem
- LTL - Bounded model checking
- CTL NII:
Property - Timed automaton
- Safety .LTSA
- Liveness MPS
- Fairness - Verification of practical systems
Abstraction

- Abstraction map

- Preservation theorem

- Data abstraction

- Predicate abstraction
Verification process

Theory

- Finite/Buchi automata

- Labeling(CTL ModelChecking)

activity, we have been developing a model checking training course series for
engineers for technology transfer and promotion.

Courses in the series aim to teach principles and experiences of model check-
ing. Many parts of courses are based on examples, and some of them are san-
itized materials taken from our experiences in industries. In the courses tool-
dependent descriptions and knowledge are avoided, thus every example in the
courses is checked by more than one tool (precisely they are NuSMV [7] and
SPIN [4]).

The series consists of the following three courses: the elementary course, the
intermediate course, and the advanced course. The elementary course gives an
overview of model checking and a skill to exercise model checking procedures.
The intermediate course gives some typical techniques in model checking: be-
haviours in some kinds of products of models and abstraction of models. The
advanced course deals with some search algorithms to give knowledge about
efficient verifications.

These courses take three or four days to teach appropriate materials to stu-
dents at each level.

51

2.2 JAIST

Recently, keywords ‘formal methods and model checking’ are attracting engi-
neering in Japanese industry. However the details of those technologies are not
known well, and the keywords alone are spreading in the industry. JAIST rec-
ognizes that providing such information about advanced technologies to them
is one of its mission. This is our motivation to hold seminars. Accordingly, the
objective of the seminar is that its participants become to identify whether those
technologies are useful in their fields or not.

Though there are many model checking tools, we focus on one of them,
SPIN model checker [4], in the seminar. This is because concurrent processes of
SPIN are similar to multi-tasks of RTOS(Real-Time Operating Systems) which
is used in embedded software. Moreover, the syntax of Promela, which is the
input language of SPIN is similar to that of imperative languages like C. We
think that those facts make it easier to learn model checking technologies for
engineers in the industry.

Target participants of our seminar are engineers in the field of embedded
systems. We think that it is important to show successful examples using tech-
nical terms appearing in embedded system developments. Thus, we show ex-
amples from the fields of system programming and protocol, for instance, mu-
tual exclusion, scheduling and alternating bit protocol. These ones are already
known examples where model checking effectively works. The number of the
examples used is about 90, and their total lines of code is about 4,000.

2.3 TOPSE

The Top SE program is a non-accredited course at Masters level fully funded by
the government and is operated through a close collaboration between industry
and academia at the National Institute of Informatics. The overview and the
curriculum design of the whole program are discussed in [S]. We deliver the
following five courses on model checking: Model Checking Foundations, Model
Checking Applications, Real-time Model checking, Software Model checking,
and Modelling and verification of concurrent models. These courses focus on
efficient use and proper application of model checking tools that use automata
theory, specifically SPIN [4], SMV [7], LTSA [6] and FDR. The key learning
objectives of the Foundations and Applications courses are to learn how to detect
and correct faults in design specifications in UML state machine models. More
detailed explanation was presented in [5].

52

24 MPS

MPS runs an in-house curriculum which aims to teach practical techniques of
model checking. We especially focus on the practical side of the technology,
and thus we put a higher priority on the practical techniques than on the theory
in the curriculum. The objective of the curriculum is to give such a skill to
engineers so that they can apply model checking to actual software development
immediately.

The curriculum consists of the following three courses: the basic course, the
application course, and the practice course. In the basic course, temporal logic
and state transition systems are explained with lectures and exercises. The appli-
cation course and the practice course are mainly composed of laboratory works
in which verifications of flow charts and source codes are taught. Especially,
in the practice course, the course materials are taken from softwares developed
by the course participants themselves. We use NuSMV [7] in our curriculum. In
addition, in the application course and the practice course, we use a GUI tool for
NuSMYV ”Support Software for Model Checking” which was jointly developed
by The Kansai Electric Power Co. and MPS. The aim of the tool is to make the
hurdle of applying model checking lower as much as possible when it is applied
to actual software development, by reducing burdens in using the bare tool.

3 Evaluation and Observation of Questionnaires

In this section, we will summarize the results of questionnaires carried out by
four organizations in terms of understandability, usefulness and feasibility. De-
tailed results are shown in Appendix, and Table 2 shows their summary.

Questionnaires were taken before we started working on this joint project so
that we used different questionnaire forms. However some questions are shared
and fundamental by them. We pick from practical issues: the degree of under-
standing of the tools and techniques taught, the usefulness of the tools and tech-
niques to students’ own problems, and feasibility of the techniques to be used
in the industrial context. In summarizing the results of questionnaires we recog-
nize necessities for standardizing questionnaires as well as the curriculum, and
thus we notice that we will make a common questionnaire form.

Table 2 shows the result of their shared and fundamental questions. Each
question has some choices which represent the degree of goodness and badness,
and the number of the positive answers among them are only shown, that is,
sums of numbers presented in the boldface in Table 3. The understandability,
usefulness and feasibility stand for the number of the participants who could
understand the contents of each course, the participants who feel that the model

53

Table 2. Questionnaire Results

| Courses [Students [Understandability [Usefulness [Feasibility ‘
AIST (elementary) 75 59(79%) 70 (93%) N/A
AIST (intermediate) 24 7 (29%) 24 (100%) 18 (75%)
TOPSE (foundations) 36 22 (61%) N/A 26 (72%)
TOPSE (applications) 7 5(71%) N/A 5(71%)
JAIST 61 58 (95%) 54 (89%) 43 (70%)
MPS (in-house training) 13 10 (77%) N/A 10 (77%)
[Total [216 | 161/216 (74%) [148/160 (93%)[102/141 (72%) |

checking is useful in their fields, and the participants who feel that the model
checking can be practically feasible in their fields respectively.

On understandability, most of the courses mark high scores. the AIST in-
termediate course takes lower points since the contents were rather theoretical
compared with other courses. In addition, it must be noted that the results ob-
tained in the TOPSE are somewhat different from other courses due to the fact
that participants of the program come to learn not only model checking courses
but also some other courses such as software architecture and requirements en-
gineering. Even taking these backgrounds of each course into account, we can
observe that model checking is not so difficult for engineers to learn. The scores
of the usefulness and the feasibility have also high similarly to the understand-
ability. These results show that the Japanese industry has a potential to appreci-
ate model checking, and that model checking is accepted as a practical method
in Japanese industry.

We would like to quote some notable comments from the free description of
the questionnaires. Many of the participants were surprised at the analysis power
of the model checking tools as they know that concurrent and non-deterministic
behaviour of the systems is very hard to analyze by hand. On the other hand,
some participants were curious about how the model checking tools are inte-
grated into their own system development processes. Unfortunately, we do not
have suitable answers for this comment right now because the software pro-
cesses to apply the model checking tools are not established yet. One way to
meet this request is that we show successful examples to them. Making such
examples for the education is one of our future works.

These results imply that teaching the model checking technologies to the
engineers are fruitful. They were convinced of the relevance to learn the usage
and application of the tools. On the other hand, they did not feel that to learn
the theory of the model checking even though the theory exists behind the tools.

54

They might be just interested in how the model checking tools are taken into
their daily works. However, we still believe that teaching the tools to the engi-
neers is important. Though, right now, their interest is the usage of the tools, the
interest will be extended to advanced topics like the theory and principle around
the tools. The model checking has the limitations in some senses such as state
explosion problems and descriptive power. Those limitations would be the mo-
tivation to learn technologies which are complement with the model checking
and more advanced issues.

In summary, the overall score of feedback from the participants are very
positive. We can conclude that our courses are well accepted by our participants.
We hope that both the industries and academia tackle practical problems not
only by taking engineering practices but also scientific approaches into their
education programs.

4 Future Direction

As described the previous section, our past activities show participants’ interests
and their understanding for model checking. Our courses explained in Section 2
have no or a few vacant seats every time, and indeed we have over 200 respon-
dents of questionnaires. We can consider that model checking is a noteworthy
technology in Japan. It had not been thought that applying model checking to ac-
tual software developments was realistic, but questionnaire results show us it is
not true now. There are many participants who comment that they want to apply
model checking to actual software development with enough knowledges. We
can see from the fact that many people in Japanese industry are understanding
applicability of model checking and want to introduce it to software develop-
ment processes.

On the other hand, appropriately considered education programs are neces-
sary to learn model checking. Such programs should include theoretical back-
grounds, since model checking is based on mathematics and logics. Moreover
they should include how to use tools efficiently and successful examples in
which model checking is applied to software development processes, since Japanese
industry is sure to want them. But now every educational organization develops
curricula and materials in its own purpose. A sufficiently adaptable and tidy
curriculum is needed that considers both of industry’s wants about usage and
applications, and theories dealt with at appropriate levels.

In the state described above, in order to let model checking spread in in-
dustry, it is necessary to prepare an education program for software engineers,
working as a reference. As a collaboration with industry and academia, we plan
the following projects for the program:

55

1. making an MCBOK,
2. making a reference curriculum of model checking, and

in this financial year, and further

— improving our MCBOK and curriculum by reviews in public, and
— making a system to certifying the skill

in future.

Good curricula should be based on wide knowledge and practices in the
subject, including theories, applications, and successful examples. These knowl-
edge have not been summarized yet, and thus we will make a model checking
body of knowledge (MCBOK) at first. The next is to make a curriculum based
on the MCBOK. With MCBOK, one can construct various appropriate curric-
ular on model checking and teach it as to various needs and requirements in
industry. Our curriculum will be for software engineers, and it will be a ref-
erence. It will make possible to compare several curricula (including our own
ones) strictly, by mapping them to the reference curriculum. It will also make it
possible to cooperate in educations or training in model checking among edu-
cational organizations. The MCBOK and the reference curriculum will make a
skill in model checking clear, and moreover engineers having a skill in model
checking will be certified by them.This certification will encourage software en-
gineers to learn about model checking, and will contribute to standardization of
model checking for industry.

5 Acknowledgments

The Top SE program is fully supported by the Special Coordination Funds for
Promoting Science and Technology, Fostering talent in emerging research field
by Ministry of Education, Culture, Sports, Science and Technology, Japan.

We thank Hiroki Takamura and Satoru Yoshida for valuable comments.

References

1. ISO/IEC 15408. Information technology - Security techniques - Evaluation criteria for IT
security - Partl, Part2 and Part3. ISO/IEC, 2005.

2. IEC 61508. Functional safety of electrical/electronic/programmable electronic safety-related
systems. Bureau Central de la Commission Electrotechnique International, 2000.

3. A. Abran, J. W. Moore, P. Bourque, and R. Dupuis. Guide to the Software Engineering Body
of Knowledge 2004 Version SWEBOK. 1EEE, 2004.

4. G.J. Holzmann. The SPIN model checker: Primer and reference manual. Addison Wesley,
2004.

56

5. Shinichi Honiden, Yasuyuki Tahara, Nobukazu Yoshioka, Kenji Taguchi, and Hironori
Washizaki. Top se: Educating superarchitects who can apply software engineering tools to
practical development in japan. In ICSE, pages 708-718. IEEE Computer Society, 2007.

6. J. Magee and J. Kramer. Concurrency: State Models & Java Programs, Second Edition. John
Wiley & Sons, 2006.

7. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA, 1993.

8. José Nuno Oliveira. A survey of formal methods courses in european higher education. In
C. Neville Dean and Raymond T. Boute, editors, Teaching Formal Methods, volume 3294 of
Lecture Notes in Computer Science, pages 235-248. Springer, 2004.

A Questionnaire in detail

In this section we show detailed informations of our questionnaires(they are
summarized in Section 3): concrete questions, concrete choices, results, and the
ratios of positive answers.

In Table 3, AIST(E), AIST(I), TOPSE(F), and TOPSE(A) mean the courses
AlIST(elementary), AIST(intermediate), TOPSE(fundamental), and TOPSE(application)
respectively. The column marked by (A) means the number of answers, and ev-
ery datum which we regard as a positive answer is presented in the boldface. The
column marked by (B) means the ratio of the positive answers to the population.

Notice that the numbers of vacant answers are not shown.

57

Table 3. Detailed Questionnaire Results

Understandability
Question ‘ Choices ‘ (A) ‘ B)
AIST(E) |How was the course level? too easy/easy 4
appropriate 55
difficult/too difficult 16| 59/75
AIST(I) How was the course level? too easy/easy/bit easy 7
bit difficult/difficult/too difficult 16| 7/24
TOPSE(F) |Could you catch all the contents? |yes/mostly yes 22
neither yes nor no 7
mostly no/no 6| 22/36
TOPSE(A) |Could you catch all the contents? |yes/mostly yes 5
neither yes nor no 2
mostly no/no 0 51
JAIST How much could you understand? |very well/mostly all 58
could follow 1
little/couldn’t understand 2| 58/61
MPS How much do you understand? very well/mostly all 10
average 3
little/couldn’t understand 0| 10/13
Usefulness
AIST(E) |How do you feel about the course?|very useful/useful 70
not useful 0f 70/75
AIST(I) How do you feel about the course?|very useful/useful/bit useful 24
bit useless/useless/very useless 0| 24/24
TOPSE(F) |(N/A) - -
TOPSE(A) [(N/A) - -
JAIST How do you feel about the course? |very useful/useful 54
average 2
useless/very useless 5| 54/61
MPS (N/A) f R
Feasibility
AIST(E) [(N/A) - -
AIST(I) Do you consider applying MC yes/maybe 18
to your job? maybe not/no 1| 18/24
TOPSE(F) |Can you apply the course to totally yes/mostly yes 5
your job? partially yes 21
partially no/totally no 4| 26/36
TOPSE(A) |Can you apply the course to totally yes/mostly yes 1
your job? partially yes 4
partially no/totally no 2 57
JAIST How do you feel about feasibility? |directly feasible/indirectly feasible | 43
feasible in future 6
less feasible/not feasible 12| 43/61
MPS How do you feel about feasibility? | very feasible/maybe feasible 10
not feasible, but significant 2
personally
less feasible/not feasible 1| 10/13

58

A simple refinement-based method for constructing
algorithms

Dominique Méry

LORIA Nancy Université
mery @loria.fr

A Introduction

Overview. Event B is supported by the RODIN platform and provides a frame-
work for teaching programming methodology based on the famous pre/post-
specifications, together with the refinement. We illustrate a methodology based
on Event B and the refinement by developing algorithms like for instance com-
puting the shortest distances of a graph, sorting an array by insertion, ... Floyd’s
algorithm is redeveloped and we add comments on the complexity of proofs and
on the discovery of invariant; it should be considered as an illustration of a tech-
nique introduced in a joint paper with D. Cansell[8]. The development is based
on a paradigm identifying a non-deterministic event with a procedure call and
by introducing control states. We discuss points related to our lectures at differ-
ent levels of the university, mainly master. It is also a way to introduce a pattern
used for developing sequential structured programs. The complete development
of Floyd’s algorithm can be found in the document [14] and we will illustrate
our paper with comments of students. The paper will intend to focus on both
Formal Method, namely Event B, and, Education and Training, namely Master
Degree Lectures.

Progamming methodology. The development of structured programs is car-
ried out either using bottom-up techniques, or top-down techniques; we show
how refinement and proof can be used to help in the top-down development
of structured imperative programs. When a problem is stated, the incremental
proof-based methodology of event B[7] starts by stating a very abstract model
and further refinements lead to finer-grain event-based models which are used
to derive an algorithm([3]. The main idea is to consider each procedure call as
an abstract event of a model corresponding to the development of the proce-
dure; generally, a procedure is specified by a pre/post specification and then the
refinement process leads to a set of events, which are finally combined to ob-
tain the body of the procedure. The refinement process can be considered as an
unfolding of calls statements under preservation of invariants. It means that the
abstraction corresponds to the procedure call and the body is derived using the

59

refinement process. The refinement process may also use recursive procedures
and supports the top-down refinement. The procedure call simulates the abstract
event and the refinement guarantees the correctness of the resulting algorithm.
A preliminary version[8] introduces ideas on a case study and provides an ex-
tended partial abstract of the current paper.

Proof-based Development. Proof-based development methods|[5, 1, 13] in-
tegrate formal proof techniques in the development of software systems. The
main idea is to start with a very abstract model of the system under develop-
ment. Details are gradually added to this first model by building a sequence of
more concrete events. The relationship between two successive models in this
sequence is that of refinement[5S, 1]. The essence of the refinement relationship
is that it preserves already proved system properties including safety properties
and termination. A development gives rise to a number of, so-called, proof obli-
gations, which guarantee its correctness. Such proof obligations are discharged
by the proof tool using automatic and interactive proof procedures supported
by a proof engine[4]. At the most abstract level it is obligatory to describe the
static properties of a model’s data by means of an “invariant” predicate. This
gives rise to proof obligations relating to the consistency of the model. They
are required to ensure that data properties which are claimed to be invariant are
preserved by the events of the model. Each refinement step is associated with
a further invariant which relates the data of the more concrete model to that of
the abstract model and states any additional invariant properties of the (possibly
richer) concrete data model. These invariants, so-called gluing invariants are
used in the formulation of the refinement proof obligations. The goal of a event
B development is to obtain a proved model and to implement the correctness-
by-construction[12] paradigm. Since the development process leads to a large
number of proof obligations, the mastering of proof complexity is a crucial is-
sue. Even if a proof tool is available, its effective power is limited by classical
results over logical theories and we must distribute the complexity of proofs over
the components of the current development, e.g. by refinement. Refinement has
the potential to decrease the complexity of the proof process whilst allowing for
traceability of requirements. The price to pay is to face possibly complex math-
ematical theories and difficult proofs. The re-use of developed models and the
structuring mechanisms available in B help in decreasing the complexity.

Education and training. The best way to convince your students that formal
methods are something good for you, and then for them, is to apply the medicine
to yourself. However, I will be provocative and base my teaching method on the
famous quastion of the donkey who is not thirsty and the problem is to convince
him to drink. According to the classical leitmotiv, we do not give water to a
donkey who is not thirsty. Now, you understand that students may be consider

60

as donkeys and you should warn that donkeys are very strong and very helpful.
If a farmer wants to give water to a donkey, and if the donkey does not want
to drink, the best way is to find another donkey who is drinking water, because
he enjoys drinking water. The drinking donkey will make the environment full
of happiness and the non-drinking donkey will finally drink, because he under-
stands that his neighbour is happy and mer(r)y. Now, back to the paper, and we
apply the principle to teaching formal methods. The drinking donkey is the au-
thor of the paper and the not-drinking donkey is a student. The water is using a
formal method Event B based on sets theory and generalized substitution. The
main question is to equip workstations with the software supporting Event B,
namely RODIN and it is quit easy. First, after some clicks on the web, students
can get the RODIN platform. Second, I give lectures with a video projector and
students can check themselves that what I am saying and doing is also doable
by them.

The teacher should be able to illustrate concepts using the tool that students
will use. The use of set theory is very convenient, since it provides another
way to model data. Students should model and not only program. The challenge
is clearly to teach them how abstract should be a model and to have realistic
case studies. If you use a theorem prover, you should be a demonstration of
the feasibility of this approach and not only preaching that theorem provers are
useful. Using Event B, two concepts emerge during the first lecture: abstraction
and refinement. The most difficult question is to state when a model is a good
abstraction and what is a model. Now, we have to consider case studies that
appear to be tractable and which are sufficiently complex to require a formal
development.

We consider case studies which are mainly sequential algorithms, when
completely developed. We have improved the expression of the methodology
introduced by Cansell and Méry [8] by formalizing the different step in a global
schema or pattern [14]. We introduce the general view of the pattern as it was
expressed in [14].

B The modelling framework

This paper is based on concepts of the Event B modelling language developed by
J.-R. Abrial[2, 7]; it us the purpose of thos paper to outline the general methodol-
ogy we are applying. The ingredients for describing the modelling process based
on events and model refinement can be found in [2, 7]. We assume that the goal
is to solve a given problem described by a semi-formal mathematical text and we
assume that the problem is defined by a precondition and a postcondition[13].
The modelling process starts by identifying the domain of the problem and it

61

is expressed using the concept of CONTEXT. A CONTEXT PDB (see Fig-
ure 1) states the theoretical notions required to be able to express the problem
statement in a formal way. The CONTEXT PB declares

— adomain D which is the global set of possible values of the current system.

— alist of constants z, which is specifying the input of the system under devel-
opment, P, which is the set of values for « defining the precondition, and @),
which is a binary relation over D defining the postcondition of the problem.

— a list of axioms assigns types to constants and adds knowledges to the
RODIN environment; for instance, the axiom 5 states that there is always
a solution y, when the input value z satisfies the precondition P.

® It appears that the set-theoretical notation 1 is well known by french
students; they have used notations like sets, relations, bijections ... The main
problem is that they are often willing to program rather than to model. The first
exercises helps them to learn the notation and the link between the keyboard
and the screen in the RODIN platform. The ECLIPSE-like interface is not a
problem for the student who can get the software through the web. Moreover,
we maintain a MOODLE chapter for lectures and students can find lectures
notes, exercises and archives containing Event B models. On the mathematical
and logical concepts, students have lectures on computability and logical the-
ories. They have already heard of axioms and theorems,; moreover, the sequent
calculus [10] is taught by colleagues and the & symbol appears to be friendly.
They have not derived many proofs and RODIN provides a very nice interface
for deriving theorems from axioms. The cartsian product of two sets is denoted
A X B and a member of the set is denoted x — y with x € A and y € B;
ussually, we use the notation (x,vy) instead of x — y. This point is not a real
problem for computer scientists, since they used to learn new languages very
often. The cartsian CONTEXT PB is a simple set-theoretical reformulation of
the pre-and-post-specification. ©

A CONTEXT may include a clause THEOREMS containing properties deriv-
able in the theory defined by sets, contants and axioms; theorems are discharged
using the proof assistant of the tool RODIN. The underlying language is a
(typed) set-theoretical language partially given in Table 1. When an expression
FE is given, a well-definedness condition is generated by the tool; this point al-
lows us to check that some side conditions are true. For instance, the expression
f(x) generates a condition as = € dom(f).

® The well-definedness condition is a crucial issue in computer science.
This point provides a way to understand the termination of programs. It is also
the opportunity to separate the generous programming from the defensive pro-
gramming. We can also refered to the programming-by-contract methodology

62

CONTEXT PB

SETS
D

CONSTANTS
x? P7 Q

AXIOMS
arml:x € D /% xbelongs to a general set of the problem domain */
arm2: P C D /xPisaset defining the precondition */
arm3:Q C D x D /xQisabinary relation over S defining the postcondition x*/
arm4 :x € P /*x is supposed to satisfy the precondition P */
axmb :Va-a € P = (3b-a+— b € Q) /x thereis at least one solution for each data x
satisfying the precondition P */

END

Fig. 1. Context for modelling the problem PB

and have a real instantiation of the methodology. The CONTEXT is used to
provide a general expression of the pre/post-specification and it is also very
usefull for teaching the link between the expressiveness of a language with re-
spect to a set-theoretical language. Skolem functions are not mentionned but in
research master students, I am refering to this concept. ©

The first model provides the declaration of the procedure call. Variables y
are call-by-reference parameters, constants x are call-by-value parameters and
carrier sets s are used to type informations and also for defining a generic pro-
cedure:

procedure call(x; var y)

~

precondition y = yo A Init(yo,x, D) A P(x)
postcondition Q(x,y)

® The main question is to link programming concepts to logical concepts;
the approach is simply a formulation of the translation and the call is considered
as an event. In fact, it is the instance of the call which is an event. The expression
of the contract is given in an algorithmic language. We state that the contract
can be expressed either in Spect or in JML. Students get the feeling that the
contract is not only a simple statement but we should check conditions called
proof obligations. Static checking and dynamic checking are now expressed.

63

Name Syntax Definition
Binary relation st P(s x t)
Composition of relations| 71; 72 {z,ylr€a N ye€bL A
Jz(z€c AN z,z€T1 AN 2,y Er2)}
Inverse relation rt Hz,ylz €Pla) A yePB) A y,xz€r}
Domain dom(r)| {ala€es A Tb(bet N a—ber)}
Range ran(r) dom(r~1)
Identity id(s) {z,ylres N yes N z=y}
Restriction s<r id(s); r
Co-restriction > s r; id(s)
Anti-restriction s < (dom(r) —s)<r
Anti-co-restriction |7 - r > (ran(r) — s)
Image r{w] ran(w <)
Overriding qg < (dom(r) < q)Ur
Partial Function s+t {rireset A (r~Yr) Cid@®)}

Table 1. Set-theoretical notation for event B models

Parameter passing methods are chosen as simple as possible; we have given a
way to separate pass-by-value and pass-by-reference. The role of constant in
Event B is clearly played by pass-by-value parameters. ©

Figure 2 describes the complete model for the problem P B; it is expressd
by a generic procedure stating the pre/post-specification. The term procedure
can be substituted by the term method. The current status of the development
can be represented as follow:

call(x,y) CCLllﬂei}emPREPOST SEES

PB

The statement of a given problem in the Event B modelling language is
relatively direct, as long as we are able to express the mathematical underlying
theory using the mechanism of contexts. The existence of a solution y for each
value z is assumed to be an axiom; however, it would be better to derive the
property as a theorem and it means that we should develop a way to validate
axioms to ensure the consistency of the underlying theory.

® The translation from a programming/algorithmic language into Event B
expressions is not a very difficult task. However, the expression x : |(P(x,x') is
very powerfull and we can produce events corresponding to instances in a mec-
ahnical way. We separate sets from assertions using the = operation. It is also
an opportunity to rember computability results and to ask questions on the pos-
sibility to provide a program from the specification. The generalized substitution
helps us to warn students on the frame problem. ©

64

HOARE logic[11] provides a very interesting framework for dealing with
specifications an development and our work shows how the ingredients of HOARE
logic can be used to provide a general framework for developing sequential pro-
grams correct by construction. Event B and the RODIN plateform can be used
to teach basic notions like pre and postconditions, invariant, verification and
finally design-by-contract.

® At this point, we can recall the essence of the HOARE logic, which can
be seen as a design logic for deriving programs. The design-by-contract ap-
proach is clearly supported by our framework. Students have got some lectures
on semantics and logics of programs, however, they have not really related the
algorithmics lectures to the semantics lectures. Moreover, concepts are becom-
ing useful for understanding our approach. ®

MACHINE PREPOST
SEES PB

VARIABLES
Y

INVARIANTS
invl:y €D

EVENTS

INITIALISATION
BEGIN
actl :y:€ D
END

EVENT call
BEGIN
actl:y:|(x € PA z—y €Q)
END

END

Fig. 2. Machine defining the model for modelling the problem PB

The call-as-event pattern is then derived and we give some short explana-
tions on its structure and components. The call instance call (x,y) is consid-
ered as an event which is then refined and the next diagram gives the global pro-

65

cess of the methodology. If an event is deterministic, it is translated into a code
and, if it is non-deterministic, it is considered as a call of another procedure. We
should start a new development following the same schema. The SEES relation
provides a logical and mathematical framework for the definition of the event
modelling the call. The REFINEMENT relation is inherited from Event B and
the mapping operator is simply a reformulation of the REFINEMENT model,
which contains a control variable. The control variable provides a way to derive
an algorithmic version of the REFINEMENT model. The diagram is divided
into two parts:

— the left part is the world of programming with pre/post-specification
— the right part is the world of modelling in Event B

call—as—event SEES
call (x,y) — PREPOST — PB
l SEES
call REFINEMENT
mapping

call ~— MODEL

® The diagram was introduced on a simple case study, namely the compu-
tation of binomial coefficients. It is a dynamic programming problem and it is
easy to explain how the function is defined using Pascal’s triangle. You should
remember that we want to give the good water to donkeys, who do not know the
fantastic quality of the water. Hence, a picture is a very good way to commu-
nicate. Main difficulties are in the definition of the PBCONTEXT context and
the discovery of a computation principle translated into the REFINEMENT
model. The call-as-event operator and the mapping operator are defined in a
systematic way. We are developing tools for implementing both operators. ©

On the next section, we will illustrate the application, of the pattern to sev-
eral examples of algorithmics.

C Constructing algorithms with the call as event pattern

® The pattern is explained to students who have got 8 hours lectures on Event
B. The problem is to show that we can solve problems which are complex. The
classical sorting problem or the classical graph-theoretical problems are good
candidates. However, we should recall that we prove every model and we should
reach a totally proved model using the RODIN platform. We have developed
three algorithms using the pattern and we describe the technical details. We
were surprised that students were discovering a bug in one model: we were
using an old version and we did not correct it. ©

66

C.1 Example of the binomial coefficients

The computation of binomial coefficients is based on Pascal’s triangle and we
define it as a partial function c. Data n and k are defined in the context called
BNO. The call bn(n, k, vcoef) is translated as an event which is simply setting
veoef to ¢(n +— k). We have got three elements of the diagrams.

® Students can be driven carefully from the call statement to the expres-
sion of the function c. Pascal’s triangle is very usefull and provides a graphical
guide for writing d’s definition into BNQ. We have introduced another graph-
ical structure for supporting the case analysis related to the values of n and k
and the introduction of control flow. ©

The refinement BN 2 produces a collection of events analysing the different
steps of the computations required for computing the value of ¢(n — k).

® We tell to students that the world of mathematics is defining a value
c(n +— k) and the world of computing will derive a process using ¢ and its
definition for producing the same value. It is also the time to talk on questions
of run-time errors, overflow, ... ©
call—as—event SEES

bn (n, k, vcoef) — BNl — BNO
call REFINEMENT
bn o repmng BN2

The refinement introduces three cases for the call instances. Either & is 0, or
k is n, or is neither 0, nor n. Let us consider the difficult case: k& #£ 0 and k& # n:

\ﬂce{1,...n—1}.<§>:(::DJr(zj) (1)

Hence, the main idea is to use the same event for computing (flj) and
(5 j) These events are trasnlated into a recursive call by the mapping; the final
computing event is computing the value of the sum of the two values. Control
states are simply organizing the computations in a sound order. The invariant
gives the different steps and the different intermediate values namely vtcoe fy

and vtcoe fx:

67

INVARIANTS

invl : [€ LOC

inv3 : vicoefxr € N

invd : vtcoefy € N

inv5 : 1 € {callz, cally, endcalling} =k #0An#A0ANk<n

inv6 : | = cally = vtcoefr =c(n —1— k —1)

inv7 : 1 = endcalling = vtcoefy = c¢(n — 1 — k) ANvtcoefr =c(n — 1 —
k—1)

inv8 : | = end = vcoef = c(n — k)

LOC contains the control states which are containing two values at least
start and end. The refinement produces 42 proof obligations and 2 were man-
ual. The other proof obligations are automatically discharged.

® The example is simple and the function c is easy to define. The invariant
is built by analysing the expression of the computed value. ©

C.2 Example of the insertion sort

Sorting by insertion is developed using several times the pattern and it is based
on the following principle. The problem is to sort an array ¢ between 1 and m,
where dom/(t) = 1..n and m < n. The sorting can be done by sorting the array
from 1 to m — 1 and then to insert the value ¢(m) at the right position in 1..m.

. call—as—event SEES
insert—-sort (m, t, st) — IS1 ISO
SEES
call REFINEMENT

) mapping
insert—-sort ~— 1S2

150 is the context defining the array ¢ and the size of the array, namely n.
151 is a model containing only one event, which is sorting the array between 1

and m in one shot:
sorting

any
Pl
where
grdl: piel.m—1..m
grd2: Yi-iel..m—1=t(pi(i)) < t(pi(i + 1))
then
actl : st:=t;m
end

68

® Students understand the role of the event sorting, which is defining a
pre/post-specification of a sorting algorithm. When we organize the lectures,
we add tutorials and machine sessions for learning notations and learning to
specify an algorithm. For instance, both modules 150 and 151 are reused for
previous exercises. ©

Now, we express in the refinement machine /.52, the essence of the sorting
by insertion. We introduce control points and analyse the problem by cases.

® We draw the two cases on a blackboard and we add the steps for the
effective insertion. During our lectures, we understand that charts, pictures or
diagrams are very good for giving the relationship among control points. These
diagrams are not yet formalised and we will bring this feature in the tool. ©

Either m is 1 when the control is at start and the next control state is end, or
m is greater than 1 and we introduce a control point for calling other procedures.
We use a variable st for storing the sorted array. To make easier the expression,
we use the following predicates:

— sorted(s) means that s os a sorted array.

— permutation(a,b) means that the array a is equal to the array b upto a
permutation of values.

— af(i..j) is the subarray of ¢ from i to j.

— a.b is the concatenation of both arrays a and b.

69

c = start

Am €N
Nt = st
m#1 sorting call m=1
c = start
c=start A\m# 1At =st Am =1
At = st
tosortingcall
Y
c = sortingcall A\m # 1 At = st
sortingcall
sortingm=1
Y
¢ = insertioncall AN m # 1A
st = a.t(m)
Ja. | Apermutation(s(l..m —1),a)
Asorted(a)
insertioncall
c=end Am # 1A
. =end Am = 1A sorted(st(1..
permutation(t, st) A sorted(st) c=enanm sorted(st(1..m)
m#1 m=1
c=-end

Asorted(st(1..m))
Apermutation(st,t)

70

The diagram gives the different events of the refinement model 152; it con-
tains an event called sortingcall, which is sorting the array ¢ between the value
1 to m — 1 nd the event insertioncall which is inserting the value t(m) at the
right position in the array sorted between 1 and m — 1. This last event can not be
translated into an algorithmic expression and should be considered as defining
a new problem which is the insertion of a value in a sorted array. We re-apply
the pattern by starting a new development for solving the insertion problem.

® The reapplication of the pattern shows that the pattern is really central
and is very usefull. Students can practise the top-down development without
toil. We use a diagram for illustrating the insertion of t(m) into the values of
st(1..m — 1). It is an illustration of the reapplication of the pattern. ©

C.3 Example of Floyd’s algorithm

The sp procedure can be derived from the list of events of the model SP2 and
we structure events into conventional programming structures like while or 1 £
statements. J.-R. Abrial[3] has proposed several rules for producing algorithmic
statements. The next diagram gives the complete description of the process we
have followed:

call—as—event SEES
Sp(llalblGIDlFD) - " SP1 > SPO
SEES
call REFINEMENT

mapping

floyd <~— SP2
We do not give more details and we refer to the paper [14] containing the
development of Floyd’s algorithm.

D Concluding Remarks and Perspectives

The main objective of the paper is to show how we can develop a sequential
structured algorithm using a one-step refinement strategy. We have illustrated
the technique introduced by Cansell and Méry in [8] and partially formalized
by Méry [14]. The paper gives hints to use the technique for teaching correct-
by-construction algorithmics using a tool which is clearly a very good mate
for controling the development. You may have questions on the treatment of
arithmetics. The technique of developmment is a top/down approach, which is
clearly well known in earlier works of Dijkstra[9, 13], and to use the refinement
for controlling the correctness of the resulting algorithm. It relies on a more
fundamental question related to the notion of problem to solve. It is also an
illustration of the application of the call-as-event pattern.

71

What we have learnt from the case study is summarized as follows:

. Developing a first abstract one-shot model using pre/post-condition. It pro-
vides the declarations part of the procedure (method) related to the one-shot
model. The basic structure to express is the function d which the key of the
problem. Constants of the model are defined as call-by-value parameters
and variable of the model are call-by-reference parameters,

. Refining the abstract model to obtain the body of procedure. New vari-
ables are defined as local variables. The refinement introduces control states
which provide a way to structure the body of the procedure. We have clearly
the first control point namely start and the last control point namely end.
The diagram helps to decompose the procedure into steps of the call and a
special control point called call is introduced. The main question is to obtain
a deterministic transition system in the new refinement model.

. If there are still remaining non-deterministic events, we can eliminate the
non-deterministic events by developing each non-deterministic event in a
specific B development starting by the statement of a new problem ex-
pressed by the non-deterministic event itself.

. Proof obligations are relatively easy to check because the invariant is written
by a list of properties according to d. Even if the number of manual proof
obligations is high, it was very easy to discharge them using the prover and
to reuse former interactive ones.

. The translation of Event B model into a C program was carried out by hand
and we did a mistake. We forgot that C arrays are starting the index by 0 and
it leads to a bad call. We should mechanize this step to avoid this mistake.

Now, if we have to teach concepts, it is easier to teach how to write concepts

and definitions using notations provided by Event B. You will get a way to check
definitions and the type checker is sometimes cruel, since it recalls that Event
B is typed. We can discuss on many questions using this methodology: coding
of numbers, preconditions, postconditions, invariant, assertions, proofs, ...and
questions can lead to replies which are pertinent because of the proof tool.

Future works will provide more case studies and tools for supporting the link

between models and codes. We aim to enrich the RODIN tools[15] by specific
plug-ins managing libraries of models and implementing new proof obligations.

References

1. J.-R. Abrial. The B book - Assigning Programs to Meanings. Cambridge University Press,

1996.

72

11.

12.

13.

14.

15.

. J.-R. Abrial. B¥: Toward a synthesis between z and b. In D. Bert and M. Walden, editors,

3nd International Conference of B and Z Users - ZB 2003, Turku, Finland, Lectures Notes
in Computer Science. Springer, June 2003.

. J.-R. Abrial. Event based sequential program development: Application to constructing a

pointer program. In FME 2003, pages 51-74, 2003.

. J.-R. Abrial and D. Cansell. Click’n prove: Interactive proofs within set theory. In TPHOL

2003, pages 1-24, 2003.

. R. Back. On correct refinement of programs. Journal of Computer and System Sciences,

23(1):49-68, 1979.

. Dines Bjgrner and Martin C. Henson, editors. Logics of Specification Languages. EATCS

Textbook in Computer Science. Springer, 2007.

. Dominique Cansell and Dominique Méry. The event-B Modelling Method: Concepts and

Case Studies, pages 33—140. Springer, 2007. See [6].

. Dominique Cansell and Dominique Méry. Proved-patterns-based development for structured

programs. In Volker Diekert, Mikhail V. Volkov, and Andrei Voronkov, editors, CSR, volume
4649 of Lecture Notes in Computer Science, pages 104—114. Springer, 2007.

. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
. G. Gentzen. Untersuchungen Uber das Logische Schliessen ou Recherches sur la dé duction

logique. 1955. Traduction de Feys et Ladriere.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12:576-580, 1969.

Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessandro Coglio,
Kathi Fisler, Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jones, Murali Sitaraman,
Douglas R. Smith, and Aaron Stump. Roadmap for enhanced languages and methods to
aid verification. In Fifth Intl. Conf. Generative Programming and Component Engineering
(GPCE 2006), pages 221-235. ACM, October 2006.

C. Morgan. Programming from Specifications. Prentice Hall International Series in Com-
puter Science. Prentice Hall, 1990.

Dominique Méry. Teaching programming methodology using event b. In H. Habrias, editor,
The B Method: from Research to Teaching, June 2008.

project RODIN. Rigorous open development environment for complex systems. http://rodin-
b-sharp.sourceforge.net/, 2004. 2004-2007.

73

Formal Methods for Electronic Government

Jim Davies and Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
http://www.comlab.ox.ac.uk/people/{Jim.Davies, Jeremy.Gibbons}/

Abstract. Electronic government is a challenging domain for software engineer-
ing, with complex requirements involving agility, transparency, accuracy, and
accessibility. The techniques of semantic frameworks—metadata-based, model-
driven development—may help to address these challenges. Data semantics and
model transformations are prime application areas for formal methods, and so
electronic government is an exciting new domain for education and training in
formal methods.

A Introduction

Increasing reliance upon electronic communication, together with the ambitions
and demands of a global information society, means that electronic government
is becoming the expected means of implementation for government policies,
activities, and initiatives. Although considerable progress has been made, the
reputation of public sector information technology remains poor. Most people
can quote at least one high-profile disaster, in which a large electronic govern-
ment project singularly failed to deliver.

The challenges in developing information technology for public sector ap-
plications are in principle no different from those encountered in other large,
enterprise computing initiatives. They are, however, exacerbated by three main
factors: the likelihood of conflict and misunderstanding between different stake-
holder groups; the fact that requirements are linked to changes in policy and leg-
islation; and the expectation that data and processes should be accessible, and
also compatible with those in other initiatives.

We believe that a big step towards addressing these challenges can be made
by integrating ideas from data semantics and model-driven development, an
integration we call a semantic framework. Moreover, we claim that semantic
frameworks both provide an interesting new domain for, and can derive great
benefit from, work in formal methods. This paper sets out our position.

A.1 Electronic government

The term electronic government means more than a literal translation of existing
government services and processes into electronic form: it carries expectations

74

of transformation, often in connection with hopes for a better society. Issues
such as access, transparency, change, democracy, and interaction, suggest that
there may be specific domain challenges in electronic government, with signifi-
cant implications for software design and development. In particular, electronic
government requires a significant degree of formalisation and computerisation
of semantics. The size of the community, the rate of evolution, and the impor-
tance of documentation make it essential that the semantics can be accessed,
maintained, and incorporated into delivered systems without the need for exten-
sive, error-prone manual intervention.

A.2 Challenges

The requirements of electronic government systems are more complex than
those of their commercial counterparts; they are also more subject to change.
Policy reforms or shifts in public opinion may require substantial changes to the
design of a system, changes that may be expensive to make once implementa-
tion is under way. The government of a developed country may be able to afford
such costs, but the government of a developing country cannot. In a commercial
context, it is quite common to find that information system design is shaping
business processes; in electronic government, this is less likely to be acceptable.

It is also more important that these requirements are correctly reflected in the
behaviour of the system. In electronic government, computing systems will do
more than facilitate policy—they will serve as its principal, and perhaps its only,
implementation. This has significant implications not only for the criticality of
development processes, but also for the design of the systems themselves.

In a commercial system, the information pertaining to an individual may
define and constrain that individual as a customer; in a government system, it
may define and constrain that individual as a citizen. The data may be driving
the processes of government as they act upon the individual: there is a greater
responsibility to maintain its correctness and availability over time. After all,
most commercial organisations have competitors, and a dissatisfied customer
may always change provider; that option is not nearly as straightforward when
the provider is the customer’s national government, with a monopoly on their
relationship.

In electronic government, the stakeholders, including the end users, have a
particular relationship to the processes of development and operation: this sys-
tem is being procured, designed, developed, and operated on their behalf, and
at their expense. We might consider there to be an implicit contract, reflected in
the system requirements, similar to that which exists between government rep-
resentatives and the people they represent. This means that the extent to which
requirements are ‘owned by the users’ is far greater, and thus the system must

75

be a better fit for the social processes that it is intended to support, than is of-
ten the case in ordinary enterprise computing. Furthermore, stakeholders may
require more in the way of evidence that the system is in fact doing what is
expected—the implicit contract applies in operation as well as in development.

B Formalisation

The large-scale sharing and integration of data from dynamic, heterogeneous
sources requires computable representations of the semantics of data, and it
is here that a significant part of the challenge lies. Natural language or infor-
mal understanding is sufficient for such a semantics only when the concepts
are straightforward, the community is small or homogeneous, and the period
of time over which understanding must be maintained is short. For complex
problems, heterogeneous communities, or long-running initiatives—all charac-
teristics of electronic government—a more formal approach is required. The
semantics has to be amenable to automatic processing, and this processing has
to be automatically linked to the processing of the data itself. This entails the
faithful representation of data semantics in constructing models, and the ap-
plication of model-driven development in generating system artifacts—queries,
scripts, programs, services, forms, and interfaces—from these models.

B.1 Metadata-based

Robust, trustworthy, and transparent information systems require the careful
consideration and representation of the semantics of the information they record;
a structured, computable representation is essential if we wish to adopt and
maintain rich terminologies across multiple initiatives. Conflicts and misunder-
standings about the semantics of data can be resolved, or at least identified at
an earlier stage, if aspects of structure, functionality, and interpretation are con-
veyed through the use of models. This is standard practice in software engineer-
ing; however, the audience for the model is usually quite restricted, and thus
much of the detail, or semantic metadata, may be left implicit. For electronic
government, it is a requirement that models may be validated, so that public
servants can be held accountable; it is therefore more important that the models
are comprehensive, and that metadata is properly recorded.

B.2 Model-driven

The dynamically evolving context of policy and legislation, the greater require-
ments for accountability and transparency, and the sheer scale of many elec-

76

tronic government initiatives, all encourage the automatic generation of a sys-
tem implementation from more abstract models. Information systems have al-
ways been modelled, but often only informally, using fragments of specifica-
tion, written in natural language, and presented as reports, spreadsheets, and
diagrams. These are partial descriptions, often containing apparent contradic-
tions, and there is no prospect of using these to generate a system automatically.
Yet these are the documents that inform decisions such as those on whether to
proceed, on project scope, on supplier selection, and on contract fulfilment, and
it is here that a semantic framework can start to produce real benefit. Reports
and spreadsheets in which key terms are annotated with a link to agreed ter-
minology, and data elements are annotated with a link to detailed semantics in
a metadata registry, can be concise and unambiguous, while making explicit a
shared understanding of exactly what is required.

In development, more formal models—typically, object models and service
descriptions—can present precise descriptions of structure and functionality in
which data attributes have an accessible, computable semantics, and terms have
an agreed meaning. It may then be possible to determine programmatically—at
the design stage, or after deployment—whether two systems are holding data
that has exactly the same semantics. This is an essential prerequisite to the sys-
tems integration required for ‘joined-up government’, in which central and local
government, different departments and agencies, work together to tackle social
problems.

One way to represent the semantic information required, and to facilitate
programmatic access, is to represent the various aspects of semantics using mod-
els of usage. We can identify three particularly useful kinds of model: ontolo-
gies, models which explain the meaning of a metadata item in terms of named
relationships to other elements; applications, models in which the item appears
in context: for example, in the context of a design document, or a form template;
and transformations, models which explain how data collected against one set
of elements can be transformed to fit another. Although only the first of these
is usually seen as defining or recording meaning, the others also have semantic
import: meanings are sometimes best expressed, and will evolve, through usage.

B.3 Semantic frameworks

The ideas of metadata-based and model-driven development together make what
we call a semantic framework. A practical semantic framework can be defined
in terms of constructs at three different levels: terminology services, metadata
registries, and model repositories. The first level presents a collection of defined
terms, structured in a way that suits one or more possible applications. For ex-
ample, a terminology for education might include terms such as ‘institution” and

77

‘qualification’, record that the terms ‘university’ and ‘high school’ denote par-
ticular kinds of institution, and record also that the terms ‘master’s degree’ and
‘international baccalaureate’ are related in some way to the notion of institution.

The second level presents a collection of metadata elements, each of which
describes a measurement or observation. A metadata registry for education might
include elements such as institution attended, full title of degree awarded, and
result obtained. Each element may be related to one or more terms in the under-
lying terminology, and additional semantic information is provided by informal
explanations of intended purpose and an association with a domain of possi-
ble values. The registry also records relationships between elements, such as
equivalence, specialisation, and versioning.

The third level presents re-usable models for the definition of information
artifacts, such as database schemas, service descriptions, forms, queries, and
reports. A model repository for education might include models of admissions
forms, study transcripts, and spreadsheets for reporting registration and progress
data to national agencies. The fields on the forms, the entries on the transcripts,
and the columns on the spreadsheets may be described, and given computable
semantics, by linking them to the metadata elements in a metadata registry.

In the Software Engineering group at Oxford, we have explored these ideas
in the domain of clinical trial informatics. The CancerGrid project is a con-
sortium involving the universities of Oxford, Cambridge, Birmingham, Belfast
and London, funded by the Medical Research Council with additional support
from Microsoft Research. For the last three years, the consortium has been de-
veloping a common vision for semantic frameworks and model-driven software
engineering, focussed upon software support for the design and operation of
cancer clinical trials. We believe that the ideas are more widely applicable than
clinical trials, or even than health informatics; indeed, we believe that they are a
close fit for the challenges of electronic government.

C Education and training

Formal methods have traditionally been seen as most applicable in limited do-
mains: typically high-integrity, safety-critical, embedded systems. Electronic
government represents an exciting and important new application domain, and
an opportunity to widen the impact of formal methods: the challenges of repre-
senting data semantics — precisely enough to support the automatic generation
of the information systems that manipulate that data — call for the leverage that
only formal methods can apply.

Electronic government exemplifies what is becoming known as the digi-
tal economy [2] — the transformative effects of technology upon society. Suc-

78

cessful developments in such domains necessarily entail a multidisciplinary ap-
proach, taking into account issues of management, user engagement, ethics, se-
curity, and society, as well as the more obvious technical matters of computer
science. The leaders of the digital economy must be broadly educated: it is more
important that they have some appreciation of all of these issues, than that they
are a specialist in one. We see the digital economy as a promising initiative for
widening the scope of education and training in formal methods.

D Acknowledgements

This position paper draws on an earlier paper [1], with contributions from Aadya
Shukla and Steve Harris, and also on long and detailed discussions on the Digital
Economy with Marina Jirotka, Janet Smart, and others at Oxford.

References

1. Charles Crichton, Jim Davies, Jeremy Gibbons, Steve Harris, and Aadya Shukla. Semantics
frameworks for e-government. In Theresa Pardo and Tomasz Janowski, editors,
International Conference on e-Government. ACM, December 2007.

2. EPSRC. Centres for doctoral training in the digital economy. http://www.epsrc.ac.
uk/PostgraduateTraining/NewCentres/DigitalEconomy.htm, March
2008.

79

