GRACE TECHNICAL REPORTS

An Algebraic Approach to Bidirectional Model
Transformation

S.Hidaka Z.Hu H.Kato K. Nakano

GRACE-TR-2008-02 September 2008

CENTER FOR GLOBAL RESEARCH IN
ADVANCED SOFTWARE SCIENCE AND ENGINEERING
NATIONAL INSTITUTE OF INFORMATICS
2-1-2 HITOTSUBASHI, CHIYODA-KU, TOKYO, JAPAN

WWW page: http://grace-center.jp/

The GRACE technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

An Algebraic Approach to Bidirectional Model Transformation

Soichiro Hidaka Zhenjiang Hu
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku
Tokyo 101-8430, Japan
{hidaka,hu,kato} @nii.ac.jp

Abstract

Bidirectional model transformation plays an important
role in maintaining consistency between two models, and
has many potential applications in software development,
including model synchronization, round-trip engineering,
software evolution, multiple-view software development,
and reverse engineering. However, unclear bidirectional
semantics, weak bidirectionalization method, and lack of
systematic development framework are known problems
that prevent it from being practically used. To remedy this
situation, in this paper, we propose a novel algebraic frame-
work for bidirectional model transformation, by integrat-
ing the state-of-the-art technologies on bidirectional tree
transformations and algebraic graph querying. We make a
significant extension from bidirectional tree transformation
to bidirectional graph transformation, and give a power-
ful automatic bidirectionalization method to derive a back-
ward graph transformation from a forward graph trans-
formation. Moreover, we demonstrate how our algebraic
Sframework can support systematic development of efficient
large-scale bidirectional model transformations in a com-
positional manner. Our experimental results show promise
of the new approach.

1 Introduction

Model transformation plays an important role in model-
driven software development, which aims to introduce sig-
nificant efficiency and rigor to the theory and practice of
software development. In model-driven software develop-
ment, models are the key artifacts in all phases of devel-
opment, from system specification and analysis, to design
and testing. The use of models and the application of model
transformations open up new possibilities for creating, ana-
lyzing, and manipulating systems through various types of
tools and languages.

Bidirectional model transformation [25, 2], being

Hiroyuki Kato

Keisuke Nakano
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi
Tokyo 182-8585, Japan
ksk@cs.uec.ac.jp

an enhancement of model transformation with bidirec-
tional capability, is an important requirement on OMG’s
Queries/Views/Transformations (QVT) standard [22] rec-
ommended for defining model transformation languages. It
describes not only a forward transformation from a source
model to a target model, but also a backward transformation
showing how to reflect the changes on the target model to
the source model so that consistency between two models is
maintained. Bidirectional model transformation has many
potential applications in software development, including
model synchronization [2, 27, 12], round-trip engineering
[1], software evolution by keeping different models coher-
ent to each other [20, 8], multiple-view software develop-
ment [13, 11], and traceability and reverse engineering [5].

Despite these promising uses of bidirectional model
transformation in software development, there are still very
few serious practical applications in which bidirectional
model transformation is actually used. There are three
known problems.

First, there is uncertainty over fundamental semantics of
bidirectional transformation. As strongly argued in [25],
there lacks a clear definition of what bidirectional model
transformation means. In practice, a model transformation
may not be bijective, so its backward model transformation
should not be defined merely as an inverse of forward model
transformation. However, if there is no clear semantics of
bidirectional transformation or backward transformation is
not guaranteed to work without harm, no one would seri-
ously use it in their systems.

Second, there is no powerful bidirectionalization method
yet that can be used to automatically derive backward model
transformations from forward model transformations so that
both transformations form a consistent bidirectional model
transformation. Even for simpler tree transformation, it is
known [10, 21, 4] to be impractical in the sense that they ask
users to write both forward and backward transformations
(which may be very big) and to guarantee their bidirection-
ality. Although some attempts have been made [8, 27], only
the part that has direct one-to-one correspondence between

Model Transformation in UnQL+
(Compositional and Functional)

~

Desugaring

~
‘ Graph Algebras

(Graph Construction and Structural Recursion)

Bidirectional Evaluator
* Bidirectionalization
* Fusion Optimization

Figure 1. An Algebraic Framework for Bidi-
rectional Model Transformation Framework

the source and target models can be transformed back and
forth.

Third, and very important, there lacks a systematic way
to develop bidirectional model transformation in large. As
indicated in the conclusion in [9], most model transforma-
tion languages [9, 7] based on graph transformations have
weak composition mechanism, which makes them hard
to support systematic development of model transforma-
tions in the large [18]. The existing examples of bidirec-
tional model transformations are somehow too simple to
show both challenges and advantages of bidirectional model
transformation.

In this paper, we propose a novel algebraic framework
for bidirectional model transformation to solve these prob-
lems, by integrating two state-of-the-art techniques: bidi-
rectional tree transformations [10, 21, 4, 16] in the program-
ming language community, and the algebraic graph query-
ing language UnQL [6] intensively studied in the database
community. We make a significant extension from bidi-
rectional tree transformation to bidirectional graph trans-
formation, and give a powerful automatic bidirectionaliza-
tion method to derive backward graph transformations from
a forward transformation in UnQL* [14], an extension of
UnQL for graph transformation.

Figure 1 depicts an architecture of our algebraic frame-
work. A model transformation is described in UnQL™,
which is functional (rather than rule-based as in many exist-
ing tools) and compositional with high modularity for reuse
and maintenance. The model transformation is then desug-
ared to a core graph algebra which consists of a set of con-
structors for building graphs and a powerful structural re-
cursion for manipulating graphs. This graph algebra can
have clear bidirectional semantics and be efficiently evalu-

ated in a bidirectional manner. Our main technical contri-
butions can be summarized as follows.

e We made the first attempt of adapting an existing well-
established graph querying language for model trans-
formation, whose importance has not been recognized
so far. We show that UnQL, a powerful graph querying
language being suitable for systematic development of
efficient graph queries, can be extended for system-
atic development of useful model transformations, as
demonstrated in Section 6.

e We propose the first general method for bidirectional-
izing graph transformation, although there have pro-
posed several bidirectional tree transformation lan-
guages. Compared with trees, the challenge here is
how to deal with cycles and traversals of graphs in
bidirectional computation. The key to the success of
our bidirectionalization is the simple but powerful in-
ternal algebra of UnQL™, where structural recursion
can be computed in a bulk way which is suitable for
both forward and backward computation.

e We give an efficient implementation of bidirectional
computation of UnQLT. We carefully record neces-
sary but least information during forward transforma-
tion for later efficient backward transformation, and
apply automatic fusion transformation to eliminate un-
necessary intermediate models used in model transfor-
mation composition. The core system has been imple-
mented in Objective Caml with about 7,500 loc, and
all the examples in this paper have been passed by the
system. More application examples can be found at the
system page'.

The organization of this paper is as follows. After re-
viewing graph data model and structural recursion in UnQL
in Section 2, we show that UnQL can be extended to
UnQL™ that are suitable for developing model transforma-
tions in a compositional way in Section 3. To implement our
bidirectional framework, we show how to desugar UnQL™
to a core graph algebra in Section 4, and how to implement
a bidirectional evaluator for the core graph algebra with a
clear bidirectional semantics and efficient implementation
in Section 5. We show an application in Section 6, discuss
related work in Section 7, and conclude the paper in Sec-
tion 8.

2 Graph Data Model and Structural Recur-
sion on Graphs

We start with a brief explanation of graph data model
and structural recursion, which are two important concepts

http://research.nii.ac.jp/~hu/big/

Figure 2. A Simple Graph

in the graph querying language UnQL [6]. They serve as the
basis of our algebraic framework for model transformation.

2.1 Graph Data Model

External Graph Representation Graphs in UnQL are
rooted and directed cyclic graphs with no order on outgoing
edges. They are edged-labelled in the sense that all infor-
mation is stored as labels on edges (the labels on nodes have
no particular meaning). Figure 2 gives a small example of
a directed cyclic graph with six nodes and seven edges. In
text, it is represented by

g = {a:{a:g1hb:{a:g1},c: g2}
g = {d:{}}
92 = {c:g2}

where the set {l1 : e1,...,l, : e,} denotes a graph which
contains n edges with labels I1, . . . , [,,, each of which points
to a graph again, and the empty set {} denotes a graph with
a single node. Two graphs can be merged using set union
operation such as g U ¢'.

As another example, consider to represent the class
model diagram in Figure 3 by an edge-labelled graph. This
example is from [3], which will also be used in Section 6.
A class model consists of classes and directed associations
between classes. A class is indicated as persistent or non-
persistent. It consists of one or more attributes, at least
one of which must be marked as constituting the classes’
primary key. An attribute type is of a primitive data type
(e.g. String, Integer). An association specifies an inheri-
tance relation between two classes. The class model in Fig-
ure 3 consists of three classes and two directed associations,
where each class has a primary attribute. This class model
can be represented by the graph in Figure 4, where informa-
tion is moved to edges.

Internal Graph Representation While the external
graph representation is sufficient for users to consider when
writing bidirectional model transformation, the internal
graph representation is designed for internal implementa-
tion and semantics description of structural recursion on

Association

Association

name = "address"

name = "phone"

/;rc_ol/src \gest /;rc_o[/src \gest

Class

Class

Class

name = "Person”
is_persistent = true

name = "Address"
is_persistent = false

name = "Phone"
is_persistent = true

lattrs

'/ attrs

lattrs

Attribute

Attribute

Attribute

name = "name"
is_primary = true

name = "addr"
is_primary = true

name = "number"
is_primary = true

\}ype A/pe itype

PrimitiveDataType PrimitiveDataType

name = "String" name = "Integer"

Figure 3. A Class Diagram

graphs. Different from the external representation, the inter-
nal representation introduce € edge for representing shortcut
of two nodes. For instance, we have

{e:{a:q1},e:{b:g2}} ={{a:g1,b: 92}

As will be seen in Sections 2.2 and 5.1, the € edge is im-
portant in defining both bulk and bidirectional semantics of
structural recursion.

Another difference is that for internal composition of
graphs, an internal graph may have some node marked with
input or output marker, which is called input or output node,
respectively. We use &x € Marker to denote that &x is a
marker. Input markers are used to select entry points of
the graph, whereas output markers are used to connect with
other input nodes later.

Graph Bisimulation Graph bisimulation defines value
equalities between graph instances. Intuitively, when graph
G1 and G- are bisimilar, then every node x; in G; has
a counterpart xo in G, and if there is an edge form x;
to y1, then there is a corresponding edge from x5 to ys.
UnQL data model extends graph bisimulation by (1) requir-
ing equalities between labels, (2) allowing insertion of one
or more consecutive ¢ edges between normal edge and tar-
get node (y; or y2 above), (3) requiring correspondence be-
tween input nodes in GG; and G2, (4) requiring correspon-
dence between output markers of corresponding nodes (out-
put markers may be associated with the node other than cor-
responding nodes, provided that the marker is associated
with nodes that can be reached by traversing e edges).

The notion of extended bisimulation is useful because
it allows variation in representing semantically equivalent
graphs. It has been shown that a graph transformation de-
fined in UnQL preserves bisimilarity [6]. If two graphs G

Association

0 WG & (@
String Boolean

'name” rue ‘addr"

Association

name \is_primary/ "Address"|false | name l@ type "Phone" frue nametype

name \is_persistent \attrs

i Attribute
Go G (o)
is_primary

Boolean [PrimitiveDataType [String [PrimitiveDataType \Boolean

rue name I'number” name rue
String String
"String"™ "Integer”

Figure 4. A Class Model Represented by an Edge-Labelled Graph

and G, are bisimilar, f(G1) and f(G2) are bisimilar for any
transformation f in UnQL.

2.2 Structural recursion in UnQL

Structural recursion plays a significant role in our frame-
work for description of graph transformation, bidirectional-
ization, and optimization. As will be shown in Section 4,
any graph transformation in UnQL and its extension (Sec-
tion 3) can be described in terms of structural recursion.

2.2.1 Structural Recursion

Structural recursive function f in UnQL is a recursive com-
putation scheme on graphs defined as follows, where © is a
given binary operator.

f {
f{l:g}) = 1of(g)
flgrUge) = f(g1)U f(g2)

Different choices of © defines different functions, and for
simplicity we abbreviate the above definition as follows.

sfun f ({l:9}) =10 f(g)

Note that for a graph g which may contain cycles, the com-
putation of f(g) always terminates under the usual recur-
sive semantics: remember all recursive calls and reuse their
result to avoid entering infinite loops.

As a simple example, we may use the following struc-
tural recursion to replace all edges labelled a by d and delete
the edges labeled c for the graph in Figure 2.

sfun a2d_wc ({l : g}) = ifl=athen{d: f(g)}

else if | = ¢ then f(g)
else {l: f(g)}

A natural extension of the above structural recursion is to
allow mutual recursion, because any mutually defined func-
tions can be merged into one by the standard tupling trans-
formation [15]. The following mutually defined structural
recursive function relabel can replace all labels name under
primitiveData Type with typeName in Figure 4 .

sfun relabel ({ primitiveDataType : g})
= {primitiveDataType : addT(g)}
| relabel ({l:g}) = {l: relabel(g)}
sfun addT ({name : g}) = {typeName : addT(g)}

| addT ({l:9g}) ={l:addT(g)}

2.2.2 Bulk Semantics

One important feature of a structural recursive function is

that it can be computed in a bulk manner (called bulk seman-

tics [6]), which make it possible for our bidirectionalization

(Section 5.1) and automatic optimization (Section 5.2).
Given a structural recursive function defined by

sfun f ({l:9}) =10 f(9)

[0
CHE--A®

N
‘- — ‘-
a o
,

0200 304 00,308 0550

Figure 5. A Simple Edge-labelled Graph

the computation of f on a graph can be performed by the
following three steps: (1) applying to each edge the follow-
ing function

fe) =10 &z

where &z denotes a node with an output marker &z which
will be connected with other nodes later, (2) marking the
root node of the result graph with the input marker &z, and
(3) joining the results with the € edge.

To be concrete, consider to apply the structural recur-
sive function a2d_zc to the graph in Figure 2. Applying the
function to each edge from ¢ to j gives a subgraph contain-
ing a graph with an edge from Sij to E%j (where the dotted
edge denotes an € edge), then marking the root with an input
marker, and finally joining the nodes with e edges according
to the original graph shape and input/out markers yields the
graph in Figure 5 (left), which is equivalent to the graph in
Figure 5 (right) if we remove all € edges.

3 Model Querying and Transformation

UnQL [6] is a graph querying language based on struc-
tural recursion, and has an expressive power of FO(TC)
(first order with transitive closure), with time complexity
of PTIME for graph querying. It has a friendly surface lan-
guage with a select-where structure, with which users can
write graph queries without explicit use of structural recur-
sion. In this section, we review the graph querying language
UnQL [6], show our extension of UnQL to UnQL™T for
graph transformation (rather than just graph querying) [14],

and demonstrate how it is used for writing model transfor-
mations.

3.1 Model Querying in UnQL

UnQL, like other query languages, has a convenient and
powerful select-where structure for extracting information
from a graph. We omit the formal definition of the language
syntax, which can be found in [6]. For instance, the follow-
ing query extracts all persistent classes from the class model
in Figure 4, which is assumed to be bound by $classDB.

select $class where
{Association.(src|dest).Class : $class} in $classDB,
{is_presistent : { Boolean : true}}in $class

The symbols prefixed with $ denote variables. This query
returns all bindings of variable $class satisfying the two
conditions in the where clause. The first condition is to
find bindings of $class by matching the regular path pat-
tern Association.(src|dest). Class with the graph bound by
$classDB, while the second condition is to ensure that the
class is persistent.

3.2 Model Transformation in UnQL™

In model transformation, we often want to replace a sub-
graph satisfying certain condition by another graph. It is
onerous to describe these kinds of graph transformations
in UnQL because some context structure is required to be
copied and propagated. UnQL™ is an extension of UnQL
with a new replace-where construct suitable for specifying
model transformation. We illustrate our idea with some ex-
amples, but omit the details which can be found in [14].

Consider that we want to add a prefix of class_ to each
class name in the class model. We may write it with the
replace-where structure by

replace {$name : {}} by {("class.” ~$name) : {}} where
{_ % .Class.name.String : {$Sname : {}}}in$classDB

where ~ denotes string concatenation, and _x denotes ar-
bitrary sequence of labels (in the path). The replace-where
clause is similar to the select-where clause except that sub-
graph to be replaced is bound by either a graph variable $¢
or a pair of a label and graph variables {$! : $g}.

The replace-where construct can be used to define vari-
ous model transformations such as extension of a subgraph
with some new information and deletion of a subgraph sat-
isfying a certain condition.

extend $¢g with $¢g’ where ...

def replace $g by ($g U $g’) where ...
delete $g where ...

def replace $g by {} where...

3.3 Compositional Transformation

Unlike most rule-based model transformation languages
where model transformation composition is not straightfor-
wardly supported [9], UnQL™ is functional and compo-
sitional; model transformations are functions, and smaller
model transformations are composed to form a bigger one.

Consider that we want to extract all persistent classes
from the class model $classDB, and transform them to ta-
bles by replacing attrs by cols and Attribute by Column.
This can be described by composition of three transforma-
tions, each corresponding to one step above.

(* replace Attribute *)
replace{$l4 : $g} by{ Column : $g} where
$dbin
(* replace attrs *)
(replace{$l, : $A4} by{cols : $A} where
$classin
(* select classes *)
(select $class where
{Association.(src|dest).Class : $class}
in$classDB,
{is_presistent : {Boolean : true}}in $class),
{81, : $A} in$class, $l, = atirs),
{cols : {$14 : $g}}in8db,$l4 = Attribute

A more involved example and discussion on systematic
development of ”big” model transformations with composi-
tion can be found in Section 6.

4 Desugaring UnQL™ to Graph Algebra

While UnQL™ is for users to write model transforma-
tions, UnCAL is its internal algebra for implementation,
suitable for bidirectionalization and optimization.

4.1 Graph Constructors

There are nine data constructor which can be used to de-
scribe construction of arbitrary graphs.

e {} (single node graph): it constructs a graph with a
single node without an edge.

e {l : g} (singleton graph): it constructs a graph with
the root pointing to the root of the graph g through the
edge [.

e g1 U g2 (union of graphs): it unions two graphs as de-
fined in Section 2.

o &z := g (graph with input marker): it adds some input
marker to the root of g.

e &y (output node): it constructs a graph with a single
node marked with one output marker.

e () (empty graph): it constructs an empty graph which
has neither node nor edge.

® g1 P go (disjoint union of graphs): it constructs a graph
by putting two graphs one next to the other horizon-
tally.

e g1 @ g5 (append of graphs): it connect the two graphs
vertically by connecting the output nodes of g; with
corresponding input nodes of gs.

e cycle(g) (cyclic graph): it connects the input nodes
with the output nodes of g to form cycles.

4.2 UnCAL: A Graph Algebra

UnCAL, as defined in Figure 6, has a set of graph con-
structors and operators, by which arbitrary graphs can be
represented and arbitrary graph transformation in UnQL™
can be described.

The first nine expression structures correspond to nine
graph data constructors. They are used to describe graph
construction. For instance, the graph in Figure 2 can be
represented by the following UnCAL expression.

&z1 @ cycle(
(&z1 :={a:{a:&z},b:{a:&z},c: &2},

&z5:={d: {}},
&zy:={c: &z4}))

The most important operation for manipulating graphs
in this algebra is structural recursion rec(A(l, g).e), corre-
sponding to the following function h:

sfun h {l:g}) =

For any structural recursive function defined by

sfun f({l:g9}) = 1O f(g)

f(v) can be represented in terms of rec by

e @ h(g).

&z @ (rec(MN(,9).(&z1 =10 &21))(v)).

4.3 Mapping to UnCAL

UnQL™ can be fully transformed to UnCAL. UnQL™
is mapped to UnCAL in a way similar to the mapping of
UnQL to UnCAL in [6] except for the newly introduced
replace-where construct which can be encoded by structural
recursion. The mapping from UnQL* to UnCAL consists
of the following six steps: (1) simplifying where clauses;

E == {}
| {L:E}

| EUE

\ &r:=FE

&y

0

| E®oFE

| E@E

| cycle(E)

| Var

| if B then F else E

\ rec(A(LabelVar, Var).E)(Var)
| let Var = E'in E

Figure 6. UnCAL: A Graph Algebra

(2) eliminating the replace-where construct; (3) transform-
ing simple patterns to structural recursions; (4) transform-
ing regular path patterns to mutual structural recursions; (5)
tupling mutual structural recursions to single ones; and (6)
mapping structural recursions to those in UnCAL. The de-
tails of this mapping can be found in [14].

5 Bidirectional Evaluator

This section explains one of our important contributions,
the first bidirectional interpretation of the graph algebra of
UnCAL. The prototype system has been implemented in
Objective Caml and the GUI interface for users to construct
and modify graph models through the DOT and DOTTY
system?, graph layout products developed by AT&T. In this
section, we describe our bidirectional semantics for Un-
CAL, and highlight how the system is implemented effi-
ciently by automatic fusion.

5.1 Bidirectionalizing UnCAL

UnCAL can be bidirectionalized in the sense that a for-
mal and sound bidirectional semantics can be given to Un-
CAL, such that the forward computation performs the same
as the usual UnCAL evaluator does, and the backward com-
putation is guaranteed to satisfy the bidirectional properties
[10] with respect to the forward computation.

5.1.1 Bidirectional Properties

Given an expression e and an environment p denoting a
mapping from variables to values (a label or a graph), we
define two computations: a forward computation

e

pP— 9
Zhttp://hoagland.org/Dot.html

is to evaluate the expression e to a graph g under the envi-
ronment p, while a backward computation

is to compute a new environment p’ from the old p and a
revised graph ¢’ over g obtained from forward computa-
tion. The forward and backward computations with respect
to an expression e should satisfy the following two proper-
ties [10].

e The GetPut Property: no change on the graph should
give no change on the environment.

N
P g
e
P ~p 9

e The PutGet Property: the backward computation com-
putes a new environment p’ from ¢’ in such a way
that applying the forward computation under p’ again
should give the same graph ¢'.

;) € /
,0 Tp g
e

p/ N g/

5.1.2 Bidirectional Interpretation of UnCAL

We give a set of rules to describe both forward and back-
ward interpretation of expressions of UnCAL, which satisfy
the bidirectional properties.

The rules for forward computation is summarized in Fig-
ure 7. It is quite standard. We choose some to explain. The
rule FWD_SG says that a single graph expression {le : e} is
evaluated by first computing the label expression le and the
graph expression e under the environment p and then com-
bining their results. The input marker rule (FWD_I) says
that the expression &z := e is evaluated by first computing
e and get a disjoint union of n graphs g1, ..., g, where g;
has the input marker of &y;, then the root node of this dis-
joint union is given a new input marker &y and the original
input marker of &y; is renamed to a new marker &x.&y;.
Here the infix operator . is a Skolem function on markers
which is associative, idempotent with respect to default in-
put (root) marker & (&.&z = &x.& = &x), and invertible.
The most interesting rule is FWD_REC for evaluating struc-
tural recursion. As explained in Section 2.2, it computes on
each edge of the source graph in parallel and then combines
the results.

The rules for backward computation is to reflect the
change on the output back to the input by changing the bind-
ing information of variables in the environment. The rules
summarized in Figure 8, which guarantee the bidirectional
properties.

pElLpSy P2 p 2 g
{ (FWD_SN) (FWD_SG) ————— (FWD_UNION)
P {} {le:e} e1Uez
p = {l:g} p =" g1Uge
€
- (&y1 :=g1,...,&Yyn =
— p = G =g b = gn) (FWD_T) p ¥ gy (FWD_ON) o O () (FWD_EMP)
p =" &y = (&xr.&yr =91, .., &5 &yn 1= gn)
p = (911s---,91m) P = (g215---,92n) (Fwp_DUNION) 2 (911, 91m) p = (921, 92n) (FWD_APPEND)
ejea el @62
=7 (911, -, 91m> 921, - - -, G2n) p =" (931,---,93m)
€ b, e
pP—4g v p = true p 2 g
cycle(e) (FWD_CYCLE) p = p(v) (FWD_VAR) if b then e else eg (FWD_IF)
) yete(g) <
. €
foreach {l; : g;} in p_(v) 2 pll — Ui, g — gi) gi P g plo—gi] 2 g
mergedG = merge(g1,...,9n) (FWD_LET)
OB (FWD_REC) let v=ey in e2 -
p O erged G 92
Figure 7. Forward Computation Rules
Rules BWD_SN, BWD_ON and BWD_EMP indicate that above) using environment p = [$classDB «— h,$v «—

a graph produced by the single node expression, the out-
put marker expression, or the empty expression should
have no effect on the environment because their forward
computation does not depend on the environment. Rules
BWD_UNION, BWD_DUNION, BWD_APPEND, BWD_REC
first use the operator = to decompose the revised graph in
such as way that each can be used for backward computa-
tion with one of the subexpressions, and then unify the up-
dated environments by ¥, such as pj &, p5. We make such
decomposition possible by associating graph nodes with
information of where they come from during the forward
computation. Because of this decomposition, these rules do
not allow insertion of new edges. An output graph can be
freely updated with insertion and deletion if it is computed
from a variable in its forward computation, as seen in Rule
BWD_VAR.

One interesting rule is Rule BWD_LET for dealing with
composition. It has two stages: performing backward com-
putation for es using the forward computation result of e
before performing backward computation for e;. This rule
shows the difference between bidirectional computation and
inverse computation, where inverse computation does not
need to use input.

As an example of backward computation where modifi-
cation propagates to source, consider the following simple
UnCAL expression in which the forward computation just
prepend result edge to $classDB

let $v = $classDB in {result : $v}

and suppose the user modifies the “Phone” edge to “Tele-
phone” on the result. Let this result be g’. During back-
ward computation, BWD_LET is invoked, which in tern in-
vokes backward computation of {result : $v} (first stage

h]. This invokes BWD_SG which extract ' from ¢’ by
removing topmost result edge and BWD_VAR reflects this
modification back to the binding of $v. Going back to
BWD_LET, using the modified binding of $v as the new
value of the expression $classDB, BWD_VAR is invoked
again (second stage above), which results in updated bind-
ing of $classDB, the source graph. Lastly, &, unifies the
results of the two stages. In computing [$classDB
I YisclassDB—h) [$classDB «— h], W knows that left
hand side indicates modification by comparing it with origi-
nal value of $classDB in its subscript environment. We can
thus obtain the updated graph by extracting this new binding
from this resultant environment.

5.2 Optimization by Fusion

In our framework, consecutive model transformations
are translated into composition of structural recursions in
UnCAL. The composition may introduce unnecessary in-
termediate graphs, but this efficiency can be removed by
applying fusion transformation [6]. The following two rules
are main fusion transformation rules for cascading rec’s.
The first rule is applied when e5(I, t) does not depend on ¢,
while the second rule is applied otherwise.

rec(es) o rec(e)
rec(eq) o rec(ey)
= rec(A(l, g). rec(ez)(e1(l, g) @ rec(er)(g)))

= rec(rec(ez)) o eq

Here o denotes function composition, i.e., (f o g)(z) =
f(g(z)). To make the above rules applicable, we apply the

PSS U pe Sp g g =g\Ugh pr <o gl p2 o gh
~— ~— ~ ~
o Qp {} (BWD_SN) Lxe i }6 £ (BWD_SG) 1 =72 616521 P 72 (BWD_UNION)
ee !
prWppe ~— p {l':g'} pLWpp2 T~ T, g
;€ / /
o ~—p (&y1:=g1,..., &yn = g7)
| &ai—c : , = — (BWDD) p &, &y (BWDON) p L () BWD_EMP)
P &y = (& &eyr =g, &2 &y 1= gy)
: e (Ghuss o+ Th) = (G 100,) @ (6hyv-o 1 5,)
1 2 1 2
PL~p (G115 91m) P2 o (9515--+595,) L ~p (G112 91m) Ph ~p (Gb1>--+>95n)
e1@e2 @
pll Lﬂppé S op (9/117"'7gim7gél7"'7g/2n) pll H—Jppé 61_620 (gé1’7gém)

(BWD_DUNION)

e
o ~p g

, cycle(e)
A

) plv—g'l <5 ¢
o cycle(g’) (BWD_VAR)

(BWD_CYCLE)

g =919 PV)=g1,...,0n
e
P ol{lay—g] 9
p' = mergeEnv,(p1, ..., py)
g" = merge({p1(1) : p1(9)},- -, {H{on(D) : pu(9)})
P =p'lv—4g"]

rec(X(l,g).€)(v)
p// - o /

el b
P ~p g p — true

(BWD_APPEND)

o’ \E—Qp g o LN false

, if b theneq elsees ,
p g

(BWD_REC)

, if b then e else e ,
g

~ ~

P P
(BWD_IF_TRUE) (BWD_IF_FALSE)

€ e €
p =g P Ppwegy 9 P < (V)

- (BWD_LET)
let v=ej in eg ’

P W (py \v) ~ p 9

Figure 8. Backward Computation Rules

following rules to to move recs close to each other.

{
rec(e)({l:d}) = e(l,d) @ rec(e)(d)

3
)
o

—

—

S—
|

(e)(

(e)(
rec(e)(dy Uds) = rec(e)(dr) U rec(e)(ds)
Tecge%()@m =d) = &ux-(rec(e)(d))
rec(e)(di ®da) = rec(e)(dr) ® rec(e)(ds)

g does not occur free in e
rec(A(l, g).e)(d1 @ dy) = rec(e)(dr) @ rec(e)(ds)
g does not occur free in e
rec(A(l, g).e)(cycle(d)) = cycle(rec(e)(d))

6 An Application: Class2RDBMS

This section shows how we write an UnQL™ program
for a practical model transformation, Class2RDBMS. 1t is
a simplified version of the well known ”Class to RDBMS”
which was proposed at [3] to compare and contrast various
kinds of approaches to model transformations. We show
how the model transformation can be systematically devel-
oped in UnQL™ after explaining the requirement of a model
transformation Class2RDBMS.

6.1 Specification of Class2RDBMS

Class2RDBMS is a model transformation from Class
models, which has been explained in Section 2, to RDBMS

Table Table

name = "Phone"

refs
pkey \cols

Column Column Column Column

name = "Person"”

pkey/ cols |[cols

name = "name" | \name = "addr" | |name = "number" | |name = "number"
type ="String" | | type = "String" || type = "Integer" type = "Integer"

Figure 9. A RDBMS Model

models. For instance, it transforms the Class model in Fig-
ure 3 into an RDBMS model in Figure 9. The corresponding
RDBMS model should satisfy the following requirement.
Class2RDBMS maps each persistent class in a Class model
to a table in a RDBMS model. All attributes of the class or
its subclasses are mapped to columns in the corresponding
table. If a primary attribute belongs to the class, a pkey
pointing from the table to the corresponding column is es-
tablished. If an attribute belongs to its subclass which is
persistent, a foreign key to the corresponding table is es-
tablished. Non-persistent classes are not mapped to tables,
however. One of the main requirements for Class2ZRDBMS
is to preserve all the information in the class diagram. That
means all attributes of non-persistent subclasses are dis-
tributed over those tables stemming from persistent classes
which access non-persistent classes. Note that we repre-
sent RDBMS models by edge-labelled graphs in UnQL™ as

well as Class models. This model transformation is not triv-
ial. We show below how to systematically develop it in our
framework.

6.2 Class2RDBMS in UnQL™"

The framework of UnQL™ allows us to develop big-
ger model transformations by gluing smaller transforma-
tions via intermediate models, without worrying about in-
efficiency due to the intermediate models. This is because
unnecessary intermediate models will be removed automat-
ically by our system. Figure 10 shows the whole transfor-
mation of Class2RDBMS in UnQL™. Let us explain how it
is systematically developed.

We construct an UnQL™ program for Class2RDBMS by
splitting its specification into two steps. On the first step,
every persistent class is mapped to a table which is con-
nected with its columns according to attributes of the class
and its subclasses. All subclasses are collected by regular
path patterns as shown in Section 3.1. If necessary, refer-
ences pkey and fkeys are added by an extend construct
in UnQL™, provided that references refs of Fkey do not
point to the referring table because the table may not have
been constructed yet. They point to the name of the refer-
ring table instead. On the second step, each name pointed
by refs is replaced by the corresponding table by using a
replace construct.

Our framework allows us to modify on the target model
RDBMS. The modification is reflected to the source model
Class. For example, we can modify string values (e.g.,
"Person" and "addr") in the RDBMS model in Fig-
ure 9.

7 Related Work

Besides the related work in the introduction, we high-
light some others that are related to graph-based model
transformation, graph querying, and linguistic approach to
bidirectional programming.

Our work is much related to research on model trans-
formation based on graph transformation [9, 22, 17]. AGG
[26] is a well-known rule-based visual tool that supports
typed (attributed) graph transformations including type
inheritance and multiplicities. Triple Graph Grammars
(TGG) [19, 12] is an extension of Pratt’s pair grammar
approach [23], which aims at the declarative specification
of model to model integration rules. Different from these
approach which are rule-based, our approach is function-
based, using graph algebras for graph construction, model
transformation composition for systematic development,
and model transformation manipulation for automatic op-
timization.

10

Our work was greatly influenced by interesting work
on efficient graph querying [24, 6]. Unlike trees, graphs
have subtle issues on their representation and their equiva-
lence. The use of bisimulation and structural recursion in
[6] opens a new way to build a framework for both declara-
tive and efficient graph querying with high modularity and
composability. This motivated us to extend the framework
from graph querying to graph transformation and apply it to
model transformation.

This work has been inspired by recent work on linguis-
tic approach to bidirectionalization of tree transformation
[10, 21, 4, 16] for tree data synchronization. One impor-
tant feature of these systems is a clear bidirectional se-
mantics, which, however, does not exist in most existing
bidirectional model transformation systems [22, 25]. Al-
though some attempts have been made [27, 2], it remains
as a challenge to provide a general bidirectional framework
for graphs, and our this work is a big step to this direction.

8 Conclusions

In this paper, we propose a novel algebraic framework
to support systematic development of bidirectional model
transformation. Different from many existing frameworks
that are rule-based, our framework is functional and alge-
braic, which is based on a graph algebra and structural re-
cursion. Our new framework supports systematic develop-
ment of model transformations in a compositional manner,
has a clear semantics for bidirectional model transforma-
tion, and can be efficiently implemented.

This work is our first step towards bidirectional model
programming, a linguistic framework to support systematic
development of model transformation programs. In the fu-
ture, we wish to look more into relation between the rule-
based approach and the algebraic and functional approach,
and see how to integrate them to have a more powerful
framework for bidirectional model transformation.

Acknowledgements

We would like to thank Mary Fernandez from AT&T
Labs Research, who kindly provided us with the SML
source codes of an UnQL system, which helped us a lot
in implementing our extended system in OCaml.

The research was supported in part by the Grand-
Challenging Project on “Linguistic Foundation for Bidirec-
tional Model Transformation” from National Institute of
Informatics, the National Natural Science Foundation of
China under Grant No. 60528006, Grant-in-Aid for Sci-
entific Research (C) No.20500043, and Encouragement of
Young Scientists (B) of the Grant-in-Aid for Scientific Re-
search No. 20700035.

select S$tables where
Stables in

Stables in

(select S$Stables where
{Class:$class} in (select $assoc where
{is_persistent.Boolean:true} in $class,

{Association. (src|dest) :$assoc}

in $db),

Sdests in (select {Class:$dest} where {(src_of.Association.dest.Class)+:$dest} in $class),

Srelated in ({Class:S$class} U S$dests)

Scols in (select {cols:{Column:{name:$n,type:$t}}} where
Stables in (select {Table:{name:S$Scname} U $cols} where
Stables in (extend $table with $pkeys U $fkeys where

{Table:$table} in $tables,
{cols:$cols} in Stable,

{Column.name.String: {$cname:{}}} in $cols,

Spkeys in (select
{attrs.Attribute:
$cname = $pname),

Sfkeys in (select

{pkey:$cols} where
{is_primary.Boolean:true, name.String:{$pname:{}}}} in S$class,

{Class.attrs.Attribute: {name:$n,type:S$t}}
{name: $cname}

in $related),
in $class),

{fkeys:{Fkey:{cols:$cols, ref:$ref}}} where

{Class:{is_persistent.Boolean:true,
attrs.Attribute.name.String: {$aname:{}}, name:$ref}} in $dests,

Scname = S$aname))),
(replace S$ref by {Table:S$table} where
{Table.fkeys.Fkey.ref:Sref,
{String:{$rname:{}}} in Sref,
{name.String:{$tname:{}}} in $table,
Stname = S$rname)

Table:S$table} in S$tables,

Figure 10. Class2RDBMS in UnQL™

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

M. Antkiewicz and K. Czarnecki. Framework-specific mod-
eling languages with round-trip engineering. In MoDELS
2006: Proceedings of the 9th nternational Conference on
Model Driven Engineering Languages and Systems, pages
692-706. Springer-Verlag, 2006.

M. Antkiewicz and K. Czarnecki. Design space of heteroge-
neous synchronization. In GTTSE ’07: Proceedings of the
2nd Summer School on Generative and Transformational
Techniques in Software Engineering, 2007.

J. Bezivin, B. Rumpe, and T. L. Schiirr A. Model transfor-
mation in practice workshop announcement. In MTiP 2005,
International Workshop on Model Transformations in Prac-
tice. Springer-Verlag, 2005.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt. Boomerang: resourceful lenses for string data.
In G. C. Necula and P. Wadler, editors, POPL, pages 407—
419. ACM, 2008.

P. Braun and F. Marschall. BOTL : The bidirectional object
oriented transformation language. Technical Report TUM-
10307, Technische Universitat Minchen, 2003.

P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query
language and algebra for semistructured data based on struc-
tural recursion. VLDB Journal: Very Large Data Bases,
9(1):76-110, 2000.

K. Czarnecki and S. Helsen. Classification of model trans-
formation approaches. In Workshop on Generative Tech-
niques in the Context of Model-Driven Architecture, 2003.
H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer.
Information preserving bidirectional model transformations.
In Fundamental Approaches to Software Engineering, pages
72-86. 2007.

K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Leven-
dovszky, U. Prange, G. Taentzer, D. Varrd, and S. Varré-

11

(10]

(11]

(12]

(13]

[14]

[15]

[16]

Gyapay. Model transformation by graph transformation: A
comparative study. In MTiP 2005, International Workshop
on Model Transformations in Practice. Springer-Verlag,
2005.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transforma-
tions: a linguistic approach to the view update problem. In
POPL 05 : ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 233-246, 2005.
M. Garcia. Bidirectional synchronization of multiple views
of software models. In Proceedings of DSML-2008, volume
324 of CEUR-WS, pages 7-19, 2008.

H. Giese and R. Wagner. Incremental model synchronization
with triple graph grammars. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, editors, Models '06: Proc. of the
9th International Conference on Model Driven Engineering
Languages and Systems, volume 4199 of LNCS, pages 543—
557. Springer Verlag, October 2006.

J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency
management for multiple-view software development envi-
ronments. IEEE Trans. Softw. Eng., 24(11):960-981, 1998.
S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards com-
postional approach to model transformations for software
development. Technical Report GRACE-TR08-01, GRACE
Center, National Institute of Informatics, Aug. 2008.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling
calculation eliminates multiple data traversals. In ACM SIG-
PLAN International Conference on Functional Program-
ming (ICFP’97), pages 164—175, Amsterdam, The Nether-
lands, June 1997. ACM Press.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor
for developing structured documents based on bidirectional
transformations. Higher-Order and Symbolic Computation,
21(1-2):89-118, 2008.

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

F. Jouault and I. Kurtev. Transforming models with ATL. In
Proceedings of Satellite Events at the MoDELS 2005 Con-
ference, pages 128—138. LNCS 3814, Springer, 2006.

F. Klar, A. Konigs, and A. Schiirr. Model transforma-
tion in the large. In I. Crnkovic and A. Bertolino, editors,
ESEC/SIGSOFT FSE, pages 285-294. ACM, 2007.

A. Konigs and A. Schurr. Tool integration with triple graph
grammars - a survey. Electronic Notes in Theoretical Com-
puter Science, 148(1):113-150, February 2006.

R. Limmel. Coupled Software Transformations (Extended
Abstract). In First International Workshop on Software Evo-
lution Transformations, Nov. 2004.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and
a. Masato Takeichi. Bidirectionalization transformation
based on automatic derivation of view complement func-
tions. In 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007), pages 47-58. ACM
Press, Oct. 2007.

OMG. MOF QVT final adopted specification. http://
www.omg.org/docs/ptc/05-11-01.pdf, 2005.

T. W. Pratt. Pair grammars, graph languages and string-
to-graph translations. J. Comput. Syst. Sci., 5(6):560-595,
1971.

L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A graph
query language and its query processing. In ICDE, pages
572-581, 1999.

P. Stevens. Bidirectional model transformations in QVT: Se-
mantic issues and open questions. In G. Engels, B. Opdyke,
D. C. Schmidt, and F. Weil, editors, Proc. 10th MoDELS,
volume 4735 of Lecture Notes in Computer Science, pages
1-15. Springer, 2007.

G. Taentzer. AGG: A graph transformation environment for
modeling and validation of software. In J. L. Pfaltz, M. Nagl,
and B. Bohlen, editors, AGTIVE, volume 3062 of LNCS,
pages 446-453. Springer, 2003.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei.
Towards automatic model synchronization from model
transformations. In 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2007), pages
164-173. ACM Press, Nov. 2007.

12

