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Abstract

Model transformation plays an important role in Model-Driven Soft-
ware Development that aims to introduce significant efficiencies and rigor
to the theory and practice of software development. Although models
may have different notation and representation, they are basically graphs,
and model transformations are thus nothing but graph transformations.
Despite a large amount of theoretical work and a lot of experience with
research prototype on graph-based model transformations, it remains as
an open issue how to compose model transformations. In this paper, we
report our first attempt at a compositional framework for graph-based
model transformations based on the graph query language UnQL. We
show that the idea of UnQL that graph queries are fully captured by
structural recursion can be adapted to structure graph transformations
to attain efficient composition of model transformations. We have imple-
mented a prototype of the framework and tested with several nontrivial
examples. Our new framework supports systematic development of model
transformation in the large, while guaranteeing that inefficiency due to
this composition is automatically removed.

1 Introduction

Model-driven software development [11] is an emerging technology that aims to
introduce significant efficiencies and rigor to the theory and practice of software
development. MDSD advocates models as the key artifacts in all phases of de-
velopment, from system specification and analysis, to design and testing. The
use of models and the application of model transformations open up new possi-
bilities for creating, analyzing, and manipulating systems through various types
of tools and languages; each model addresses one concern, and the transforma-
tions between models provide a chain that enables the automated development
of a system from its corresponding models.

Model transformation specification, implementation and execution are the
critical parts in model transformation [8]. Although models may have different
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notation and representation, they are basically graphs, and model transforma-
tions are thus nothing but graph transformations. This has led to the so-called
graph-based approach [10, 14] to model transformations based on heavily the-
oretical work in graph transformations [1, 7, 21]. The graph-based approach is
powerful with a large amount of theoretical work and a lot of experience with
research prototypes. However, it remains as a challenge to use it to develop
model transformation in the large, which requires a composition mechanism
with high modularity [8]. In a recent survey paper [10], it says:

Open issues for all graph transformation approaches are elaborated
concepts to compose transformations ...

Put it more concretely, the problems are:

• First, although the graph-based approach is declarative in the sense that
a transformation is specified by a set of graph rewriting rules, there lacks
a good support for composing model transformations so that a set of
new graph rewriting rules can be efficiently derived from those of two
transformations that are composed.

• Second, the graph-based approach is very complex, which stems from the
non-determinism in scheduling and application strategy of transformation
rules, which requires careful consideration of termination of the transfor-
mation process and the rule application ordering (including the property
of confluence). In most systems based on graph transformations, a graph
rewriting rule is not executable unless it is accompanied with a complex
rewriting engine.

From the practical point of view, model composition would be necessary if
one wants to chain and combine model transformations to produce new and
more powerful transformations. To bridge large abstraction gaps between two
models, it is often much easier to generate intermediate models rather than
go straight to the target model. This would make model transformation more
modular and maintainable.

In this paper, we report our first attempt at a compositional framework for
graph-based model transformations, which cannot only support concise spec-
ification of model transformation, but also simplify and improve efficiency of
model transformation implementation and execution. This work was greatly
inspired by the compositional graph querying language UnQL [5], which has
been intensively studied in the database community. The key idea of UnQL is
that graph queries are fully captured by structural recursion that are suitable
for efficient composition. We show that this idea can be adapted to structure
graph transformations to gain efficient composition too. Our main contributions
are two folds.

First, we propose a compositional framework for graph-based model trans-
formations based on the graph querying language UnQL. We have made three
important extensions over UnQL.

• We add the graph schemes to UnQL and give an efficient validation algo-
rithm, so that the meta model, an important component in model trans-
formation, can be described.
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• We extend UnQL with three simple graph editing constructs so that model
transformation can be directly and convenient described.

• We show that all model transformations in the extended UnQL, called
UnQL+, can be mapped to structural recursions that are suitable for ef-
ficient composition.

Second, we have implemented a prototype of the new framework and tested
with several nontrivial examples. Our new framework cannot only support
systematic development of model transformation in the large, but also guarantee
that inefficiency due to this composition can be automatically removed.

• We demonstrate, with the nontrivial model transformation from classes
to relational database management system, that a large model transfor-
mation can be systematically developed by gluing simpler model transfor-
mations.

• We show that by representing model transformations internally by struc-
tural recursions or their composition, we can automatically eliminate in-
efficiency due to the introduction of composition by fusion optimization.
The experimental results show promising speedups by fusion optimization.

The organization of this paper is as follows. We start by considering a
typical but nontrivial model transformation, called Class2RDBMS, which will
be served as our running example, in Section 2. Then we show how UnQL and
its extension can be useful for systematic development of model transformations
in a compositional style in Section 3, and we explain the architecture of our
compositional framework and its detailed implementation in Section 4. We
discussed the related work in Section 5, and conclude the paper in Section 6.

2 An Example: Class2RDBMS

As a running example, we consider the model transformation, Class2RDBMS,
a simplified version of the well known ”class to RDBMS” transformation. It
was proposed as a common example to all the participants of the International
Workshop on Model Transformations in Practice 2005 [3], whose purpose was
to compare and contrast various kinds of approaches to model transformations.
We shall explain the requirement of this model transformation in this section,
and leave the details of how this model transformation can be described in our
framework in Section 3.3.

2.1 Class Models

A class model consists of classes and directed associations. A class consists of
one or more attributes, at least one of which must be marked as constituting the
classes’ primary key. An attribute type is of a primitive data type (e.g. String,
Integer). Associations are used to associate two classes. Figure 1 shows a class
model, which consists of three classes and two directed associations.

3



Figure 1: A Class Model

Figure 2: A RDBMS Model

2.2 RDBMS Models

An RDBMS model consists of one or more tables. A table consists of one or
more columns. One or more of these columns will be included in the pkey slot
of a table, denoting that the column forms part of the tables primary key slot.
A table may also contain zero or more foreign keys. Each foreign key refers to
the particular table it identifies, and denotes one or more columns in the table
as being part of the foreign key. Figure 2 shows a RDBMS model that has two
tables.

2.3 Transforming Class Models to RDBMS Models

Classes can be indicated as persistent or non-persistent. A persistent class is
mapped to a table and all its attributes or associations to columns in this table.
If the type of an attribute is primary, a primary key to from the table to the
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column is established. If the type of an attribute or association is another
persistent class, a foreign key to the corresponding table is established.

If class hierarchies are transformed, only the topmost classes are mapped to
tables. Additional attributes and associations of subclasses result in additional
columns of the top-most classes.

Non-persistent classes are not mapped to tables, however, one of the main
requirements for the transformation considered is to preserve all the information
in the class diagram. That means attributes and associations of non-persistent
classes are distributed over those tables stemming from persistent classes which
access non-persistent classes.

This model transformation is not so trivial. We will show in Section 3.3 how
to systematically develop it in our compositional framework.

3 Model Transformations in UnQL+

In this section, we shall explain the language UnQL+, a small extension of the
graph query language UnQL [5], and show how it can used to describe model
transformation in a compositional manner. First, we review the basic concepts
on UnQL and its core UnCAL. Then, we extend UnQL to UnQL+ with three
editing operations. Finally, we demonstrate how to systematic develop model
transformations with the example of Class2RDBMS.

3.1 UnQL: A Graph Querying Language

Our compositional framework for model transformations is based on UnQL [5],
a language that was originally designed for querying unstructured data such as
graphs. It has convenient select-where style surface syntax, which are translated
into core graph algebra called UnCAL that consists of a small number of basic
constructors and operators. Its expressive power is FO(TC) (first order with
transitive closure), and complexity in answering UnQL query is PTIME. In this
section, we briefly review the basic concepts of UnQL, which will serve as the
basis of our framework.

3.1.1 Graph Representation

In UnQL, graphs are edged-labelled in the sense that all information is stored
as labels on edges rather than on nodes (the labels on nodes have no particular
meaning). It can be directly used to represent model. For example, Figure 3
shows a graph that represents the model in Figure 1. Formal definition of this
graph representation will be given in Section 3.1.4.

3.1.2 UnQL

UnQL, like other query languages, has a convenient select-where structure for
extracting information from a graph. We omit the formal definition of the
language syntax, which can be found in Figure 13 in the Appendix. Rather we
give some examples.

The following query Q1 extracts all the primitive data types from database
(denoted db in the query) in Figure 3.
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Figure 3: A Class Model Represented by an Edge-Labelled Graph

(* Q1 *)

select T where

{association:{dest:

{class:{attrs:

{attribute:{type:

{primitiveDataType.name:T}}}}}}}

in db

If we use the regular path pattern, all primitive data types that occur any-
where in the hierarchy can be easily obtained by the following query Q2:

(* Q2 *)

select T where

{_*.primitiveDataType.name:T} in db

More involved examples can be found in Section 3.3.

3.1.3 Structural Recursion in UnQL

Structural recursion plays a very important role in UnQL. Not only can it be
used to described many useful queries, but also any queries in UnQL can be
described in terms of structural recursion.

Structural recursive function f in UnQL is a simple mutually recursive com-
putation scheme, satisfying the following two equations and guarantee that no
return value of any function should be fed to another function.

f {} = {}
f (t1 ∪ t2) = f(t1) ∪ f(t2)
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This simplicity allows manipulability of structural recursion which is a combina-
tor that is similar to the higher-order function map in functional programming
languages. Whereas map is applied recursively to tails, structural recursion is
applied (vertically) to nodes, as well as (horizontally) to edges.

As a simple use of structural recursion, the following query Q3 replaces all
labels name under primitiveDataType in Figure 3 with typeName. Due to the
two equations above, definitions for horizontal recursion are always omitted.

(* Q3 *)

select

letrec

sfun f1 ({primitiveDataType:T})

= {primitiveDataType:g1(T)}

| f1 ({L:T}) = {L:f1(T)}

and sfun g1 ({name:T}) = {typeName:g1(T)}

| g1 ({L:T}) = {L:g1(T)}

in f1(db)

3.1.4 Data Model

UnQL data model is based on edge labeled, rooted, directed cyclic graphs, whose
orders between outgoing edges of a node are insignificant. Nodes may be marked
with input and output marker, both are denoted by &x ∈ Marker , where Marker
is an infinite set of symbols. A node marked with input and output marker is
called input node and output node, respectively. Input markers are used to
select entry point of the graph, whereas output markers are used to glue output
nodes with input nodes of a graph.

Formally, a graph g is denoted by a quadruple (V,E, I,O), where V is a
subset of (possibly infinite) set of nodes V̂ , a set of edges E ⊆ V × Label ϵ × V
where Label stands for infinite set of labels, and we denote Label∪{ϵ} by Label ϵ.,
a set of pairs of input marker and associated node I ⊆ X × V , and a set of
pairs of output nodes and associated output marker O ⊆ V × Y. Each of
these component set of the quadruple is denoted by g.V , g.E, g.I and g.O,
respectively. Since correspondence between input node and input marker in I is
one-to-one, I(&x) denotes an input node labeled with &x. On the other hand,
more than one node can be marked with an identical output marker. The root
marker, denoted by special input marker & represents default input node of a
graph. DBX

Y represents a set of data graphs that has set of input markers X
and output markers Y. We use DBY as an abbreviation of DB{&}

Y .
For example, a graph g ∈ DB{&y} shown in Figure 4 is represented by

({1, 2, 3}, {(1, a, 2), (2, c, 2), (2, b, 3)}, {(&, 1)}, {(3, &y)}).

Edges labeled with ϵ works like ϵ transition in automaton in that it identifies
source and destination nodes. They are used in establishing connection between
nodes. Detailed usages are given in Section 4.3.

3.1.5 UnCAL: A Graph Algebra

While UnQL is an interface language for users to write queries, UnCAL is its
core language for internal implementation. UnCAL has a set of constructors
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Figure 4: A simple graph example

and operators, by which arbitrary graphs can be represented. In addition to
tree constructors, graph concatenation and cycle operator, together with input
and output markers form cycles and confluences by gluing nodes marked with
identical markers together.

Complete syntax and brief semantics of UnCAL expressions are depicted in
Figure 14 in the Appendix.

Contrary to appearance of tree constructor {} and ∪, its semantics of unifi-
cation is far from those of sets. In UnCAL, although value equality is explicitly
defined, duplicate eliminations do not take place. A graph shown in Figure 4 is
represented by the following UnCAL expression

&z1@cycle((&z1 := {a:&z2},

&z2 := {c:&z2,b:&z3},

&z3 := &y))

where &z1, &2, &3 correspond to the three nodes respectively, and a, b, c
correspond to the three edges.

3.1.6 Extended Graph Bisimulation and Bisimulation Genericness

Graph bisimulation defines value equalities between graph instances. Intuitively,
when graph G1 and G2 are bisimilar, then every node x1 in G1 has a counterpart
x2 in G2, and if there is an edge form x1 to y1, then there is a corresponding
edge from x2 to y2. UnQL data model extends graph bisimulation by (1) requir-
ing equalities in labels, (2) allowing insertion of one or more consecutive ϵ edges
between normal edge and target node (y1 or y2 above), (3) requiring correspon-
dence between G1.I(&x) and G2.I(&x), (4) requiring correspondence between
output labels of corresponding nodes (output labels may be associated with the
node other than corresponding nodes, provided that the label is associated with
nodes that can be reached by traversing ϵ edges).

The notion of extended bisimulation is useful because it allows variation in
representing semantically equivalent graphs. Evaluation orders and strategies
may introduce divergence in results. Instead of normalizing these graph to
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absorb these divergence, UnQL uses a relation called bisimulation genericness
to establish equivalence class between them: if a function f is bisimulation
generic, then for every component-wise bisimilar pair of n-tuples (g1, . . . , gn)
and (g′1, . . . , g

′
n), f(g1, . . . , gn) and f(g′1, . . . , g

′
n) are bisimilar.

Semantics of UnCAL basic constructors and operators are carefully designed
to satisfy bisimulation genericness, so that in tern UnCAL queries as a hole also
are bisimulation generic. This allows safe application of various optimization
including fusion and tupling.

3.2 UnQL+

UnQL+ is a small extension of UnQL to support convenient specification of
graph transformations (model transformations). we extend UnQL with three
editing constructs for transforming graphs. In Section 4.2, we will show that all
these editing constructs can be mapped to structural recursions of UnCAL, the
core language.

3.2.1 Deleting a Graph

The deletion construct, delete ... where ..., is used to describe deletion
of part of the graph. Consider the class graph in Figure 3, and suppose we want
to eliminate all the names of association. This can be described by

delete AssocName

where

{association.name: AssocName} in db

where the subgraph matched with AssocName will be deleted from its original
graph. In contrast, the following transformation keeps the association names as
result.

select {result: AssocName}

where

{association.name: AssocName} in db

So, we may consider the delete as the dual of the select.

3.2.2 Extending a Graph

The extension construct, extend ... where ..., is used to extend a graph
with another one. For example, we may write the following transformation to
add a date to each association.

extend AG with {date:"2008/8/4"}

where

{association: AG} in db

3.2.3 Updating a Graph

The replacement construct, replace ... where ..., is used to replace a sub-
graph by a new graph. For example, the transformation of replacing the edge
label dest by tgt can be specified as follows.
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replace G by {tgt:G1}

where

{association: G} in db,

{dest: G1} in G

3.3 Class2RDBMS in UnQL+

Now we demonstrate, with the example of Class2RDBMS, the usefulness of
UnQL+ in constructing complicated model transformation. The compositional
style allows us to develop bigger model transformations by gluing smaller trans-
formations via intermediate models, without worrying about inefficiency due to
the intermediate models. This is because unnecessary intermediate models will
be removed automatically by our system.

Recall the requirement of the transformation Class2RDBMS in Section 2,
where we want to make tables (independent tables or tables pointed by a for-
eign key) from a class diagram, where each table should have a name, some a
sequence of columns, some of which are pointed by primary or foreign keys. The
whole transformation in UnQL+ is given in Figure 6. Let us explain how it is
developed.

It follows directly from the requirement of Class2RDBMS that the top level
transformation can be described as follows.

select

{table: {name: {Name: {}}} U

MakePKeyCol U

MakeGenCol U

MakeFKeyCol,

table: MakeFKeyTable}

where ...

Now to create columns of a table, we need to gather all information of
classes that are directly or indirectly associated with the source persistent class.
This suggests us to create an intermediate model ChainDB, in which indirectly
associated classes are directly associated.

ChainDB in

(select

...

where

{association:

{name: N1, src: C11, dest: C12}} in db,

{association:

{name: N2, src: C21, dest: C22}} in db,

{name: {Name12: Any}} in C12,

{name: {Name21: Any}} in C21,

Name12 = Name21)

We look for two associations in which one’s destination is the other’s source, and
then add a link edge to the indirected destination to the source. The detailed
definition of ChainDB is given in Figure 6. Note that we do not need to worry
about the relationship between the new and the old models, and this new model
is just for intermediate use.

With ChainDB, it is easy to “query” the graph to extract information from
each top (source) class that is persistent for creating a table later.
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{group:

{src:

{name: {Name: Any},

is_persistent: {Persistent: Any},

attrs: As},

chains: Chains}} in ChainDB,

Persistent = true,

Note that the symbols starting with a capital character are pattern variables
used to save extracted information.

From the information obtained, we can create a primary key for the table
by querying the data from the graphs and add two new edges pkey and cols.

MakePKeyCol in

(select {pkey: Col, cols: Col}

where

{attribute: ...} in As,

Primary = true,

Col in {column: ...})

Note that Col is another shared intermediate model (graph), which appears
twice in the select part.

We omit explanation of definitions for creating other columns and foreign
keys, which are very similar.

As seen from this example, UnQL+ enables us to productively develop model
transformations in a compositional manner (we can glue results with unison
operator U or sequentially apply simpler model transformations with some in-
termediate models.) This good result is not surprising, because usefulness of
composition has been seen and widely known in development of program trans-
formation.

The execution of this model transformation on the class graph in Figure 3
yields the graph in Figure 5, which is essentially the same as the table diagram
in Figure 2.

4 Compositional Model Transformation System

Figure 7 shows an overview of our model transformation system. An input model
represented by a graph is validated against a given input metamodel described
in Kernel Metametamodel (KM3) [2]. The validated graph is transformed by a
given query described in UnQL and an update described in UnQL+ which will
be introduced later. The transformation is performed by translating them into
an UnCAL program, that is a structural recursion over an input graph, after
integrating the UnQL+ updating into an UnQL query. The output graph of the
transformation is validated against a give output metamodel in KM3.

4.1 Graph Schema and Validation

Our system validates input and output graphs against given schemata of them.
We employ Kernel MetaMetaModel (KM3) to describe schemata because it is
widely used as a metametamodel1 in actual software development and more

1A language for describing schemata is called a metametamodel while a schema is called a
metamodel.
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Figure 5: A Table Model Represented by an Edge-Labelled Graph
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select

{table: {name: {Name: {}}} U

MakePKeyCol U

MakeGenCol U

MakeFKeyCol,

table: MakeFKeyTable}

where

ChainDB in

(select {group: {src:C11,

chains:{dest:{cnames:{name: N1}, class:C12},

dest:{cnames:{name: N1, name:N2}, class:C22}}},

group: {src:C21,

chains:{dest:{cnames:{name:N2}, class:C22}}}}

where {association: {name: N1, src: {class: C11}, dest: {class: C12}}} in db,

{association: {name: N2, src: {class: C21}, dest: {class: C22}}} in db,

{name: {Name12: Any}} in C12,

{name: {Name21: Any}} in C21,

Name12 = Name21),

{group: {src: {name: {Name: Any},

is_persistent: {Persistent: Any},

attrs: As},

chains: Chains}} in ChainDB,

Persistent = true,

MakePKeyCol in

(select {pkey: Col, cols: Col}

where {attribute: {name: AName, type: AType, is_primary: {Primary: Any}}} in As,

Primary = true,

Col in {column: {name: AName, type: AType}}),

MakeGenCol in

((select {cols: {column: {name: AName, type: AType}}}

where {attribute: {name: AName, type: AType, is_primary: {Primary: Any}}} in As,

Primary = "false") U

(select {cols: {column: {name: CNames, type: AType2}}}

where {dest:{cnames: CNames,

class:{is_persistent: {Persistent:Any},

attrs:As2}}} in Chains,

Persistent = false,

{attribute: {type: AType2}} in As2)),

{dest:{cnames: CNames,

class:{is_persistent: {Persistent:Any},

attrs:As2,

name: Name}}} in Chains,

Persistent = true,

{attribute: {type: AType2}} in As2,

MakeFKeyTable in

(select {name: Name, cols: Col}

where {attribute: {name: AName, type: AType, is_primary: {Primary: Any}}} in As2,

Col in {column: {name: AName, type: AType}}),

MakeFKeyCol in {fkeys: {fkey: {cols: {name:CNames, type:AType2},

ref: {table: MakeFKeyTable}}}}

Figure 6: Class2RDBMS in UnQL+
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formally defined than other metametamodels. We call KM3 schema for a meta-
model written in KM3.

A KM3 schema has a structure similar to an XML schema base on regular
tree grammar such as W3C XML schema [24] and RELAX NG [6] in the sense
that a schema prescribes which kind of set of nodes must be referred to by a
node by regular expression. See [2] for details on the specification of KM3.

Figure 8 shows an example of a KM3 schema for classes each of which is an
input for the model transformation introduced in Section 2. The schema con-
sists of four classes2, Association, Class, Attribute and PrimitiveDataType.
A class has some features, either reference or attribute. Every feature has
a type, either class or data type. Since all of them inherit their super class
NamedElt, they have an attribute name which is String. The Association
class has two references src and dest which are Class. The Class class has an

2The term “class” here is used as an jargon of KM3. Do not confuse it with a “class” as
an input of the model transformation in Section 2. The latter “class” appears as capitalized
Class in a KM3 schema of Figure 8.
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package Class {

datatype String;

datatype Boolean;

abstract class NamedElt {

attribute name : String;

}

class Association extends NamedElt {

reference src : Class;

reference dest : Class;

}

class Class extends NamedElt {

attribute is_persistent : Boolean;

reference attrs [*] : Attribute;

}

class Attribute extends NamedElt {

attribute is_primary : Boolean;

reference type : PrimitiveDataType;

}

class PrimitiveDataType

extends NamedElt {

}

}

Figure 8: KM3 Schema for Classes

attribute is persistent which is Boolean and arbitrary number of references
attrs which are Attribute. The Attribute class has an attribute is primary
which is Boolean and a reference type which is PrimitiveDataType. The
PrimitiveDataType class has neither attribute nor reference besides an inher-
ited attribute name.

We validate a graph by matching each edge in them with a name of a class
or a feature in a given schema. A validation of a graph proceeds as follows.

1. All class inheritances are eliminated from a given schema by expanding
features of classes with their super classes. The elimination is recursively
done since a super class may inherit another super class.

2. We associate a vertex following from the root of the graph with a class
whose name is the same as the label of the edge between the vertex and
the root. For example, vertices Bid28 and Bid34 in Figure 3 are associated
with a class Association.

3. We match a set of labels on edges from the vertex with a set of names
of features of the class. Every destination vertex of the edge should have
edges which is labelled by the name of a class or a data type of the feature
and the number of which is specified by a multiplicity in the KM3 schema
such as [*] in Figure 8. If the label of the edge is the name of the class, the
destination vertex of the edge is associated with the class and is checked
the feature again. If the label of the edge is the name of the data type,
the destination vertex of the edge should have an edge whose label has
the same type and whose destination vertex has no edge. This step is
repeatedly performed until all vertices in the graph are visited.
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This procedure always terminates because the number of vertices are finite.
Currently our system does not check the type of UnQL/UnCAL transfor-

mation, which is our future work. If it is attained, we do not have to validate
either input or output graphs.

4.2 Mapping to the Core Language

UnQL+ provides a friendly interface language for users to describe model trans-
formations. For efficient implementation, UnQL+ can be transformed to the
core language UnCAL, where structural recursion plays an important role in
supporting efficient composition of model transformations. The mapping from
UnQL+ to UnCAL consists of the following six steps: (1) simplifying where
clauses; (2) removing the editing constructs; (3) transforming simple patterns
to structural recursions; (4) transforming regular patterns to mutual structural
recursions; (5) tupling mutual structural recursions to single ones; and (6) map-
ping structural recursions to those in UnCAL. In the following, we explain these
steps one by one.

4.2.1 Simplifying Where Clauses

In the second step, (Step2) in Figure 9 transforms an UnQL query into one
with only single patterns by applying (Rule1) to (Rule5) according to the
patterns of BindCond in the where expression. Theses rules in Figure 9 are
applied recursively based on the inductive definition of UnQL. Inference rules
for a judgement of the form t

apstp2−−−−→ t′ are shown in Figure 15 in Appendix.
(Rule1) and (Rule3) are from the original paper. (Rule2) is to represent

a compositional expression. (Rule4) and (Rule5) are to lift a constant leaf
node up to an edge because in UnCAL data model all information is stored as
labels on edges and, both newv and anyv are fresh variable names.

For example, on Q1 described in Section 3 these rules produce:

(* Q1’ *)

select T

where {association:V1} in db,

{dest:V2} in V1,

{class:V3} in V2,

{attrs:V4} in V3,

{attribute:V5} in V4,

{type:V6} in V5,

{primitiveDataType.name:T} in V6

In this query, the pattern

{association:{dest:{class:{attrs:{attribute:

{type:{primitiveDataType.name:T}}}}}}}

in the BindCond in Q1 is split into single patterns using fresh variable names
V1. . . V6.

4.2.2 Eliminating Editing Constructs

We show informally how to map the three newly introduced editing constructs
(Section 3.2) to structural recursions.
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v ::Var {pei : pat i} in v ::BindCond
pat−−→ bsi ::BindCond list (i = 1, . . . , n)

{pe1 : pat1, . . . , pen : patn} in v ::BindCond
pat−−→ bs1 ++ · · · ++ bsn ::BindCond list

(Rule1)

newv ::Var t ::Template
apstp2−−−−→ t′::Template

{pei : pat i} innewv ::BindCond
pat−−→ bsi ::BindCond list (i = 1, . . . , n)

{pe1 : pat1, . . . , pen : patn} in t ::BindCond
pat−−→ newv in t′, (bs1 ++ · · · ++ bsn)::BindCond list

(Rule2)

pat ::{PE1 :Pat1, . . . , PEn :Patn} t ::Template
apstp2−−−−→ t′::Template newv ::Var

pat innewv ::BindCond
pat−−→ bs ::BindCond list

{pe : pat} in t ::BindCond
pat−−→ {pe :newv} in t′, bs ::BindCond list

(Rule3)

c ::Const t ::Template
apstp2−−−−→ t′::Template

{pe :c} in t ::BindCond
pat−−→ {pe :newv} in t′, {c: anyv} innewv ::BindCond list

(Rule4)

c ::Const t ::Template
apstp2−−−−→ t′::Template

c in t ::BindCond
pat−−→ [{c:{}} in t′]::BindCond list

(Rule5)

t ::Template
apstp2−−−−→ t′::Template bc1 ::BC

bc−→ bs1 ::BC list · · · bcn ::BC
bc−→ bsn ::BC list

select t where bc1, . . . , bcn ::Query
step2−−−→ select t′ where bs1 ++ · · · ++ bsn ::Query

(Step2)

bc ::BindCond
pat−−→ bs ::BindCond list

bc <:BC
bc−→ bs <:BC list

bc ::BoolCond

bc <:BC
bc−→ [bc] <:BC list

Figure 9: Second step: Conjunctive patterns are split into single pattern in
where expression
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First, deletion or extension of a subgraph can be expressed by the replace
construct based on the following two rules.

delete G where ... => replace G by {} where ...

extend G with G1 where ... => replace G by G U G1 where ...

Second, the replace construct can be eliminated using the select construct
and structural recursions. After simplification of the where clause, the where
clause becomes a sequence of boolean conditions bc of relation expressions r
such as A=5, simple pattern-in boolean expressions pi such as {P:G1} in G2,
or simple binding expressions bd such as G in template. So the form to be
transformed is

replace G1 by G2 where bc1, . . . , bck−1, {pe : G1}, bck+1, . . . , bcn

where bc1, . . . , bck−1 are either relation expressions or pattern-in boolean ex-
pressions. Our transformation rules are as follows.

replace G1 by G2 where {l:{}} in D, r1,...,rm, rest

=>

let sfun h1{L:G} =

if L=l and isEmpty(G) and r1 and ... and rm then

replace G1 by G2 where rest

else

{L:G}

in h1(D}

replace G1 by G2 where {L:{}} in D, r1,...,rm, rest

=>

let sfun h1{L:G} =

if isEmpty(G) and r1 and ... and rm then

replace G1 by G2 where rest

else

{L:G}

in h1(D}

replace G1 by G2 where {l:G3} in D, r1,...,rm, rest

=> { condition: G1 /= G3 }

let sfun h1{L:G3} =

if L=l and r1 and ... and rm then

{L:(replace G1 by G2 where rest)}

else

{L:G3}

in h1(D}

replace G1 by G2 where {L:G3} in D, r1,...,rm, rest

=> { condition: G1 /= G3 }

let sfun h1{L:G3} =

if r1 and ... and rm then

{L:(replace G1 by G2 where rest)}

else

{L:G3}

in h1(D}

replace G1 by G2 where {l:G3} in D, r1,...,rm, rest

18



=> { condition: G1 = G3 }

let sfun h1{L:G3} =

if L=l and r1 and ... and rm then

letval G1’ = select {l:{}} where rest in

letval G2’ = select G2 where rest in

if isEmpty(G1’) then {L:G3} else {L:G2’}

else

{L:G3}

in h1(D}

replace G1 by G2 where {L:G3} in D, r1,...,rm, rest

=> { condition: G1 = G3 }

let sfun h1{L:G3} =

if r1 and ... and rm then

letval G1’ = select {l:{}} where rest in

letval G2’ = select G2 where rest in

if isEmpty(G1’) then {L:G3} else {L:G2’}

else

{L:G3}

in h1(D}

replace {L:G1} by G2 where {L:G3} in D, r1,...,rm, rest

=> { condition: G1 = G3 }

let sfun h1{L:G3} =

if r1 and ... and rm then

letval G1’ = select {l:{}} where rest in

letval G2’ = select G2 where rest in

if isEmpty(G1’) then {L:G3} else {G2’}

else

{L:G3}

in h1(D}

As an example, consider the following expression.

replace Name by Name’
where

{association:Assoc} in db,
{name:Name} in Assoc,
{string:Na} in Name,
{N:{}} in Na,
N = "phone",
Name’ in {string:{"assoc"^N":{}}}

It can be desugared to the following.

let sfun h1{L:Assoc} =
if L=association then

let sfun h2 {L:Name} =
if L=name then

letval G1’ = (select {name:{}}
where
{string:Na} in Name,
{N:{}} in Na,
N = "phone",
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Name’ in {string:{"assoc"^N":{}}}) in
letval G2’ = (select G2

where
{string:Na} in Name,
{N:{}} in Na,
N = "phone",
Name’ in {string:{"assoc"^N":{}}}) in

if isEmpty{G1’) then {L:Name} else {L:G2’}
else {L:Name}

in h2(Assoc)
else {L:Assoc}

in h1(db)

4.2.3 From Patterns to Structural Recursions

In the third step, we apply (Step3) in Figure 10. (Step3) transforms an UnQL,
generated by the second step, into structural recursion with letval and filter
expressions. In Figure 10, (RuleA) and (RuleD) are from the original paper.
(RuleB) is used to represent binding values to variables by letval expressions
newly introduced by us. (RuleC) is to represent Boolean conditions in where
expressions by newly introduced filter expressions. Note that like the original
paper, rest used in (RuleA),(RuleB) and (RuleC) is a syntactic meta-variable
which stands for the remaining clauses in the where component. Theses rules in
Figure 10 are also applied recursively based on the inductive definition of UnQL.
Inference rules for a judgement of the form t

apstp3−−−−→ t′ are shown in Figure 16 in
Appendix.

When applied to Q1’, the result is:

let sfun h1({association:V1}) =

let sfun h2({dest:V2}) =

let sfun h3({class:V3}) =

let sfun h4({attrs:V4}) =

let sfun h5({attribute:V5}) =

let sfun h6({type:V6}) =

let sfun h7({primitiveDataType.name:T})

= T

in h7(V6)

in h6(V5)

in h5(V4)

in h4(V3)

in h3(V2)

in h2(V1)

in h1(db)

4.2.4 Regular Path Patterns

In the fourth step, when the path patterns are regular path patterns, these
regular path patterns can be translated into functions defined by structural
recursion. Any regular path pattern can be translated into structural recursion,
by expressing first the regular expression as an NFA(Non-deterministic Finite
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select e where rest ::Query
sr−→ t::Template e′::Template

apstp3−−−−→ t′::Template

select e where ({pe : pat} in e′, rest)::Query
sr−→ let sfun h({pe : pat}) = t in h(t′)::Template

(RuleA)

v::Var select e where rest ::Query
sr−→ t::Template e′::Template

apstp3−−−−→ t′::Template

select e where(v in e′, rest)::Query
sr−→ letval v := t′ in t::Template

(RuleB)

v::Var select e where rest ::Query
sr−→ t::Template

select e where(bc, rest)::Query
sr−→ filter(bc, t)::Template

(RuleC)

select e where()::Query
sr−→ e::Template

(RuleD)

e::Template
apstp3−−−−→ t::Template select t where bs ::Query

sr−→ t′::Template

select e where bs ::Query
step3−−−→ t′::Template

(Step3)

Figure 10: Third step: Patterns are transformed into structural recursion.

Automaton) and associating a function with each state. This transformation
is achieved by the standard way in transformation from regular expressions to
NFA without epsilon. The generated functions are mutually recursive. Note
that unlike the original paper, function application associated with terminal
states is unioned with not the argument of the function but an identity function
application with the argument. This transformation enables us to apply the
optimization technique, called fusion, described in Section 4.4.

For example, consider the regular expression _*.primitiveDataType.name
in Q2, an equivalent non-deterministic automaton3 has five states and the fol-
lowing transitions :

s1
Any−−−→ s4, s1

Any−−−→ s5, s1
primitiveDataType−−−−−−−−−−−−−→ s3,

s3
name−−−−→ s2, s4

primitiveDataType−−−−−−−−−−−−−→ s3,

s5
Any−−−→ s4, s5

Any−−−→ s5, s4
primitiveDataType−−−−−−−−−−−−−→ s3

The initial state is s1 and the terminal state is s2. So, Q2 is equivalent to
the following mutual structural recursion, Q2’.

(* Q2’ *)

letval T :=

let

sfun h1({primmitiveDataType:T’}) = h3(T’)

| h1({L:T’}) = h4(T’) U h5(T’)

sfun h2({L:T’}) = {}

sfun h3({name:T’}) = h2(T’) U id(T’)

| h3({L:T’}) = {}

sfun h4({primitiveDataType:T’})=h3(T’)

| h4({L:T’}) = {}

sfun h5({primitiveDataType:T’})=h3(T’)

3There are some equivalent automata, of course.
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| h5({L:T’}) = h4(T’) U h5(T’)

sfun id({L:T’}) = {L:id(T’)}

in h1(db)

in T

In this query, each function corresponds to a state, and has one pattern
for each symbol occurring on some transition from that sate. Since s2 is the
terminal state, h2(T’)occurs in the right hand side with unioned with id(T’),
where id()is an identity function.

4.2.5 Tupling Mutual Structural Recursions

In the fifth step, tupling is applied to mutually recursive functions. Tupling [15]
is a standard way to transform mutual recursive functions into a single one by
defining a new function that returns a tuple of results each corresponding to a
function that is mutually defined with others. The tupling transformation of
mutual structural recursions has been given in [5], so we omit the details but
just give an example.

By applying the tupling to the mutually recursion Q2’, we can have the fol-
lowing single recursive function h1h2h3h4h5id(). Note that this is an illustrative
expression, so the following expression has a mixture of UnQL and UnCAL
syntax.

letval T :=

let

sfun h1h2h3h4h5id(name:T’) =

(&z1 := &z4 U &z5,

&z2 := {},

&z3 := &z2 U &z6,

&z4 := {},

&z5 := &z4 U &z5,

&z6 := {name:&z6})

| h1h2h3h4h5id(primitiveDataType:T’) =

(&z1 := &z3,

&z2 := {},

&z3 := {},

&z4 := &z3,

&z5 := &z3,

&z6 := {primitiveDataType:&z6})

| h1h2h3h4h5id(L:T’) =

(&z1 := &z4 U &z5,

&z2 := {},

&z3 := {},

&z4 := {},

&z5 := &z4 U &z5,

&z6 := {L:&z6})

in &z1@h1h2h3h4h5id(db)

in T

4.2.6 Mapping to UnCAL

Finally, structural recursion translated using the above steps can be mapped to
the UnCAL expressions. This mapping has been given in [5].
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4.3 Interpretation of the Core Language

4.3.1 Interpreting Structural Recursion

UnQL paper [5] provides two evaluation strategies that are proved to be equiv-
alent: bulk semantics and recursive semantics. The latter is intuitive in that
applications of body expression (e1 in rec(e1)(e2)) take place in a top-down
fashion. Revisiting of nodes caused by cycles can be correctly handled by mem-
oization. The former deals possible cycles by applying e1 once for every edge in
input graph and connect together using Skolem functions on markers and nodes.
We describe here two peculiar aspects of our implementation in bulk semantics.
Implementation of recursive semantics was fairly straightforward.

Skolem Functions In bulk semantics, graph is represented by independent
set comprehensions on nodes, edges and markers. “Rendezvous” between them
is required through Skolem functions: you have to glue nodes whose Skolem
function values are identical. We implemented the function using a set of
OCaml’s constructor of algebraic data structure (variants) which directly re-
flects recursive nature of Skolem function (result of application of the function
to node ID is again a node ID), so that there is a one-to-one mapping between
Skolem function and constructor. It also allowed us almost straight-forward
implementation of set comprehensions using standard Set library and fold op-
erations on the Set instances.

Caching Values of the Body Expression Since we use identities of nodes
encoded with instances of the algebraic data structures, and create fresh iden-
tities for each evaluation of tree constructors, each evaluation on e1 produces
“different” instances for identical inputs. Therefore, values of e1 are obtained
collectively beforehand and stored into tables. Looking up the cache value of
the value of e1 instead of evaluating in the set comprehensions allows correct
rendezvous between nodes and edges, as well as elimination of recomputation.

4.3.2 Epsilon Edge Elimination

Bulk semantics generously introduces epsilon edges. They are eliminated when
necessary using straightforward algorithm.

Static Type Estimation Regardless of evaluation strategy, rec requires
static estimation of input and output markers of e1. In UnCAL, this information
is called type. Inference rules of the estimation, which may be non-trivial, is
depicted in Figure 11.

Dynamic Semantics of UnCAL Figure 17 in Appendix shows concrete
dynamic semantics of major UnCAL expressions except rec, which are already
explained.

4.4 Model Compositions

We identify two forms of model composition. First one is a pair of consecutive
transformations T1 and T2, where the output model of T1 is the input model of
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d ∈ DBX
Y Y ⊆ Y ′

d ∈ DBX
Y′

{} ∈ DBY
d ∈ DBY

{l : d} ∈ DBY

d1, d2 ∈ DBY

d1 ∪ d2 ∈ DBY

d1, d2 ∈ DBX
Y

d1 ∪ d2 ∈ DBX
Y

() ∈ DB∅
Y

d ∈ DBY

&x := d ∈ DB{&x}
Y

d ∈ DBZ
Y

&x · d ∈ DB{&x}·Z
Y

y ∈ Y
&y ∈ DBY

d1 ∈ DBX1
Y d2 ∈ DBX2

Y X1 ∩ X2 = ∅
d1 ⊕ d2 ∈ DBX1∪X2

Y

d1 ∈ DBX
Y d2 ∈ DBY

Z

d1 @ d2 ∈ DBX
Z

d1 ∈ DBX
X∪Y

cycle(d) ∈ DBX
Y

e : Label × DBY → DBZ
Z d ∈ DBX

Y

rec(e)(d) ∈ DBX·Z
Y·Z

et ∈ DBX
Y ef ∈ DBX

Y

if b then et else ef ∈ DBX
Y

Figure 11: UnCAL Typing Rules

T2: M′ = (T2 ◦ T1)(M) = T2(T1(M)). Second one is a pair of transformations
T1 and T2, that share identical input model: (M1,M2) = (T1 △ T2)(M) def=
(T1(M), T2(M))). In the first composition, intermediate result can be elimi-
nated by fusion technique, while in the second composition, duplicate traversal
of the input model can be unified by tupling technique. Since tupling at this
level is not implemented, only fusion is described in this section.

4.4.1 Fusing Model Composition

In our framework, consecutive model transformations are translated into com-
positional UnQL queries. Since these queries are translated into composition of
structural recursions in UnCAL, fusion transformation for UnCAL that is pro-
posed in [5] is directly applicable. For very simple case, consider the following
scenario4: first apply Q3 to model in Figure 3, and then retrieve all names by
the following query Q4.
(* Q4 *)
select
letrec sfun f2 ({name:T}) = {name:g2(T)}

| f2 ({L:T}) = f2(T)
and sfun g2 ({L:T}) = {L:g2(T)}
in f2(db))

Note that since these transformations are for illustrative purpose, KM3 val-
idation to intermediate and final result may fail.

Compositional query would look like the following query Q5, by which our
desugaring module produces an UnCAL query Q6. Our UnCAL rewriter trans-
late it into Q7, which is equivalent to Q8, which is further simplified by hand.
Two recs in Q6 is fused into one rec in Q7.

Table 1 shows execution times of Q5 for each evaluation strategy of rec. The
experiment was conducted on a 1.5GHz quad Xeon SMP machine running Linux
kernel 2.4.20. About 3 to 5 fold speed-up had been confirmed.

(* Q5 *)

4This scenario is derived from that of [5].
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evaluation
strategy
of rec

before
fusion

after
fusion

speedup
ratio

bulk 1.31 0.25 5.32
recursive 2.08 0.73 2.86

Table 1: Execution time [sec] of Q5

select

letrec sfun f2 ({name:T}) = {name:g2(T)}

| f2 ({L:T}) = f2(T)

and sfun g2 ({L:T}) = {L:g2(T)}

in

letrec sfun f1 ({primitiveDataType:T})

= {primitiveDataType:g1(T)}

| f1 ({L:T}) = {L:f1(T)}

and sfun g1 ({name:T})= {typeName:g1(T)}

| g1 ({L:T}) = {L:g1(T)}

in f2(f1(db))

(* Q6 *)
&z1@rec(\ (L,T).

if L = "name"

then (&z1 := {"name": &z2},

&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {L: &z2}))

(&z1@rec(\ (L,T).

if L = "name"

then (&z1 := {"name": &z1},

&z2 := {"typeName": &z2})

else if L = "primitiveDataType"

then (&z1 := {"primitiveDataType": &z2},

&z2 := {"primitiveDataType": &z2})

else (&z1 := {L: &z1}, &z2 := {L: &z2}))

(db))

(* Q7 *)
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@

rec(\ (Sa1,T).

if Sa1="name"

then (&z1 := (&z1 := {"name": &z2},

&z2 := {"name": &z2})

@ (&z2 := &z1&z2, &z1 := &z1&z1),

&z2 := (&z1 := &z1,

&z2 := {"typeName": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1))

else if Sa1 = "primitiveDataType"

then (&z1 := (&z1 := &z1,

&z2 := {"primitiveDataType": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1),

&z2 := (&z1 := &z1,

&z2 := {"primitiveDataType": &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1))

else (&z1 := llet L = Sa1 in
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if L = "name"

then (&z1 := {"name": &z2},

&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {L: &z2})

@ (&z2 := &z1&z2, &z1 := &z1&z1),

&z2 := llet L = Sa1 in

if L = "name"

then (&z1 := {"name": &z2},

&z2 := {"name": &z2})

else (&z1 := &z1, &z2 := {L: &z2})

@ (&z2 := &z2&z2, &z1 := &z2&z1)))(db)

(* Q8 *)
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@

rec(\ (Sa1,T).

if Sa1="name"

then (&z1&z1 := {"name": &z1&z2},

&z1&z2 := {"name": &z1&z2},

&z2&z1 := &z2&z1,

&z2&z2 := {"typeName": &z2&z2})

else if Sa1 = "primitiveDataType"

then (&z1&z1 := &z2&z1,

&z1&z2 := {"primitiveDataType": &z2&z2},

&z2&z1 := &z2&z1,

&z2&z2 := {"primitiveDataType": &z2&z2}

else (&z1 := llet L = Sa1 in

if L = "name"

then (&z1 := {"name": &z1&z2},

&z2 := {"name": &z1&z2})

else (&z1 := &z1&z1,

&z2 := {L: &z1&z2}),

&z2 := llet L = Sa1 in

if L = "name"

then (&z1 := {"name": &z2&z2},

&z2 := {"name": &z2&z2})

else (&z1 := &z2&z1,

&z2 := {L: &z2&z2})

))(db)

The following two rules are main transformation rules for cascading rec’s.
The first rule is applied when e2(l, t) does not depend on t. Second rule is ap-
plied otherwise.

rec(e2) ◦ rec(e1) = rec(rec(e2)) ◦ e1

rec(e2) ◦ rec(e1) =
rec(λ(l, t). rec(e2)(e1(l, t) @ rec(e1)(t)))

Following rules are also used to make recursive application of the above
fusion rules to subexpressions possible.

rec(e)({}) = {}
rec(e)({l : d}) = e(l, d) @ rec(e)(d)

rec(e)(d1 ∪ d2) = rec(e)(d1) ∪ rec(e)(d2)
rec(e)(&x := d) = &x · (rec(e)(d))

Z = {&z1, . . . , &zp} e ∈ DBZ
Z

rec(e)(&y) = (&z1 := &y · &z1, . . . , &zp := &y · &zp)
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&x := (&z := e) ↓ &x.&z := e &x := (e1 ⊕ e2) ↓ (&x := e1) ⊕ (&x := e2)

e ∪ {} ↓ e {} ∪ e ↓ e

e ⊕ () ↓ e () ⊕ e ↓ e

() @ e ↓ ()

cycle(()) ↓ () cycle({}) ↓ {}
e ∈ DBX

Y X ∩ Y = φ

cycle(e) ↓ e

Figure 12: Auxiliary rewriting rules

rec(e)() = ()
rec(e)(d1 ⊕ d2) = rec(e)(d1) ⊕ rec(e)(d2)

t does not occur free in e

rec(λ(l, t).e)(d1 @ d2) = rec(e)(d1) @ rec(e)(d2)

t does not occur free in e

rec(λ(l, t).e)(cycle(d)) = cycle(rec(e)(d))

Figure 12 shows additional rules to further simplify the body of rec. There
may be other rules applicable. Exploring these rules s a part of our future works.

5 Related Work

Our work is very much related to research on model transformation based on
graph transformation in the software engineering community, as well as on re-
search on graph querying in the database community.

In the software engineering community, graph transformation has been widely
used for expressing model transformations [10, 19, 16].

AGG [23, 9] is a well-known rule-based visual tool which supports an al-
gebraic approach to graph transformation. AGG supports typed (attributed)
graph transformations including type inheritance and multiplicities. Rule appli-
cation can contain non-deterministic choice of rules which may be controlled by
rule layers. Different from our approach, AGG does not have a clear separation
between the source and target graphs, it is not straightforward to compose/write
multi-staged transformations in AGG.

Triple Graph Grammars (TGG) [17, 12] were proposed as an extension of
Pratt’s pair grammar approach [20], which aim at the declarative specification
of model to model integration rules. TGGs consist of a schema and a set of
graph rewriting rules, and they explicitly maintain the correspondence of two
graphs by means of correspondence links. These correspondence links play the
role of traceability links that map elements of one graph to elements of the
other graph and vice versa. With TGG, one has to explicitly describe corre-
spondence between the source and target models, which would be difficult if the
transformation is complex and the intermediate models are required during the
transformation.
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Neither AGG nor TGG has strict control over application of elementary al-
gebraic graph transformation rules. To increase usability and efficiency of graph
transformation, a variety of control concepts for rule and match selection have
been considered in many graph transformation approaches such as VIATRA
[4] and VMTS [18], where graph transformations are controlled with recursive
graph patterns. Unlike AGG and TGG, graph transformation rules are guar-
anteed to be executable, which is a main conceptual difference. Since their
recursive control structures can be very complicated, it remains unclear how
to efficiently compose them. Our approach puts reasonable restriction on the
recursive structure so that it cannot only be powerful enough to specify various
model transformations but also suitable for efficient composition.

On the other hand, in the database community, there have been a lot of work
on language design and implementation for efficient graph querying [13, 22, 5].
Different from querying trees, issues on representation and equivalence of graphs
are subtle and important to define correctness of graph querying (as well as
graph transformation), and the use of bisimulation and structural recursion
in [5] leads to a very nice framework for both declarative and efficient graph
querying with high modularity and composability. This has motivated us to see
if we can extend the framework from graph querying to graph transformation.

6 Conclusion

In this paper, we have reported our first attempt to designing and implementing
a compositional framework for model transformations based on UnQL. Although
UnQL is well known in database community for its unique solution to the com-
position problem, no one, as far as we are aware, has recognized its usefulness
in software development. We have shown that it is indeed useful and the main
theory and technique can be applied to solve the composition problem in model
transformations.

We are currently working on extending this framework further to add “bidi-
rectionality” to the compositional model transformation so that updating the
target model can be reflected in the source model. This would combine the in-
teresting idea on bidirectional computation in both programming language and
software engineering communities.
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Query ::= select Template where BC 1, . . . ,BCn

Template ::= {TE 1 :Template1, . . . ,TEn :Templaten}
| Var
| (Query)
| Template1 ∪Template2

| FName(Template)
| let sfunFName1({PE 11 :Pat11}) = Template11

| FName1({PE 12 :Pat12}) = Template12

, . . . ,
| FName1({PE 1m1

:Pat1m1
}) = Template1m1

sfunFNamen({PEnmn
:Patnmn

}) = Templatenmn

in Template
| (Template1, . . . ,Templaten)
| filter(BoolCond ,Template)
| letvalVar :=Template1 inTemplate2

TE ::= ValExp
ValExp ::= Var

| Const
| notValExp
| isEmpty ValExp
| ValExp1 andValExp2

| ValExp1 or ValExp2

| ValExp1 = ValExp2

| ValExp1 < ValExp2

| ValExp1 > ValExp2

BC ::= BindCond
| BoolCond

BindCond ::= Pat inTemplate
BoolCond ::= ValExp

Pat ::= {PE 1 :Pat1, . . . ,PEn :Patn}
| Var
| Const

PE ::= Var
| Const
| RPP

RPP ::= Label
|
| (RPP .RPP)
| (RPP |RPP)
| RPP?
| RPP ∗

Const ::= Bool
| String
| Int

Figure 13: Abstract Syntax of UnQL
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E ::= {} (* empty tree *)
| {L : E} (* singleton tree *)
| {l1 : d1, . . . , ln : dn} (* syn. sugar of {l1 : d1} ∪ . . . ∪ {ln : dn} *)
| E ∪ E (* union of two trees *)
| &x := E (* label the root node with input marker x *)
| &y (* data graph with output marker y *)
| () (* empty data graph *)
| E ⊕ E (* disjoint union *)
| (d1, . . . , dn) (* synt. sugar of d1 ⊕ . . . ⊕ dn *)
| E @ E (* append of two data graphs *)
| cycle(E) (* data graph with cycles *)
| Var (* variable reference *)
| if B then E else E (* conditional *)
| rec(λ(LabelVar ,Var).E)(E) (* structural recursion *)
| letVar = E in E (* variable binding *)
| lletLabelVar = L in E (* label variable binding *)

L ::= LabelVar (* label variable reference *)
| a (* label (a ∈ Label) *)
| L + L | L − L | L ∗ L | L / L (* arithmetic operation *)
| LˆL (* concatenation *)

B ::= isempty(E) (* true if value of E is empty *)
| L = L | L < L | L > L (* comparison *)
| true | false (* boolean literal *)
| not L | L and L | L or L (* logical expression *)

Figure 14: Abstract Syntax and brief semantics of UnCAL
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t1::Template
apstp2−−−−→ t′1::Template . . . tn::Template

apstp2−−−−→ t′n::Template

{te1 :t1, . . . , ten :tn}::Template
apstp2−−−−→ {te1 :t′1, . . . , ten :t′n}::Template

v::Var

v <:Template
apstp2−−−−→ v <:Template

q::Query
step2−−−→ q′::Query

q <:Template
apstp2−−−−→ q′ <:Template

t1::Template
apstp2−−−−→ t′1::Template t2::Template

apstp2−−−−→ t′2::Template

t1 ∪ t2::Template
apstp2−−−−→ t′1 ∪ t′2::Template

t::Template
apstp2−−−−→ t′::Template

f(t)::Template
apstp2−−−−→ f(t′)::Template

t1::Template
apstp2−−−−→ t′1::Template . . . tn::Template

apstp2−−−−→ t′n::Template t::Template
apstp2−−−−→ t′::Template

let sfun f1({pe1 : pat1}) = t1, . . . , sfun fn({pen : patn}) = tn in t::Template
apstp2−−−−→

let sfun f1({pe1 : pat1}) = t′1, . . . , sfun fn({pen : patn}) = t′n in t′::Template

t1::Template
apstp2−−−−→ t′1::Template tn::Template

apstp2−−−−→ t′n::Template

(t1, . . . , tn)::Template
apstp2−−−−→ (t′1, . . . , t

′
n)::Template

t::Template
apstp2−−−−→ t′::Template

filter(bc, t)::Template
apstp2−−−−→ filter(bc, t′)::Template

t1::Template
apstp2−−−−→ t′1::Template t2::Template

apstp2−−−−→ t′2::Template

letval v := t1 in t2::Template
apstp2−−−−→ letval v := t′1 in t′2::Template

Figure 15: Inference rules for a judgement of the form t
apstp2−−−−→ t′ in the second

step of desugaring.
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v::Var

v <:Template
apstp3−−−−→ v <:Template

q::Query
step3−−−→ q′::Query

q <:Template
apstp3−−−−→ q′ <:Template

t1::Template
apstp3−−−−→ t′1::Template t2::Template

apstp3−−−−→ t′2::Template

t1 ∪ t2::Template
apstp3−−−−→ t′1 ∪ t′2::Template

t::Template
apstp3−−−−→ t′::Template

f(t)::Template
apstp3−−−−→ f(t′)::Template

t1::Template
apstp3−−−−→ t′1::Template . . . tn::Template

apstp3−−−−→ t′n::Template t::Template
apstp3−−−−→ t′::Template

let sfun f1({pe1 : pat1}) = t1, . . . , sfun fn({pen : patn}) = tn in t::Template
apstp3−−−−→

let sfun f1({pe1 : pat1}) = t′1, . . . , sfun fn({pen : patn}) = t′n in t′::Template

t1::Template
apstp3−−−−→ t′1::Template tn::Template

apstp3−−−−→ t′n::Template

(t1, . . . , tn)::Template
apstp3−−−−→ (t′1, . . . , t

′
n)::Template

t::Template
apstp3−−−−→ t′::Template

filter(bc, t)::Template
apstp3−−−−→ filter(bc, t′)::Template

t1::Template
apstp3−−−−→ t′1::Template t2::Template

apstp3−−−−→ t′2::Template

letval v := t1 in t2::Template
apstp3−−−−→ letval v := t′1 in t′2::Template

Figure 16: Inference rules for a judgement of the form t
apstp3−−−−→ t′ in the third

step of desugaring
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i(g) def= {&x|(&x, v) ∈ g.I} o(g) def= {&y|(v, &y) ∈ g.I}

v ∈ V̂

{} ⇒ ({v}, φ, {(&, v)}, φ)

e ⇒ g v /∈ g.V g.I(&) = r p → l

{p : e} ⇒ (g.V ∪ {v}, g.E ∪ {(v, l, r)}, g.I \ (&, r) ∪ {(&, v)}, g.O)

v ∈ V̂

&x ⇒ ({v}, φ, {(&, v)}, {(v, &x)})
e ⇒ g

&x := e ⇒ (g.V, g.E, {(&x.&m, v)|(&m, v) ∈ g.I}, g.O)

e1 ⇒ g1 e2 ⇒ g2 X1 = i(g1) X2 = i(g2) X1 = X2

E1 = {(v, ϵ, g1.I(&x))|&x ∈ X1, v ∈ V̂ , v /∈ g1.V, v /∈ g2.V }
E2 = {(v, ϵ, g2.I(&x))|&x ∈ X1, (v, a, u) ∈ E1, g1.I(&x) = v}

V = {u|(u, e, v) ∈ E1}
I = {(&x, u)|(u, a, v) ∈ E1, &x ∈ X1, g1.I(&x) = v}

e1 ∪ e2 ⇒ (g1.V ∪ v2.V ∪ V, g1.E ∪ g2.E ∪ E1 ∪ E2, I, g1.O ∪ g2.O)

() ⇒ (φ, φ, φ, φ)
e1 ⇒ g1 e2 ⇒ g2 X1 = i(g1) X2 = i(g2) X1 ∩ X2 = φ

e1 ⊕ e2 ⇒ (g1.V ∪ g2.V, g1.E ∪ g2.E, g1.I ∪ g2.I, g1.O ∪ g2.O)

e1 ⇒ g1 e2 ⇒ g2

E = {(u, ϵ, v)|(u, &y) ∈ g1.O, (&x, v) ∈ g2.I, &y = &x}
e1 @ e2 ⇒ (g1.V ∪ g2.V ∪ V, g1.E ∪ g2.E ∪ E, g1.I, g2.O)

e ⇒ g X = i(g) Y = o(g) Z = X ∩ Y
I = {(&x, u)|(&x, u) ∈ g.I,&x ∈ Z}
O = {(v, &y)|(v, &y) ∈ g.O,&y ∈ Z}

E = {(u, ϵ, v)|(u, &y) ∈ O, (&x, v) ∈ I, &y = &x}
cycle(e) ⇒ (g.V, g.E ∪ E, g.I \ I, g.O \ O)

Figure 17: UnCAL Dynamic Semantics
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