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Abstract. The impression is that formal methods are at odds with pop-
ular approaches such as agile software development. However, these dif-
ferent approaches should instead be significant mutual complementary in
their essential principles. It is an essential problem how to convince this
point beyond apparently different communities that tend to be disjoint.
This paper discusses this point by combining the principles of test-driven
development and its extensions (such as “specification by example”) with
formal specification methods. We constructed a language and prototype
tool called JSTN that mixes specifications, test designs, and test cases
with a model finder. Together, they enable interactive, quick feedback
as well as a flexible blend of different principles. The role of this tool in
education and enlightenment is evaluated through a seminar with over
60 industry engineers including many “agile people.” ®

Keywords: Software Engineering Education, Formal Specification, Test-
Driven Development, Specification by Example, Test Generation, Model
Finding, Alloy

1 Introduction

There has been a long discussion on how to position formal methods among a
variety of approaches in software engineering. Specifically, the recent directions of
agile software development (ASD) have prompted various “agile versus formal”
debates [6]. However, the objective and obvious conclusion should be that the two
paradigms can benefit each other a lot if we focus on their essential principles.
The essential problem is how to convince this point beyond apparently different
communities that tend to be disjoint.

One of the key principles of formal methods is the use of properties or propo-
sitions. The declarative style facilitates a focus on “what” while avoiding un-
necessary decisions or descriptions of “how.” Rigorous and machine-readable
descriptions remove ambiguity and open up various possibilities of tools.

3 This is a full version of the paper under submission to The 17th International Con-
ference on Formal Engineering Methods.



From the same aspect of specifications, ASD communities have investigated
test-driven development (TDD) [5]. Here, test cases (or examples) are considered
primary elements that guide the development activities. They play similar roles
to those of specifications, and are not only used to check the constructed code.
Recent extensions, such as behavior-driven development (BDD), have honed
this direction with principles such as “tests as documents” and “specification by
example” [2,4]. Test cases can give more confidence and have less dependency
on experience of programming or declarative descriptions.

It is somewhat obvious that properties and test cases help to derive or vali-
date each other. For example, to validate properties, it is necessary to consider
both cases that satisfy properties and those that do not. Because of the non-
determinism of properties, it is also necessary to distinguish “one case among
acceptable ones” from “the only acceptable case.” Another essential aspect is to
allow for specifying test designs, or properties on the test suite (the set of test
cases), which describe the rationales or intentions behind the test cases.

To investigate this state of affairs, this paper uses a language that includes
syntax for all of the formal specification, test designs and test cases. With a
model finder tool wrapping Alloy Analyzer [1], it enables a flexible blend of
principles from different communities, agile and formal, as well as testing for
quality assurance. It also allows for a flexible blend of automated, formal ways
and manual, informal ways. The role of this tool in education and enlightenment
is evaluated through a seminar with over 60 industry engineers including many
“agile people.”

The remainder of this paper is organized as follows. Section 2 discusses the
principles and difficulties of formal specification and TDD. Section 3 presents
the proposed language and tool JSTN. Section 4 reports seminar experiences
with industry engineers. Section 5 evaluates the proposal through a discussion
of related work, before the concluding remarks in Section 6.

2 Preliminary

This section discusses the principles and difficulties with properties and test cases
for specification. We use a popular sample for test design, that is, a function
that judges type of a triangle given three integer values for the lengths of the
edges [15]. Below is the interface definition in the Java language. The result type
is defined by an enum type for equilateral, isosceles, scalene, and non-triangle.

enum TType{ EQUI, ISO, SCA, NON }
TType judgeTriangle(int a, int b, int c);

2.1 Specification by Property

We assume that readers will know the various usages and benefits of formal
specification, e.g., random testing with enough assertions [20], in static analysis
on the code [7]. What follows therefore deals only with its difficulties.



The specification of this sample function can be given in the form of a pre-
condition and postcondition, on the basis of Hoare logic. Suppose an engineer
specified the following condition as part of the postcondition.

$TRI &% a != b && b != ¢ ==> \result == TType.SCA
$TRI && ( ... || ¢ == a & a != b) ==> \result == TType.ISO

$TRI denotes the abbreviated condition to compose a triangle, the line break
means conjunction, the symbol ==> denotes the logical implication, and the
keyword \result refers to the return value. There is a deficiency: the second
line forgets to mention the condition ¢ != a, leading to too strong a condition.

First suppose the engineer uses this postcondition to assert executable de-
scription, e.g., as in VDM [8] or JMLUnit [20]. He/she gives a behavior speci-
fication or implementation of the function, then designs and runs test cases to
check the results satisfy the postcondition (as well as assertions given in each
test case). For example, the following test case fails due to the above deficiency.

assert( judgeTriangle(5,3,5), TType.ISO )

If c == a & a != b, the postcondition check always fails because it requires
both \result == TType.SCA and \result == TType.IS0. Although this will
reveal the deficiency, it is confusing as the engineer intended to find deficiencies
in the behavior specification or implementation, not the postcondition.

In contrast, the engineer can be more careful and test the postcondition
function directly:

assert(post_judgeTriangle(5, 3, 5, TType.IS0), true)

This test case fails and the deficiency is revealed more clearly, because the pos-
sible causes are localized (like unit testing before integration testing).

Second, let us the engineer uses a model finder such as Alloy Analyzer [1]. It
can present possible models (examples) that satisfy the given condition, in this
case for (a,b,c,\result), such as (3,3,3,Type.EQUI), (4,4,2,Type.IS0)

(within some bounds). However, it does not show any values that satisfy ¢ == a
&% a !'= b (without any notice). An inconsistency is reported only if the engi-
neer explicitly tells the finder to show values for ¢ == a && a != b.

In many cases with complex problems, it is more likely to have a weak post-
condition while strong one is more effective [18], for example:

\result == TType.SCA ==> a !=b & b !=c

This condition is weak, missing ¢ !'= a as well as the condition to compose a
triangle ($TRI).Postcondition weaker than the necessary and sufficient condition
can be acceptable in some usages, e.g., assertions. However, the above case should
be due to oversight, accepting a result TType . SCA for (a,b,c)=(5,3,5),(2,3,7).

If the engineer use the weak postcondition to assert executable description,
the deficiency may not be revealed. The problem is the postcondition silently
lets incorrect results pass, e.g., TType.SCA for (a,b,c)=(5,3,5) is accepted. If
the engineer tests the postcondition directly, test cases will reveal the deficiency.
with test cases of values that do not satisfy the postcondition, such as:



assert(post_judgeTriangle(5, 3, 5, TType.SCA), false)

A model finder requires good fortune to generate unexpected examples, as well
as carefulness of the engineer to notice them. The deficiency is revealed as an in-
consistency if the engineer explicitly gives and asserts that such counterexamples
do not satisfy the condition.

The above discussion illustrates it is very important to validate properties
with concrete test cases or examples in a careful test design. Test designs in this
context should not only cover different situations (e.g., scalene triangles) but also
handle the nondeterministic nature of the properties (i.e., assertions are different
from those for program code and may not constrain the result uniquely).

2.2 Specification by Example

If the engineer uses test-driven development for the same function, he/she will
start with a check list and test cases. The (initial) check list probably includes
items like “Judge Equilateral,” “Judge Scalene,” etc. If the engineer thinks the
equilateral item is the easiest, he/she would design a test case for it first:

assert( judgeTriangle(5,5,5), TType.EQUI )

The engineer sees that this test case fails, and concentrates on writing code to
pass it. The code can even be fake; e.g., just write return TType.EQUI, if he/she
thinks the problem is too difficult to write clean code that works. After passing
the first test case, the engineer chooses another item in the check list and writes
a test case, e.g., for a scalene triangle, which fails. This small cycle is repeated
until the people involved have confidence about realization of the function. The
engineer may extend the check list as needed.

The first point is to have quick feedback with small cycles. In other words, one
should avoid writing long code without any checks, as it can result in code that
mysteriously works for some test cases, but not for others. Such code entails a lot
of effort to debug and rollback. The second point is to use and discuss concrete
test cases, or examples. Even customers (non-programmers) can understand and
discuss the examples with confidence, if it is the Ul-level function. Even ex-
perts may assign different meanings to general expressions, or easily overlook
deficiencies, due to careless mistakes or the complexity of the problem?.

These points suggest supporting formal specification by TDD. It can be at-
tractive to apply the TDD principles to formal specification, e.g., for relatively
new, open problems with some complexity that requires concrete examples. In
such case, it is necessary to consider the meaning of “test” to match with natures
of properties as discussed in Section 2.1.

On the other hand, TDD completely relies on the design of the test cases.
Although a check list can start with easy examples, it should eventually become

4 We will omit discussing other essential aspects of TDD and its extensions, such as
focus on the value without unnecessary generalization or extension, refactoring, or
human-readable representation of test cases [2,4,9].



complete enough for the customer to have confidence in achievement of the ex-
pected value. The fundamental methods for testing are helpful, e.g., equivalence
partitioning and boundary analysis, but require context-specific applications and
discussions (e.g., what are the partitions in our case?). The test cases such as
(a,b,c)=(5,3,5) are actually derived results. The test designs, or the inten-
tions behind them, is a target of discussion and validation (e.g., try one case of
c == a & a '= b). Documentation is indispensable especially if future changes
are expected. Even with documentation efforts, the understanding and validation
of test designs can suffer from the ambiguity of natural languages and complex-
ity of logic. It is a costly and error-prone undertaking to manually trace and
validate test cases for the test design.

It seems to be a good idea to support TDD by formal specification or prop-
erties. The difficulties discussed above are similar to difficulties of specifications,
which are typical motivations for formal specification. Actually, what we call
“test design ” is a specification of the test suite, or a set of test cases, e.g.,
“include one test case for isosceles triangles with a == c.” The specification of
the function also matters as a test oracle that determines whether the expected
output values are correctly defined. Thus it is valuable to derive or assert test
cases with formal properties as needed.

Testing for quality assurance explores more kinds of completeness, such as
coverage on combinations even without causal relationships (e.g., pairwise test-
ing) [13]. This paper does not discuss or evaluate such aspects, though the pro-
posed language and tool can potentially handle them.

3 JSTN Language and Tool for Spec-Test-Go-Round

The proposed language and tool are collectively called JSTN (Java Specification
and Testing Note). The JSTN language is designed for annotations on the Java
language, and hence it will be use to a wide range of engineers, though the con-
cepts involved do not essentially depend on Java. The language has vocabularies
for the specification (in the form of properties), test designs and test cases. The
semantics are defined from the viewpoint of a generator of test cases or examples.

3.1 Sample

Here we illustrate the language and tool with the triangle sample in Section 2. We
start with specification of a precondition, which was not considered in Section 2.
Suppose that non-positive values for the input (a,b,c) are considered invalid,
rather than valid input that makes a non-triangle. In this case, the tool generates
test cases that include only positive values for the three arguments:

\pre {a>0& b>0&& c>01}
2 b [c |
2 3 10

19 20 0 [LowerB]




The choices of the values are arbitrary. In the second line, the value for ¢ accom-
panies a tag “LowerB” (for lower boundary). In this simple case, the tool can
understand the constraints bound by constant values and can attach the tag.
The tool may generate the output value (TType) as well, but does not do so by
default as arbitrarily wrong output values are not so meaningful.

The tool also accepts a command to generate test cases with invalid input,
attaching tags for invalid values:

2 b E |
-2 [Under] |10 3

-1 [UnderB] |5 -8 [Under]

Suppose we add part of the postcondition for equilateral triangles. The tool
then starts to include the result in the output (for the valid input):

\post { a == b && b == ¢ ==> \result == TType.EQUI }

B b lc [\result ‘
3 3 3 TType.BQUI

1 [LowerB] (3 5 TType.NON

10 9 3 TType. EQUI

As expected, result values are arbitrary for all cases except for the first row that
matches the left side of the implication (a == b && b == ¢). The tool applies
a heuristic that automatically adds a test design that includes at least one case
that matches the left side of top-level implication formula.

Suppose the engineer had a test case already defined and agreed with related
people (e.g., consumers of this function). He/she can add the test case with a
tag and the case is then always included in the result of the tool with the tag:

\case{ \'"ex-equi" a==5 && b==5 && c==5 && \result==TType.EQUI }

B b lc [\result [PROP ‘
5 5 5 TType. EQUI |[ex-equi]

3 3 3 TType.EQUI

1 [LowerB] |3 5 TType.NON

10 9 3 TType. EQUI

Confidence in the meaning of the postcondition can be increased by using a
command to show counterexamples, or wrong execution results from valid input:

B b lc [\result \
3 3 3 TType.ISO

5 5 5 TType.NON

2 2 2 TType.SCA




We proceed to the next step in the TDD way, adding a test case of scalene
triangles, which is not specified yet:

\case{ \"ex-sca" a==5 && b==3 && c==4 && \result==TType.SCA }

This test case does not cause a failure, as the current postcondition does not
allow any result for the input. The tool includes this test case in the result table
(omitted) in the same way. It is also possible to strongly assert that this example
defines the only possible result from the input by example_d (for “determinis-
tic”), which lets the tool reports the inconsistency.

From a different aspect, the language allows to give test design descriptions,
primarily in the form of partitions. The following is a sample of a test design
description, that is not only partial but also naive.

\partition{
\"p-equi" a == b && b == c, \"p-sca" a !=Db && b != c,
\"p-isol" a == b && b != c, \"p-iso2" b == c && c != a,
\"p-is03" c == a && a != D
}
The scalene partition lacks ¢ !'= a and thus is not disjoint with the third isosceles
partition. The following is a possible result table:
a b lc [\result [PROP
3 4 5 TType.EQUI |[p-sca]
5 5 4 TType.ISO [p-isol]
9 3 3 TType.NON |[p-iso2]
4 7 4 TType.NON |[p-sca,p-iso3]
5 5 5 TType.EQUI |[ex-equi,p-equi]

The tags help a lot to see which case is in which partition(s), and in this case there
are unexpected partition tags in the fourth row. Actually the above partition
also lacks the condition to compose a triangle, which may be found similarly
when the partition for non-triangle is added.

Figure 1 illustrates how JSTN allows for partial or incremental construction
of specifications, test designs and test cases. At the top is a situation where
no specification is given other than the type information. The tool can only
enumerate possible values in the type. The bottom left shows a situation where
the complete specification of the function is given. In this situation, the tool
can exactly judge which cases are valid and which cases are invalid. The bottom
right shows a situation where a complete test design is given on the test cases.
The tool can, for example, select only one case in each partition and include
boundaries if necessary. The middle situation on the left side is one where the
specification of the function is partially given. In such situations, the tool would
judge some cases that are actually invalid as valid. Similarly, the middle right
situation is one where the test design is partial. Here, the tool can only generate
necessary test cases or eliminate duplicate cases only for that part.



Model Finding Result with No Formal Properties

Space of all the possible cases (defined by types)

Space of actually valid cases

Equivalence

Partitions

Model Finding Result with Complete Specification of Function Model Finding Result with Complete Test Design

Fig. 1. Balance of Formal Properties and Tool Result

The JSTN tool can generate test cases from partial descriptions, allowing
to validate what was just specified and have confidence about them. This quick
feedback means the tool accepts partial specifications, for the purpose of semi-
automation or making weak assertions. It also means the tool allows for an
incremental process with continuous validation, toward a complete specification
or a complete test design. We call the process “Spec-Test-Go-Round”, in which
one investigate specifications and test cases (boundary lines and instance circles
in Figure 1) in turn. The JSTN tool provides functionalities to go not only from
specifications to test cases but also in the reverse direction, e.g., selecting test
cases to use hereafter from the generated ones.

3.2 Supported Tasks

The sample in 3.1 showed various features of the language and tool, however,
lacked objectives or consistent processes. Actually it is necessary to clarify the
deliverable under consideration and how to use the language and tool.

JSTN can be used for tasks to construct test cases. One can provide concrete
test cases directly, use test designs to generate test cases, or mix them. It is
possible to mix test designs and test cases in a complementary way for the
purpose of semi-automation. Part of test cases are generated while the others
are manually described. For example, it is easier to generate test cases that follow
some clear rules, e.g., partitions and boundaries by integer constants. However,
it is much more difficult to provide properties that are strong enough to generate



test cases corresponding to specific structures and value distributions of trees. In
addition, it is also possible to mix test designs and test cases in a duplicated way
for the purpose of validation, i.e., asserting test cases described manually by test
designs. This increases confidence in test cases and test designs (as deficiencies
can occur in either) and also enables to keep the traceability. Specifications of
the target functions can also work as assertions on test cases.

JSTN can be used also for tasks to construct specifications. One can validate
a specification by providing concrete test cases or generating them. It is up to
the engineers to follow the TDD way or test-first principles. or not. The JSTN
language includes syntax specific to assertions for properties, i.e., determinism
and counterexamples. In addition, the generated test cases or counterexamples
help to increase confidence when they were found to follow the specification as
expected. There is also the possibility of finding unexpected cases arising from
too strong or too weak specifications.

3.3 Core Syntax Elements

Here, we explain the core syntax elements and their semantics for the case the
tool is used to show test cases about a method. We will omit explaining those
when the tool is used to show examples of variable (field) values that satisfy (or
do not satisfy) invariants.

Let T'S be a test suite, or a set of test cases to be generated. Each test
case t € T'S consists of input and output values t = {i1,...,im,01,...,0,} €
Iy x...x1I, x01X...x0,. The domains of the input values (I3, ..., I, ) refer to
the types of the method arguments and pre-state variables that appear at least
in one of the annotations (e.g., postcondition)’. Thus JSTN deals with variables,
in or out of the class the target method belongs to, only if they are mentioned in
the annotations. Similarly, the domains of the output values (O, ..., O,,) refer
to the types of the return value and post-state variables that appear at least
in one of the annotations®. The actual domains depend on the implementations
that use bounds to avoid state explosions.

There are four modes of generation, valid, invalid, checkpost and checktest.
The semantics for each type of annotations are explained below.

Suppose that PRE = {prey,...,pre;} and POST = {posty,...,post;} are
sets of given precondition predicates and postcondition predicates, respectively.

— The valid mode generates T'S such that vVt € TS - (Vp € PRE -p(t)) A (Vp €
POST - p(t)).

— The invalid mode ignores the postcondition: V¢t € T'S -Vp € PRE - —p(t).

— The checkpost mode checks counterexamples of the postcondition, or exe-
cution results judged to be wrong: Vt € TS - (Vp € PRE - p(t)) A (Vp €
POST - —p(t)).

® The JSTN language also provides syntax to explicitly declare which variables the
target method reads or writes.
5 JSTN uses the symbol ’ to refer to post-state variables



Test design is additionally taken into consideration for T'S. Suppose that
PART = {parts,...,part;} and C'S = {cs1,...,cs;} are sets of given partition
predicates and test case predicates, respectively.

— The valid mode generates T'S such that ¥p € PART UCS - (3t € T'S - p(t)).
This means partitions and test cases have the same effect, though human
engineers probably want to distinguish instances and partitions (classes) of
instances. For the invalid and checkpost modes, there are identical elements
for partitions and test cases but we do not repeat the definitions.

— The checktest mode is used with valid and inwvalid. For the valid run, the
checktest mode adds V¢t € T'S - (3es € CS - ¢s(t)). This means only the
given test cases are used, and the tool run succeeds only if they cover all
the partitions (i.e., checking the conformance of the test cases to the test
designs).

Assertions can also be defined.

— It is possible to declare each test case as deterministic: DET C CS. A check
command can be executed in order to try to find counterexamples: TS such
that |3det € DET - ({t € TS|IN(det)(t)}| > 1). IN(det) is a predicate that
constrains the input in the same way as det but not constrain the output”.

— For each test case it is possible to define the partitions it belongs to: BELONG €
CS x PART. A check command can be executed to try to find counterex-
amples: T'S such that Vt € T'S - (3(cs, part) € BELONG - cs(t) A —part(t)).

3.4 Prototype Implementation

The current implementation of the JSTN tool simply wraps Alloy Analyzer [1].
Alloy provides a primitive specification language for modeling sets and relations
together with constraints in the first-order logic, to be used for model finding by
a SAT solver. The JSTN tool uses the Xtext/Xtend frameworks [3] to extend the
Java syntax, generate language tools including a parser and an editor on Eclipse,
and implements the conversion from JSTN to Alloy. During the conversion, the
tool keeps mapping between tags given by the engineer and names encoded in
Alloy so that it can recover the tags from the solution.

Figure 2 shows the result view of the tool. Test cases are presented with
tags in a table. The pulldown on the right allows the user to choose a test case
to keep, which then shows a case description to be copied and inserted. Other
feedback is possible, such as editing the presented values (to modify and keep
test cases), and creating assertions by selecting wrong tags or indicating missing
tags (to see problems on tags are resolved after modification and rerun of the
tool).

Although JSTN applies the familiar Java syntax, it is intended to work as
a modeling language, or validation of code by introducing by some bounds; it

" The current implementation simply limits the predicate to a conjunction of input
constraints and output constraints when a test case is declared to be deterministic.



Name Type <ARG> 3 <ARG> b <ARG> ¢ Test Case Pro... Keep?

case 0 generated 6 3 8 [Parta(p-sca)]
case 1 generated 3 5 3 [Part3(p-iso3)]

case 2 generated 2 6 6 [Part2(p-iso2)]
[Ex.1(cris01)
Parti(p-iso1)]

[Ex.0(c-caui)
Pario(p-equi)]

Fig. 2. Screenshot of JSTN Tool

is not intended to cover all the code-level details. The current implementation
deals with primitive and standard object types of boolean, integer, char, String,
Set, List and Map as well defined classes and enum types. The language provides
operators common in specification languages, especially on Set, List and Map.
For example, an operator inds is provided for obtaining a set of indexes for a
list, together with a choice of Java method styles (1ist.indexSet()).

In addition to the core syntax elements in Section 3.3, the current imple-
mentation includes heuristics, options and syntax sugars. For example, the tool
provided options to include well-known test design such as boundaries or forcing
each test case for invalid input to only include one error. The tool also provided
heuristics to automatically add partitions to include cases that satisfy the left
side of implication and to use all the possible values when the type is boolean
or enum (as well as the option to deactivate).

Primary issue in model finding is the inevitability of a state explosion for
types that have enormous number of possible values. The default way that Alloy
Analyzer works is to limit the number of instances for each signature (type of
instances), the bit length of the integer values, or the size of list values. The JSTN
tool allows to additionally set bounds on sets, that is, JSTN-level set values (not
Alloy-level at which everything is a set). Although the JSTN language provides
options to control these bounds, the tool basically tries to find sufficient sizes
by analyzing the number of test cases required by partitions and examples, the
used integer constant values, and so on.

The current implementation also uses symbolic values for the integer and
string types, when the constraints on them contain only comparison operators
(not arithmetic operators on integers or operators that accesses characters inside
strings). For example, if an integer variable has a precondition 0 <= x && x <= 30,
set values are created such as xNonboundary = [1,29], xUpperboundary =
[30,30], and zOver Nonboundary = [32,*]. There can be multiple ranges, e.g.,
by made partitions, and relations between ranges (disjoint, contains, etc.) are
analyzed and encoded to avoid the occurrence of impossible values (e.g., be-
long to both [0, 10] and [20, 30]). After the model finding, values to be presented



are generated from the symbol values back to the constant values or arbitrarily
generated within constraints, by using uniform distributions and string dictio-
naries. Note that in order to judge a variable can be symbolized or not, we need
an iterative propagation algorithm. Suppose there are two formulas x == y and
x % 3 == 2. If we only have the first formula, we can symbolize both x and y.
However x is not symbolized due to the second formula, and then y is not, either,
for the type consistency in the first formula.

The objective of the prototype implementation was to have experiences with
industry people (shown in Section 4). It leaves potentials for performance im-
provement, e.g., by incorporation of a SMT solver.

4 Seminar Experiences

4.1 Overview

We held a one-day seminar to obtain feedback from engineers in industry as well
as to evaluate the JSTN language and tool®. In the call for participation, we
introduced the seminar as:

— Overviews three areas of formal specification, test-driven development and
test design for quality assurance, discussing mutual relationships

— Uses a prototype tool wrapping a model finder (solver) for exercises to vali-
date specifications by test cases, and to validate test cases by specifications.

The call was distributed to mailing lists of attendees of past seminars, primarily
on formal methods, as well as those of our educational program for industry
(lasting almost ten years) [10,11]. It was also distributed through microblogs
and social networks.

The seminars were held twice and drew in total 60 participants. As we put
high priority on exercises in the limited time, we asked the participants to fill
out questionnaires after the seminar. We got answers from 40 of them, including
34 from industry (the others were graduate students and academic researchers).

We asked about their previous experiences with formal methods and ASD/TDD,
in four levels as shown in Table 1. Most of the participants had learned or had
used formal methods. This is probably because there have been a lot of semi-
nars, guide documents, etc. on formal methods in these several years. The rate
of participants using ASD/TDD at work was also high, maybe due to the re-
distribution of the call by influential persons in these communities.

The seminar program consisted of four parts: introduction, formal specifica-
tion, test-driven development, and test design for quality assurance. The intro-
duction was similar to Section 3.1, though it had a simpler example. In the other
three parts, we introduced general principles and gave an example of existing
frameworks or tools. Then we introduced the related syntax and tool functions

8 The call for participation and materials can be found on the following pages
(in Japanese): http://topse.or.jp/2014/11/2243 http://research.nii.ac.jp/
~f-ishikawa/jstm/



Table 1. Experiences of Participants

Item [Formal Methods[ASD/TDD]
Using at work 7 19
Have learn but not using at work 23 15
Interested but have not learned or used 7 4
Thought irrelevant or did not know 3 2

of JSTN and had the participants complete two exercises. The exercises were
very short, e.g., writing a postcondition for the list reverse function and writing
test cases for the triangle function for TDD.

4.2 Overall Evaluations

We asked about the advantages of the JSTN language and tool, providing choices
and allowing for multiple choices. The results are shown in Table 2 (a). The
feedback was very positive for the tool design discussed in Sections 3.1 and 3.2.

Similarly, we asked about the possible effective usages of the JSTN language
and tool, as shown in Table 2 (b). Here, each engineer could agree with a few of
more of the presented effective usages across the three target areas of the seminar.
It is notable JSTN is considered effective to support TDD, together with the fact
many participants use it at daily work. It is also notable that the seminar, by
covering different areas, gave very good impressions on its educational value.
The last item in the table (easy use of solvers) does not make a good sense
as we could only overview such a usage in the seminar, e.g., deriving a system
configuration that satisfies some constraints.

We also asked about the improvements that they deemed most important,
as shown in Table 2 (c¢). The performance was the most critical problem. Some
of the exercises in the seminar used arithmetic (e.g., the triangle function) and
took a long time (tens of seconds) depending on the given description. There
were also many opinions about practical aspects of interfacing, both between
the tool and the user, as well as between the tool and other popular tools.
The item “Others” included documentation as well as combination with other
techniques such as automated random testing or bounded model checking. The
target scope of JSTN, i.e., analyzing a (model of) function with generic model
finding functionalities, seemed to be acceptable.

5 Discussion

5.1 Related Work

In summary, novelty of this paper is first we took an approach to allow for
balance and mixture of automated and manual effort, focusing on continuous



Table 2. Evaluations

(a) Advantages
Enable to incorporate principles from TDD, formal methods, test design |22

Enable to run the tool as soon as some description is given 22
Make easier use of formal methods and solvers 17
Provide opportunities to enlarge and learn viewpoints 16
Is a general-purpose tool to support various tasks to some extent 14
Enable lightweight usages such as partially automated test design 14

(b) Effective Usages
Education and enhancement of understanding and awareness to enlarge|15
insights of mid-level engineers
Management and discussion on test cases in TDD 14
Introduction and education of foundations for beginners 12
Clarification and validation of constraints in domain analysis or specifica-|11
tion construction
Assistance of test design for quality assurance 10
Clarification and validation of logic regardless of the task 9
Machine-readable standard comment formats on program code 7
Formalization and validation before using existing formal methods 7
Easy use of solvers on complex problems 4

(c) Expected Improvements

Performance (time to obtain a solution) 18
User interface (auto completion, tool-tips, etc.) 14
Conversion from/to common formats such as UML, Excel, testing frame-| 8
works

Others 8
Extension of target problems (e.g., execution sequence, component compo-| 3
sition)

Specialization of functions and user interface for specific usages 3
Tuning on the number and variety of test cases 2

specification and validation by human engineers. Second, we evaluated the tool
with engineers in industry and obtained positive feedbacks not only on individ-
ual usages such as supporting TDD but also on effectiveness for education and
enlightenment.

We discussed the necessity to test postcondition functions in Section 2.1.
Although tools for VDM (VDMTools and Overture) internally generate such
functions, no direct support of comprehensive testing is provided. A recent up-
date in the VDM language (VDM-10) introduced syntax for a kind of test design
using regular expressions (called “traces”). However this design is for generating
a comprehensive set of test cases, and it takes long time to run all of them and
is difficult to understand the meanings and results of them. The work presented
here, on the other hand, while similarly aimed at test design, is intended to help
engineers derive, or assert existence of, test cases for the sake of confidence.



Alloy originally focused on model finding [1], but in a primitive, not task-
oriented way (discussed in Section 2.1). The presented work discussed a higher-
level language and tool for direct support of tasks involved in specifications or
test cases, as well as validation patterns with the nondeterministic nature of
specification. Although the implementation is just a wrapping of Alloy, it al-
lows for various automated tuning and heuristics during the conversion. For
example, it allowed for automated implementation of symbolic representations
in Alloy, which were only discussed theoretically in [19]. The study in [14] dis-
cussed application of TDD to Alloy by introducing syntax for partial instance.
The presented work extended the direction by introducing a more high-level syn-
tax and evaluating it with engineers. Aluminum is an extension Alloy that first
presents minimum models (test cases in this paper) and then incrementally move
to more complex ones [16]. In that study, “incrementally” means the addition
of a relation and thus differs from the task-oriented meaning used in this paper.
Aluminum is said to be effective in the initial phases where engineers have little
confidence about specifications, not for validation or finding unexpected situa-
tions. Although the presented work had conceptually different directions from
those studies, our future work will include improvement of the implementation
by incorporating their techniques.

TestEra is a tool that uses Alloy to generate input of the test cases by pre-
conditions and to assert their output by postconditions [12]. Using Alloy without
test designs can easily lead to redundancy, or limited test performance (e.g., code
coverage). Generally, results from automated test generation are too difficult for
human engineers to understand and have confidence about them, or are limited
in the test performance. There have been also a lot of studies on automated gen-
eration and execution of test cases with no or little human effort on test designs
or specifications. Although the focus is different, our future work will include
applications of the techniques used in such studies, e.g., recording and reusing
generated objects to obtain more complex objects of larger classes [17].

Discussions on these kinds of tools for education and enlightenment have been
very limited, while this study showed positive feedbacks by industrial engineers.

5.2 Limitations and Future Work

Further improvement and evaluation are necessary in terms of tool implementa-
tion. The future work includes combination of different kinds of solvers (including
not only SMT solvers but also generation of values directly by the programming
language, currently Java), as well as heuristics on problem decompositions. As
the primary approaches depend on heuristics, it is necessary to have intensive
evaluations with various problems. Further evaluation on usages and benefits of
JSTN are also necessary, as the seminar was limited to short time with very
small exercises. The long-term future work includes making JSTN into a frame-
work by extracting language-independent parts so that implementations can be
obtained for various specification languages.



6 Concluding Remarks

We presented a language and tool called JSTN that mixes specification, test
design and test cases together with a model finder. This approach enables in-
teractive, quick feedback as well as a flexible blend of different principles. The
seminar yielded positive feedback from industry engineers about the potential
benefits of the proposed language and tool, in addition to effectiveness on ed-
ucation and enlightenment. Given that this is the first step, we will continue
improving the tool implementation as well as investigating educational experi-
ences.
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